
Received 3 April 2023, accepted 25 May 2023, date of publication 29 May 2023, date of current version 7 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3281195

Proposed Framework to Manage Non-Functional
Requirements in Agile
EZELDIN SHERIF 1, WALEED HELMY1, AND GALAL HASSAN GALAL-EDEEN2
1Information Systems Department, Faculty of Computers and AI, Cairo University, Cairo 12613, Egypt
2Management Department, School of Business, The American University in Cairo, Cairo 11835, Egypt

Corresponding author: Ezeldin Sherif (Ezeldinsherif@gmail.com)

ABSTRACT Agile Software Development (ASD) is a type of iterated software development that strives
to maximize productivity, effectiveness, and quick delivery through the minimization of documents and
needless procedureswithin constrained timeframes. Agile software development has a number of advantages.
There are still some difficulties. For instance, during the development lifecycle, non-functional requirements
(NFRs) are disregarded and not given first-class artifacts. This results in several issues, including customer
dissatisfaction and a great deal of rework, which impacts time and cost. In this paper, a proposed framework
for handling non-functional requirements in Agile is explained. The framework supports the several primary
activities of requirements engineering including requirements elicitation, analysis, documentation, and
validation. In addition, the framework handles non-functional recommendations. Results of the suggested
solution validation showed that it could address the problems with non-functional requirements in Agile.

INDEX TERMS Agile, non-functional requirements, scrum.

I. INTRODUCTION
The term ‘‘Agile’’ denotes flexibility, adaptation, and
agility [1]. Agile software development entails the division of
a single large software project into numerous independently
executable sub-projects. The development team begins by
focusing on the most important features that users have
chosen, other features chosen in successive iterations, and
so on. Due to its advantages, such as increased team
productivity, motivation, and software quality, Agile software
development has grown in popularity over the past ten
years [1]. However, there are still some challenges and
issues in Agile Software Development [2]. One of the
main challenges is not focusing on non-functional require-
ments [2], [3], [4], [5], [6], [7], [8], [9]. Our research
problem in this challenge is focused on recommendation,
elicitation, analysis, documentation, and validation of non-
functional requirements in Agile. Therefore, this paper
proposes a framework to address this challenge. This paper is
organized as follows: Section one provides an introduction,
Section two presents the research methodology, Section
three presents the Agile Software Development Background,

The associate editor coordinating the review of this manuscript and

approving it for publication was Aasia Khanum .

Section four presents a proposed framework, Section five
presents validation and results, and finally, Section six
outlines the conclusion of this paper.

II. RESEARCH METHODOLOGY
To analyze key works now available in the non-functional
requirements in Agile, this research report carried out a
critical literature review of this area. This research was
conducted in four phases. The existing related articles were
first screened using popular search engines such as IEEE
Xplore Digital Library, Google Scholar, ACM, Springer,
Science Direct, and Wiley Online Library. A keyword-based
search on the terms was used throughout the screening
process using different combinations of the following terms:
‘‘non-functional requirement’’, ‘‘scrum’’, Agile’’, ‘‘quality
requirement’’, ‘‘requirements engineering in Agile’’, ‘‘con-
flict’’, ‘‘requirements elicitation’’, and ‘‘recommendation’’.
The second phase concentrated on selecting the important
key works that would be examined and analyzed by filtering
the collected papers. All pertinent papers were divided
into categories based on their origin, whether they were
theoretical or practical, and where they were published,
whether in journals or conference proceedings. The third

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 53995

https://orcid.org/0009-0001-9072-6029
https://orcid.org/0000-0002-2522-7637


E. Sherif et al.: Proposed Framework to Manage Non-Functional Requirements in Agile

phase involved developing an analysis of the filtered works
to identify their advantages and disadvantages as regards
Agile solutions for focusing on non-functional requirements.
Finally, the result from the analytical study had been reached
by the fourth phase.

III. AGILE SOFTWARE DEVELOPMENT BACKGROUND
Agile Software Development let the development team first
concentrates on the most important features that people have
asked for. The team uses an incremental iterative development
approach for all of the chosen capabilities, with each iteration
producing a working system. The focus of the development
team is on adapting quickly to changing requirements. The
development team promptly modifies the plan in response to
requests for changes to the requirements. Seventeen software
developers got together in 2001 to talk about a quick and
efficient development process [10]. They published a docu-
ment called ‘‘Manifesto for Agile Software Development’’.
The Agile manifesto contains twelve principles and four
values which drew on their collective experience in software
development and recognized the need to move away from
rigid process models like Waterfall. The four values are [10]:

1) Individuals and interactions over processes and tools.
2) Working software over comprehensive documentation.
3) Customer collaboration over contract negotiation.
4) Responding to a change over following a plan.

The twelve principles are [10]:

1) The highest priority is to satisfy the customer through
the early and continuous delivery of valuable software.

2) Welcome changing requirements, even late the develop-
ment. Agile processes harness change for the customer’s
competitive advantage.

3) Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference for a
shorter timescale.

4) Business people and developers must work together
daily throughout the project.

5) Build projects around motivated individuals. Give them
the environment and support they need and trust them to
get the job done.

6) The most efficient and effective method by which to
convey information to and within a development team
is face-to-face conversation.

7) Working software is the primary measure of progress.
8) Agile processes promote sustainable development. The

sponsors, developers, and users should be able to
maintain a constant pace indefinitely.

9) Paying continuous attention to technical excellence and
good design enhances agility.

10) Simplicity -the art of maximizing the amount of work
not done- is essential.

11) The best architectures, requirements, and designs
emerge from selforganizing teams.

12) At regular intervals, the team should reflect on how to
become more effective, then tune and adjust its behavior
accordingly.

The above principles and values aim to accomplish two main
objectives. The first objective is increasing public knowledge
of Agile methodologies is the primary goal. The second
objective is to help project teams decide if they are going
to use an Agile process or not. This manifesto defines the
philosophy behind Agile techniques, together with all of its
guiding principles and values, and should ideally be included
in all of the Agile methods’ practices [11]. These principles
fall short of taking into account the significance of the non-
functional requirements (NFRs) [12]. As shown in Table 1,
there are 16 different challenges in Agile requirements
engineering discussed by 15 different research papers [2].
The challenge labeled with ‘Y’ means this challenge is
mentioned in this given paper. The challenge that is labeled
with ‘−’ means that this challenge is not mentioned in
the given paper. Neglecting non-functional requirements in
Agile along with minimal documentation are the top two
challenges in Agile requirements engineering [2], as these
two challenges are stated in 14 out of the 15 research papers.
Our focus is on the non-functional requirements in Agile.
There are related solutions that did focus on non-functional

requirements in Agile software development. As shown in
Table 2, it consists of 4 methodologies and 3 methods that
focus on non-functional requirements in the Agile software
development [2]. Table 3 consists of 3 tools, 2 frameworks,
1 metric, 1 study, 1 process, 1 guideline, and 1 new artifact
that focuses on non-functional requirements in the Agile
software development [2]. Each one of those solutions
tackled the challenge of non-functional requirements in Agile
from different perspectives. As shown in Tables 2 and 3,
the keywords ‘‘yes’’ and ‘‘no’’ indicate whether or not
the item applies to the given solution or research article,
respectively. As a summary of both tables, there is no
single solution that focuses on recommendation, elicitation,
analysis, documentation, and validation of non-functional
requirements in Agile.

IV. MANoR: A PROPOSED FRAMEWORK
In any given software, there are two types of require-
ments: functional and non-functional requirements. This
also applies to any software developed using an Agile
software development approach. One of the foci in ASD
is to deliver working functional software to the client as
soon as possible. Therefore, the focus is on the functional
requirements and Agile software development treats them
as a first-class object. So, there is less focus on non-
functional requirements. One of the problems of neglecting
requirements, in general, is rework, where extra work is
needed to fix problems in software due to poorly understood
requirements [43]. The rework can cost from 40% to 50%
of the total efforts of the software project [43]. It is found
that a failure range of 60% or higher of software products
when not considering non-functional requirements while
development [9], [44], [45], [30], [46], [29], [36]. There are
many different points to be considered while working on
non-functional requirements, such as how are non-functional
requirements going to be elicited, documented, and validated.

53996 VOLUME 11, 2023



E. Sherif et al.: Proposed Framework to Manage Non-Functional Requirements in Agile

TABLE 1. Challenges in Agile requirements engineering adopted from [2].

TABLE 2. Different methods/methodologies to handle non-functional requirements in Agile [2].

TABLE 3. Other solutions to handle non-functional requirements in Agile [2].

Another point is whether there is a possibility to recommend
certain non-functional requirements to the client. What if
there is a conflict between non-functional requirements? This
is where the proposed framework comes in. The proposed
framework is called MANoR which stands for ‘‘Managing
Agile Non-functional Requirements.’’ The framework assists
in resolving the above issues, regarding the non-functional
requirements. The framework consists of different stages,
and components; it is supported by a tool with the same
name as the framework, as shown in Figure 1. The tool is a
web application developed using ASP.NETMVC framework
and the tool is available on1 and credentials are available
on.2 The tool includes 14 different main features that

1http://manor-app.org/
2username: Manor_guest, password: Mg!AuNeOs2Rt

consist of 48 different functions. The tool handles both
functional requirements and non-functional requirements in
Agile, more specifically, Scrum. Regarding the framework,
there are two main stages and five main components. The
stages are pre-analysis and post-analysis. The components are
non-functional requirements recommendation, elicitation,
analysis, documentation, and validation. The following are
the main steps of the framework:

1) MANoR recommends specific non-functional require-
ments for the software being developed based on
specific inputs. The recommendation will be based
on two main items. The first item is historical data
(previous projects). The second item is predefined data
gathered from research and entered into the MANoR
tool. Predefined data includes characteristics of the
software such as: is the software being developed is

VOLUME 11, 2023 53997



E. Sherif et al.: Proposed Framework to Manage Non-Functional Requirements in Agile

a web application, a desktop application, or a mobile
application. In addition, data includes the business
domain for which the software is being developed.

2) Non-functional requirements elicitation session occurs
between the product owner/business analyst and key
stakeholders from the client side in order to determine
non-functional requirements. The objective of this
session is to explain the meaning of the concept of non-
functional requirements to the stakeholders. In addition,
a list of recommended non-functional requirements can
be provided by MANoR based on the characteristics of
the software that will be developed.

3) The next step is to find conflicts in non-functional
requirements. MANoR will assist in finding those
conflicts.

4) Functional and non-functional requirements are docu-
mented in the product backlog by the product owner in
MANoR. The documentation is written as user stories
and MANoR provides different types of user stories
(non-functional and functional).

5) Non-functional requirements will be validated by the
client before starting the development.

6) Once step 5 is done, the normal process of Scrum will
continue.

There are five main components of the framework: non-
functional requirements recommendation, elicitation, analy-
sis, documentation, and validation. Each of those components
is explained further in the below sections.

A. MANoR: STAGE I
In this section, we discuss the first two components of
the framework. The first component is the requirements
recommendation which is discussed in section I. The second
component is requirements elicitation which is discussed in
section II.

1) REQUIREMENTS RECOMMENDATION
Research has shown historical data to be useful in determin-
ing a future event based on past data [30]. Therefore, the
proposed solution is to recommend non-functional require-
ments based on historical data in ‘‘MANoR’’. In addition,
a recommendation can be made based on data found in
table 4 [47] and table 5 [47], [48].

Eight distinct application domains were taken into con-
sideration, as indicated in Table 4, including transportation,
banking and finance, telecommunication services, education,
medical/health care, energy resources, insurance, govern-
ment, and military [47]. In addition, the table shows that
usability and performance are considered in seven domains,
security is considered in six domains, and reliability is
considered in four domains.

As shown in table 5 [47], [48], there are five different
types of systems: real-time systems, process-controlled
systems, safety-critical systems, information systems, and
web systems [47], [48]. In addition, it shows that security,
performance, and usability are considered in all five types of
systems, and reliability is considered in four types of systems.

Based on the above information, our proposed solution
recommends non-functional based on the following:
1) An application domain (predefined data from table 4)

Based on table 4, the data is entered in the ‘‘MANoR’’
which helps users with relevant non-functional require-
ments based on various application domains. This
becomes extremely helpful when there is no historical
data available.

2) Type of systems (predefined data from table 5)
The relevant data from table 5 is entered into ‘‘MANoR’’
which assists the users with relevant types of non-
functional requirements based on different types of
systems. This data includes relevant non-functional
requirements based on the type of system. For example,
communicativeness, dependability, reliability, perfor-
mance, security, usability, integrity, and safety are
relevant non-functional requirements for safety-critical
systems.

3) Historical data
This option allows the tool to use the previous projects
that were entered in ‘‘MANoR’’. As more projects
are entered into the tool, it can provide better rec-
ommendations for upcoming projects. However, for
the first few projects being entered into the tool,
recommendations can be made through the application
domain or the type of systems. Using the historical data
inside the MANoR tool, it recommends non-functional
requirement(s) based on a specific domain and a specific
type of software being developed. The recommendation
is based on how many non-functional requirements the
end user wants to see. For example, if the client wants
to know the top two non-functional that were used in
previous projects with the same type of software and
the same type of business domain, then the tool provides
the results by showing two non-functional requirements
based on the historical data. The end user can request to
view the top one or two or three or four or five or even ten
non-functional requirements that were used previously
in the same type of software and the same type of
business domain. Another example: let’s assume that
we have five different projects inside the tool that are
involved in the academic domain and all of them are web
applications, and currently we will work on the sixth
project of the same type of software and the same type
of domain. In addition, all five projects had one non-
functional in common which is performance and four
out of the five projects had security as a non-functional
requirement. Then the end user requested to view the
top two non-functional requirements that were mostly
used in this domain and type of system. Therefore, the
tool will display performance with a percentage of 100%
and security with a percentage of 80%. The percentage is
calculated within the tool by knowing that five projects
out of a total of five projects did use performance as a
non-functional requirement and also four projects out
of five projects did use security as a non-functional
requirement.

53998 VOLUME 11, 2023



E. Sherif et al.: Proposed Framework to Manage Non-Functional Requirements in Agile

FIGURE 1. MANoR framework.

TABLE 4. Application domain & its relevant non-functional requirements, adopted from [47].

TABLE 5. Type of systems & its relevant non-functional requirements, adopted from [47], [48].

To have better and clear recommendations, the tool
uses the above information and provides three views of
recommendation:
1) The first view is a recommendation from the type of

domain.
2) The second view is a recommendation from the type of

system.
3) The third view is historical data from previous projects

in the tool.

2) REQUIREMENTS ELICITATION
One of the key activities in requirement engineering is the
elicitation of requirements. It is the foundation for whether
the project will continue successfully or not. Early in the
project’s lifecycle, non-functional requirements should be
identified to help with project estimations of effort, size, and
cost. This will help to reduce rework. [8]. Non-functional
requirements can be identified in the project life cycle in one
of the following stages [3]:

VOLUME 11, 2023 53999



E. Sherif et al.: Proposed Framework to Manage Non-Functional Requirements in Agile

1) During sprint zero, resulting in the definition of a general
software architecture.

2) During the initial stages of development.
3) During the initial iteration of the project, then refined to

more details in later iterations.
4) During each iteration.
5) In the late stages of the project which causes a lot of

re-work because non-functional requirements were not
considered in the initial stages

In our proposed solution, the non-functional requirements
are identified during the initial iteration of the project
and then can be refined into more details later if needed.
The following are the steps for non-functional requirements
elicitation in our proposed solution:
1) The first step is where the product owner/business

analyst accesses MANoR to receive the recommenda-
tions of non-functional requirements based on previous
projects and pre-defined data which are based on
research.

2) The second step is that the product owner/business
analyst conducts a non-functional requirements session
with the client. The following are the details of the
session:

(a) Description of the session: it is one session with
a maximum duration of two hours to discuss the
non-functional requirements of the software being
developed.

(b) Objectives of the session:
(i) Explains the meaning of non-functional require-

ments in general.
(ii) Describes the recommended non-functional

requirements based on step 1 mentioned above.
(iii) Shows the most common non-functional require-

ments mentioned in the literature.
(iv) Shows the non-functional requirements conflicts

mentioned in the literature.
(c) Pre-requisites of the session:

(i) Type of the domain for software being developed
(ii) Type of application for software being developed

(d) The input of the session:
(i) List of recommended non-functional require-

ments for the software being developed
(e) The output of the session:

(i) List of non-functional requirements given by the
client and to be further analyzed

(f) People involved in the session:
(i) Technical side: the product owner/business ana-

lyst will attend as he or she is responsible for the
product backlog which includes non-functional
requirements

(ii) Client-side: key stakeholders of the system.

B. MANoR: STAGE II
In this section, we discuss the next three components of
the framework. The first component of Stage II is the
requirements analysis which is discussed in section I. The
second component is requirements documentation which is

discussed in section II. The third component is requirements
validation which is discussed in section III.

1) REQUIREMENT ANALYSIS
The main task is to determine whether the elicited
requirement is clear, complete, unambiguous, and not
contradicting. Conflicts mean interference or inconsistency
between requirements (functional or non-functional require-
ments) [49]. Conflicts are resolved in this activity by
negotiation with stakeholders. In our proposed solution, the
focus is on the non-functional requirements. Conflicting
non-functional requirements refer to situations in which
meeting one requirementmay have an impact on another [50].
For example, a specific module requires an extra security
mechanismwhich increases the complexity of themodule and
therefore increases the difficulty of the user interaction [50].
This would cause a conflict between security and usability.
Another example is between security and performance, where
the user wants the specific functionality to be finished in
a minimal time and in addition, specifies a high-security
protocol [49]. Conflicts between requirements can occur for
a variety of reasons, for example, in case there is a huge
quantity of requirements, changes that may occur during
software development, software with different stakeholders
with different requirements or interests, or by adding a new
stakeholder in the project [49]. Given how many individuals
are engaged in software development, conflicting require-
ments are one of the main causes of software failure [51].
Between 40% and 60% of requirements conflict, according to
a study of two-year multiple-project analysis [52], [53], [54].
Among those requirements are non-functional requirements
that involve the greatest conflict which nearly takes half of
the total requirements’ conflicts [52], [53]. Figure 2 shows
the conflict matrix between non-functional requirements
where the relationship of conflict among non-functional
requirements is presented in four ways [55], [50]:

1) Absolute conflict: labeled as ‘‘X’’ which means there is
a conflict between two NFRs.

2) Relative conflict: labeled as ‘‘*’’ which means they
are not always in conflict and it depends on the cases,
therefore sometimes they are in conflict and at other
times they are not.

3) Never in conflict: labeled as ‘‘0’’ which means there is
no inherent conflict between the two NFRs.

4) Unknown conflict is labeled with blank space which
means there is no information available in the literature
about those sets of non-functional requirements.

Figure 2 is implemented in MANoR which provides details
on which non-functional requirements have conflicts with
each other. This helps the users of the tools during the analysis
activity.

In general, two main factors can cause conflicts between
non-functional requirements [53]:

1) The different needs and perspectives of different stake-
holders.

54000 VOLUME 11, 2023



E. Sherif et al.: Proposed Framework to Manage Non-Functional Requirements in Agile

FIGURE 2. Non-functional requirements Conflict Matrix, adopted from [50], [55].

2) The inherent contradiction between non-functional
requirements is a result of specific characteristics of
some non-functional requirements.

There are three main steps in managing conflicts between
non-functional requirements [53]:
1) Conflict identification: the purpose is to identify the

conflicts early during the software development life
cycle

2) Conflict analysis: the purpose is to evaluate and
investigate potential conflict

3) Conflict resolution: the purpose is to resolve the
potential conflict

Given the above information, the tool helps the product
owner to identify the conflicts which is step one. The tool
provides the non-functional requirement conflictmatrix to the
end user. Then in step two, the product owner evaluates the
conflict and then gets back to the client to resolve this conflict
which is step three.

2) REQUIREMENTS DOCUMENTATION
One of the biggest challenges is the minimal documentation.
Non-functional requirements documentation is part of that
challenge as it should be documented along with the
functional requirements. The question is how to document

non-functional requirements in Agile software development.
Is it better to document it as a separate user story or as a
user story parameter? In our proposed solution, a separate
user story will be used for each non-functional requirement.
Separate user stories for non-functional requirements would
be better in the product backlog, instead of having a user story
with a non-functional parameter [56]. This will help because
most non-functional requirements can be split into different
sprints [56]. It is better to create separate user stories for the
non-functional requirements in the product backlog, instead
of having non-functional requirement parameters in the user
story [56]. There are different views for the user stories. The
following list explains the different views of the user stories
in our proposed solution which is implemented in the tool
developed specifically for this solution:
1) Non-functional user story vs. functional user story:

The user story can contain functional or non-functional
requirements in our proposed solution. The tool allows
the user to select the type of requirement and based
on the selection, the tool will provide proper fields.
An example of a non-functional requirement user story
in MANoR is ‘‘performance’’, its description is ‘‘the
response time shall be one second’’, related to the field
‘‘Registration Module’’.

VOLUME 11, 2023 54001



E. Sherif et al.: Proposed Framework to Manage Non-Functional Requirements in Agile

TABLE 6. Summary of the results.

FIGURE 3. Technical experience in agile methodology.

FIGURE 4. Importance of non-functional requirements.

2) Standard user story vs. custom user story: A standard
user story is the normal user story that is used in
Agile. A normal user story is written as the following
template: As a <type of user> I want <specific task>
so that <achieve some value/goals>. On the other hand,
the custom user story is the traditional way of writing
any business requirement. Basically, it is one sentence
without applying any templates or rules. For example,
students can register courses online. The tool allows the
user to select how the user wants to write the user story:
standard or custom.

3) System vs. module vs. epic vs. functional require-
ment: In our proposed solution, any non-functional

requirement is related either to a system, module,
epic, or functional requirement. This means from
early development the analyst will know which non-
functional requirements affect the entire system. Or that
it affects a specific module or an epic or if it is related
to a very specific functional requirement written in the
form of a user story.

3) REQUIREMENTS VALIDATION
This part of the proposed solution is where validation of the
non-functional requirements is done. In other words, making
sure that both the client and the technical team are on the same
page regarding the non-functional requirements for the given
software. The technical team confirms the non-functional
requirements with the client. Once the validation is done with
the client, the normal process of Scrum will take over.

V. VALIDATION & RESULTS
The framework was validated using an evaluation form. The
form consists of two main parts, the first part targets the
person’s background which includes technical experience in
the software development domain, Agile, and Scrum. The
second part targets the person’s view on the framework.
Both parts consist of twenty-one different questions which
include short answer questions and the standard Likert-scale
questions. Fifty-two different people filled in the evaluation
form. The process of selecting those people depended on
several factors which include the following:
1) There are two main categories of people that filled in the

form: academics and technical staff. The academic team
involves instructors working in different universities.
The technical team involves different technical people
working in a number of different companies. Including
both the academic team and technical team in the
evaluation, is meant to solicit substantive input from
both worlds: research and practice.

2) The technical team includes precisely forty-four dif-
ferent people working in nineteen different companies
in three different countries as shown in table 6. The
technical team involves different roles/titles working
in different departments such as analysis, develop-
ment, testing, and management. Different people per

54002 VOLUME 11, 2023



E. Sherif et al.: Proposed Framework to Manage Non-Functional Requirements in Agile

FIGURE 5. The impact of the MANoR framework.

department were involved in evaluating the framework
for each department. Involving different departments is
meant to provide different perspectives from different
roles in software development.

3) The academic team includes eight different instructors
working in three different universities as shown in
table 6. Those instructors are working in the Software
Engineering Department of those universities. The
reason for selecting this department is that Agile
development is one of the major research areas in those
universities.

Figure 3 shows the technical experience in the Agile
development process of the people who filled in the
evaluation form by showing the number of Agile projects
they worked in. As shown in Figure 3, there are 63% of
the people did work in between one and five Agile projects,
in another word, this means 33 out of 52 people. In addition,
17% of people did work between six and ten Agile projects,
in another word, this means 8 out of 52 people.

Figure 4 shows two important questions regarding the
non-functional requirements. The first question references
the high impact of non-functional requirements in software
projects. The answers are positive as 34 people strongly agree
and 17 people do agree that non-functional requirements
have a high impact on the success of the projects. In other
words, 51 out of 52 people think non-functional requirements
are important. The second question references the reality
of applying non-functional requirements in their software
projects. As there are 17 different people who strongly agree

and 20 different people who agree. This means a total of
37 out of 49 people do consider non-functional requirements
in their projects. Comparing the answers to the last two
questions, 51 people believe non-functional requirements are
important, however, only 37 of those 52 do consider non-
functional requirements in their projects.

Figure 5 focuses on the framework ‘‘MANoR’’ by showing
six different questions answered by both teams. Each
question is a multiple-choice Likert-scale question. The
purpose of those questions is to evaluate the framework and
see whether it helps in the issues regarding the non-functional
requirements or not. The first question targets complexity
and 45 people agree that it is simple which is an important
point because one of the principles of Agile is simplicity.
The second question targets the understandability of the
framework and it shows that 50 people find the framework
easy to understand. The third and fourth questions target
the realism of the framework, and whether people would
use it in future projects, respectively. The answers show that
49 people agree that the framework is practical and realistic
and 47 people agree that it can be used in their future projects.
The fifth question targets whether the framework helps in
the issues related to non-functional requirements such as the
elicitation, recommendation, analysis, documentation, and
validation of non-functional requirements. In this question,
a total of 51 agree that the framework helps in those issues
which also shows a positive impact of the framework. The
sixth question targets the idea of non-functional requirement
conflicts. 42 people agree that uncovering the conflicts early

VOLUME 11, 2023 54003



E. Sherif et al.: Proposed Framework to Manage Non-Functional Requirements in Agile

on in the project helps in reducing the risk of having residual
non-functional requirements conflicts.

The proposed framework was based on the principles and
values of the Agile Manifesto and therefore offers a flexible
way to handle non-functional requirements in Agile. The
above statistics and results show the positive impact of the
framework on dealing with non-functional requirements in
Agile.

VI. CONCLUSION & FUTURE WORKS
Ignoring non-functional requirements in Agile Software
Development greatly impacts the software’s success. There-
fore, there is a need to focus on the problems of ignoring
non-functional requirements in Agile Software Development
and accordingly provide a lightweight solution while keeping
the principles and values of Agile Software Development
intact. The proposed framework ‘‘MANoR’’ focuses on
non-functional requirements in the activities of elicitation,
recommendation, analysis, documentation, and validation in
Agile Software Development. Finally, the proposed frame-
work was validated by technical experts and an academic
team to prove its objective of focusing on non-functional
requirements in Agile without breaking the principles and
values of Agile. Future work will include the validation of the
framework through real-life case studies. By implementing
such a framework, companies will focus on the importance
and impact of non-functional requirements in Agile projects.
Therefore, it is expected to improve the quality of the resultant
software and reduce the risk of profit loss, effort rework,
or even project failure.

REFERENCES
[1] A. Jarzebowicz and P. Weichbroth, ‘‘A systematic literature review on

implementing non-functional requirements in agile software development:
Issues and facilitating practices,’’ in Lean and Agile SoftwareDevelopment,
vol. 408. Cham, Switzerland: Springer, 2021.

[2] W. Helmy and G. H. Galal-edeen, Managing Non-Functional Require-
ments. Cham, Switzerland: Springer, 2022.

[3] A. Jarzebowicz and P. Weichbroth, ‘‘A qualitative study on non-functional
requirements in agile software development,’’ IEEE Access, vol. 9,
pp. 40458–40475, 2021, doi: 10.1109/ACCESS.2021.3064424.

[4] W. Behutiye, P. Karhapää, L. López, X. Burgués, S. Martínez-Fernández,
A. M. Vollmer, P. Rodríguez, X. Franch, and M. Oivo, ‘‘Management
of quality requirements in agile and rapid software development:
A systematic mapping study,’’ Inf. Softw. Technol., vol. 123, Jul. 2020,
Art. no. 106225, doi: 10.1016/j.infsof.2019.106225.

[5] W. Behutiye, P. Karhapää, D. Costal, M. Oivo, and X. Franch, ‘‘Non-
functional requirements documentation in agile software development:
Challenges and solution proposal,’’ 2017, arXiv:1711.08894.

[6] W. Alsaqaf, M. Daneva, and R. Wieringa, ‘‘Agile quality requirements
engineering challenges: First results from a case study,’’ in Proc.
ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas. (ESEM), Nov. 2017,
pp. 454–459, doi: 10.1109/ESEM.2017.61.

[7] D. S. Cruzes, M. Felderer, T. D. Oyetoyan, M. Gander, and I. Pekaric,
‘‘How is security testing done in agile teams? A cross-case analysis of
four software teams,’’ in Proc. 8th Int. Conf. Agile Processes Softw. Eng.
Extreme Program., 2019, pp. 133–134, doi: 10.18420/se2019-40.

[8] A. Silva, P. Pinheiro, A. Albuquerque, and J. Barroso, ‘‘A process for
creating the elicitation guide of non-functional requirements,’’ Adv. Intell.
Syst. Comput., vol. 465, pp. 293–302, Jan. 2016, doi: 10.1007/978-3-319-
33622-0_27.

[9] M. Younas, D. N. A. Jawawi, I. Ghani, andM. A. Shah, ‘‘Extraction of non-
functional requirement using semantic similarity distance,’’ Neural Com-
put. Appl., vol. 32, no. 11, pp. 7383–7397, Jun. 2020, doi: 10.1007/s00521-
019-04226-5.

[10] A. Aldave, J. M. Vara, D. Granada, and E. Marcos, ‘‘Leveraging
creativity in requirements elicitation within agile software development:
A systematic literature review,’’ J. Syst. Softw., vol. 157, Nov. 2019,
Art. no. 110396, doi: 10.1016/j.jss.2019.110396.

[11] J. M. Fernandes and M. Almeida, ‘‘Classification and comparison of
agile methods,’’ in Proc. 7th Int. Conf. Quality Inf. Commun. Technol.,
Sep. 2010, pp. 391–396, doi: 10.1109/QUATIC.2010.71.

[12] A. Silva, T. Araújo, J. Nunes, M. Perkusich, E. Dilorenzo, H. Almeida,
and A. Perkusich, ‘‘A systematic review on the use of definition of done on
agile software development projects,’’ in Proc. 21st Int. Conf. Eval. Assess-
ment Softw. Eng., Jun. 2017, pp. 364–373, doi: 10.1145/3084226.3084262.

[13] E. M. Schön, D. Winter, M. J. Escalona, and J. Thomaschewski, ‘‘Key
challenges in agile requirements engineering,’’ in Proc. 18th Int. Conf.
Agile Processes Softw. Eng. Extreme Program., vol. 283, 2017, pp. 37–51,
doi: 10.1007/978-3-319-57633-6_3.

[14] V. Gaikwad and P. Joeg, ‘‘A case study in requirements engineering in
context of agile,’’ Int. J. Appl. Eng. Res., vol. 12, no. 8, pp. 1697–1702,
2017.

[15] K. Elghariani and N. Kama, ‘‘Review on agile requirements engineering
challenges,’’ in Proc. 3rd Int. Conf. Comput. Inf. Sci. (ICCOINS),
Aug. 2016, pp. 507–512, doi: 10.1109/ICCOINS.2016.7783267.

[16] S. Alam, S. Nazir, S. Asim, and D. Amr, ‘‘Impact and challenges of
requirement engineering in agile methodologies: A systematic review,’’
Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 4, pp. 411–420, 2017, doi:
10.14569/ijacsa.2017.080455.

[17] M. Käpyaho and M. Kauppinen, ‘‘Agile requirements engineering with
prototyping: A case study,’’ in Proc. IEEE 23rd Int. Requirements Eng.
Conf., Aug. 2015, pp. 334–343, doi: 10.1109/RE.2015.7320450.

[18] I. Inayat, L. Moraes, M. Daneva, and S. S. Salim, ‘‘A reflection on agile
requirements engineering: Solutions brought and challenges posed,’’ in
Proc. Sci. Workshop, May 2015, pp. 1–12, doi: 10.1145/2764979.2764985.

[19] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband,
‘‘A systematic literature review on agile requirements engineering
practices and challenges,’’ Comput. Hum. Behav., vol. 51, pp. 915–929,
Oct. 2015, doi: 10.1016/j.chb.2014.10.046.

[20] D. Sunner and H. Bajaj, ‘‘Classification of functional and non-
functional requirements in agile by cluster neuro-genetic approach,’’
Int. J. Softw. Eng. Appl., vol. 10, no. 10, pp. 129–138, Oct. 2016, doi:
10.14257/ijseia.2016.10.10.13.

[21] M. Saleh, F. Baharom, S. Farvin, P. Mohamed, and M. Ahmad, ‘‘A
systematic literature review of challenges and critical success factors in
agile requirement engineering,’’ inProc. 9th Knowl. Manag. Int., Jul. 2018,
pp. 248–254.

[22] M. Batra and A. Bhatnagar, ‘‘A research study on critical challenges
in agile requirements engineering,’’ Int. Res. J. Eng. Technol., vol. 10,
pp. 1214–1219, Jun. 2019.

[23] R. Telesko, ‘‘Road to agile requirements engineering: Lessons learned
from a web app project,’’ Stud. Syst. Decis. Control, vol. 141, pp. 65–78,
2018, doi: 10.1007/978-3-319-74322-6_5.

[24] B. Ramesh, L. Cao, and R. Baskerville, ‘‘Agile requirements engineering
practices and challenges: An empirical study,’’ Inf. Syst. J., vol. 20, no. 5,
pp. 449–480, Nov. 2007, doi: 10.1111/j.1365-2575.2007.00259.x.

[25] M. S. Et. al, ‘‘Critical success factors and challenges in agile require-
ments engineering,’’ Turkish J. Comput. Math. Educ., vol. 12, no. 3,
pp. 1670–1682, Apr. 2021, doi: 10.17762/turcomat.v12i3.989.

[26] W. M. Farid, ‘‘The NORMAP methodology: Lightweight engineer-
ing of non-functional requirements for agile processes,’’ in Proc.
19th Asia–Pacific Softw. Eng. Conf., Dec. 2012, pp. 322–325, doi:
10.1109/APSEC.2012.23.

[27] D. Domah and F. J. Mitropoulos, ‘‘The NERV methodology:
A lightweight process for addressing non-functional requirements in
agile software development,’’ in Proc. SoutheastCon, Apr. 2015, pp. 1–7,
doi: 10.1109/SECON.2015.7133028.

[28] S. Dragicevic, S. Celar, and L. Novak, ‘‘Use of method for elicitation,
documentation, and validation of software user requirements (MEDoV)
in agile software development projects,’’ in Proc. 6th Int. Conf. Comput.
Intell., Commun. Syst. Netw., May 2014, pp. 65–70, doi: 10.1109/CIC-
SyN.2014.27.

[29] R. R. Maiti and F. J. Mitropoulos, ‘‘Capturing, eliciting, and prioritizing
(CEP) NFRs in agile software engineering,’’ in Proc. SoutheastCon,
Mar. 2017, pp. 1–7, doi: 10.1109/SECON.2017.7925365.

54004 VOLUME 11, 2023

http://dx.doi.org/10.1109/ACCESS.2021.3064424
http://dx.doi.org/10.1016/j.infsof.2019.106225
http://dx.doi.org/10.1109/ESEM.2017.61
http://dx.doi.org/10.18420/se2019-40
http://dx.doi.org/10.1007/978-3-319-33622-0_27
http://dx.doi.org/10.1007/978-3-319-33622-0_27
http://dx.doi.org/10.1007/s00521-019-04226-5
http://dx.doi.org/10.1007/s00521-019-04226-5
http://dx.doi.org/10.1016/j.jss.2019.110396
http://dx.doi.org/10.1109/QUATIC.2010.71
http://dx.doi.org/10.1145/3084226.3084262
http://dx.doi.org/10.1007/978-3-319-57633-6_3
http://dx.doi.org/10.1109/ICCOINS.2016.7783267
http://dx.doi.org/10.14569/ijacsa.2017.080455
http://dx.doi.org/10.1109/RE.2015.7320450
http://dx.doi.org/10.1145/2764979.2764985
http://dx.doi.org/10.1016/j.chb.2014.10.046
http://dx.doi.org/10.14257/ijseia.2016.10.10.13
http://dx.doi.org/10.1007/978-3-319-74322-6_5
http://dx.doi.org/10.1111/j.1365-2575.2007.00259.x
http://dx.doi.org/10.17762/turcomat.v12i3.989
http://dx.doi.org/10.1109/APSEC.2012.23
http://dx.doi.org/10.1109/SECON.2015.7133028
http://dx.doi.org/10.1109/CICSyN.2014.27
http://dx.doi.org/10.1109/CICSyN.2014.27
http://dx.doi.org/10.1109/SECON.2017.7925365


E. Sherif et al.: Proposed Framework to Manage Non-Functional Requirements in Agile

[30] R. R. Maiti, A. Krasnov, and D. M.Wilborne, ‘‘Agile software engineering
& the future of non-functional requirements,’’ J. Softw. Eng. Pract., vol. 2,
no. 1, pp. 1–8, 2018.

[31] S. Jeon, M. Han, E. Lee, and K. Lee, ‘‘Quality attribute driven agile
development,’’ in Proc. 9th Int. Conf. Softw. Eng. Res., Manage. Appl.,
Aug. 2011, pp. 203–210, doi: 10.1109/SERA.2011.24.

[32] S. Kopczynska and J. Nawrocki, ‘‘Using non-functional require-
ments templates for elicitation: A case study,’’ in Proc. IEEE 4th
Int. Workshop Requirements Patterns, Aug. 2014, pp. 47–54, doi:
10.1109/RePa.2014.6894844.

[33] W. M. Farid and F. J. Mitropoulos, ‘‘NORMATIC: A visual tool for
modeling non-functional requirements in agile processes,’’ in Proc. IEEE
Southeastcon, Mar. 2012, pp. 1–8, doi: 10.1109/SECon.2012.6196989.

[34] W. M. Farid and F. J. Mitropoulos, ‘‘NORPLAN: Non-functional
requirements planning for agile processes,’’ in Proc. IEEE Southeastcon,
Apr. 2013, pp. 1–12, doi: 10.1109/SECON.2013.6567463.

[35] W. M. Farid and F. J. Mitropoulos, ‘‘Visualization and scheduling of non-
functional requirements for agile processes,’’ in Proc. IEEE Southeastcon,
Apr. 2013, pp. 1–15, doi: 10.1109/SECON.2013.6567413.

[36] R. R. Maiti and F. J. Mitropoulos, ‘‘Capturing, eliciting, predicting and
prioritizing (CEPP) non-functional requirements metadata during the early
stages of agile software development,’’ in Proc. SoutheastCon, Apr. 2015,
pp. 1–8, doi: 10.1109/SECON.2015.7133007.

[37] F. Ramos, A. Pedro, M. Cesar, A. Costa, M. Perkusich, H. Almeida,
and A. Perkusich, ‘‘Evaluating software developers’ acceptance of a
tool for supporting agile non-functional requirement elicitation,’’ in
Proc. Int. Conf. Softw. Eng. Knowl. Eng., Jul. 2019, pp. 26–31, doi:
10.18293/SEKE2019-107.

[38] F. Ramos, A. A. M. Costa, M. Perkusich, H. Almeida, and A. Perkusich,
‘‘A non-functional requirements recommendation system for scrum-
based projects,’’ in Proc. Int. Conf. Softw. Eng. Knowl. Eng., Jul. 2018,
pp. 149–154, doi: 10.18293/SEKE2018-107.

[39] V. Gaikwad, P. Joeg, and S. Joshi, ‘‘AgileRE: Agile requirements
management tool,’’ Adv. Intell. Syst. Comput., vol. 661, pp. 236–249,
Jan. 2018, doi: 10.1007/978-3-319-67618-0_22.

[40] M. Younas, D. N. Jawawi, I. Ghani, and R. Kazmi, ‘‘Non-functional
requirements elicitation guideline for agile methods,’’ J. Telecommun.,
Electron. Comput. Eng., vol. 9, nos. 3–4, pp. 137–142, Oct. 2017.

[41] H. Saeeda, J. Dong, Y. Wang, and M. A. Abid, ‘‘A proposed framework
for improved software requirements elicitation process in SCRUM:
Implementation by a real-life Norway-based IT project,’’ J. Softw., Evol.
Process, vol. 32, no. 7, pp. 1–24, Jul. 2020, doi: 10.1002/smr.2247.

[42] W. M. Farid and F. J. Mitropoulos, ‘‘Novel lightweight engineering
artifacts for modeling non-functional requirements in agile
processes,’’ in Proc. IEEE Southeastcon, Mar. 2012, pp. 1–7, doi:
10.1109/SECon.2012.6196988.

[43] C. Werner, Z. S. Li, N. Ernst, and D. Damian, ‘‘The lack of shared under-
standing of non-functional requirements in continuous software engineer-
ing: Accidental or essential?’’ in Proc. IEEE 28th Int. Requirements Eng.
Conf. (RE), Aug. 2020, pp. 90–101, doi: 10.1109/RE48521.2020.00021.

[44] V. Bajpai and R. P. Gorthi, ‘‘On non-functional requirements? A survey,’’ in
Proc. IEEE Students’ Conf. Elect., Electron. Comput. Sci., 2012, pp. 1–3.

[45] R. R. Maiti and F. J. Mitropoulos, ‘‘Prioritizing non-functional require-
ments in agile software engineering,’’ in Proc. SouthEast Conf., Apr. 2017,
pp. 212–214, doi: 10.1145/3077286.3077565.

[46] M. Younas, D. N. A. Jawawi, M. A. Shah, A. Mustafa, M. Awais,
M. K. Ishfaq, and K. Wakil, ‘‘Elicitation of nonfunctional requirements
in agile development using cloud computing environment,’’ IEEE Access,
vol. 8, pp. 209153–209162, 2020, doi: 10.1109/ACCESS.2020.3014381.

[47] D. Mairiza, D. Zowghi, and N. Nurmuliani, ‘‘An investigation into
the notion of non-functional requirements,’’ in Proc. ACM Symp. Appl.
Comput., Mar. 2010, pp. 311–317, doi: 10.1145/1774088.1774153.

[48] D. Mairiza and D. Zowghi, ‘‘Constructing a catalogue of conflicts among
non-functional requirements,’’ in Evaluation of Novel Approaches to
Software Engineering (Communications in Computer and Information
Science), vol. 230, 2011, pp. 31–44, doi: 10.1007/978-3-642-23391-3_3.

[49] M. Aldekhail, A. Chikh, and D. Ziani, ‘‘Software requirements conflict
identification: Review and recommendations,’’ Int. J. Adv. Comput. Sci.
Appl., vol. 7, no. 10, pp. 1–16, 2016, doi: 10.14569/ijacsa.2016.071044.

[50] R. M. Carvalho, ‘‘Dealing with conflicts between non-functional require-
ments of UbiComp and IoT applications,’’ in Proc. IEEE 25th Int. Require-
ments Eng. Conf. (RE), Sep. 2017, pp. 544–549, doi: 10.1109/RE.2017.51.

[51] M.N. A. Chaudhary, N. Sabahat, and S. K. Toor, ‘‘RES-TOOL to overcome
requirements elicitation barriers in Pakistan software industry,’’ in Proc.
Int. Conf. Electr., Commun., Comput. Eng. (ICECCE), Jun. 2020, pp. 1–6,
doi: 10.1109/ICECCE49384.2020.9179321.

[52] D. Mairiza, D. Zowghi, and V. Gervasi, ‘‘Utilizing TOPSIS: A multi
criteria decision analysis technique for non-functional requirements
conflicts,’’ in Requirements Engineering (Communications in Computer
and Information Science), vol. 432, 2014, pp. 31–44, doi: 10.1007/978-3-
662-43610-3_3.

[53] D. Mairiza, D. Zowghi, and N. Nurmuliani, ‘‘Managing conflicts among
non-functional requirements,’’ in Proc. Austral. Workshop Requirements
Eng., 2009, pp. 11–19.

[54] D. Mairiza, D. Zowghi, and N. Nurmuliani, ‘‘Towards a catalogue
of conflicts among non-functional requirements,’’ in Proc. 5th Int.
Conf. Eval. Novel Approaches Softw. Eng., 2010, pp. 20–29, doi:
10.5220/0002927900200029.

[55] F. Pinciroli, ‘‘Improving software applications quality by considering the
contribution relationship among quality attributes,’’ Proc. Comput. Sci.,
vol. 83, pp. 970–975, Jan. 2016, doi: 10.1016/j.procs.2016.04.194.

[56] A. E. Sabry and S. S. El-Rabbat, ‘‘Proposed framework for handling
architectural NFR’s within scrummethodology,’’ in Proc. Int. Conf. SERP,
2015, p. 238.

[57] M. A. Subih, B. Hayat, I. Mazhar, A. Yousaf, M. Usman, T. Wakeel, and
W. Ali, ‘‘Comparison of agile method and scrum method with software
quality affecting factors,’’ Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5,
pp. 531–535, 2019, doi: 10.14569/ijacsa.2019.0100569.

EZELDIN SHERIF received the B.Sc. degree in software engineering from
the Faculty of Computer Science and Information Technology, Ahram
Canadian University, Cairo, Egypt, in 2009, and the Master of Science
(M.Sc.) degree in communication and information technology from the
Software Engineering Department, Nile University, Cairo, in 2014. He was
a Teaching Assistant with Ahram Canadian University, from 2009 to 2014,
where he has been an Assistant Lecturer, since 2014. His research
interests include software engineering, requirements engineering, project
management, and agile software development.

WALEED HELMY received the B.Sc., Master of Science (M.Sc.), and Ph.D.
degrees in information systems from the Faculty of Computers and AI, Cairo
University, Cairo, Egypt, in 2003, 2007, and 2013, respectively. He was a
Teaching Assistant with Cairo University, from 2003 to 2007, where he was
also an Assistant Lecturer, from 2007 to 2013. He has been an Associate
Lecturer with Cairo University, since 2013. His research interests include
data engineering, software engineering, software architecture design, and
requirements engineering.

GALAL HASSAN GALAL-EDEEN received the B.Sc. degree inmanagement
sciences (computing) fromSadat Academy forManagement Sciences, Cairo,
Egypt, theM.Sc. degree in systems analysis and design from City University,
London, the Ph.D. degree in information systems engineering from Brunel
University, London, the B.A. degree in architecture from the University of
Greenwich, U.K., and the M.Sc. degree in advanced architectural studies
from University College London, U.K. From 1988 to 2002, he was an
assistant professor, an associate professor-equivalent ranks, and a senior
research fellow in several U.K. universities. He served as a senior consultant
in innovation and the chief innovation policy advisor for government. He is
currently a Professor in information systems with The American University
in Cairo. His research interests include systems architecting, software
engineering methodologies, usability evaluation, healthcare systems, and
human–computer interaction. He won research funding from the European
Union, USAid, EPSRC, DAAD, ITIDA, UNDP, and the NAIS-Lorentz
Centre (the Netherlands). He is the author or coauthor of over 125 refereed
articles and serves on the EAB of three international journals. He is a Full
Professional Member of the British Computer Society and the American
Computing Machinery.

VOLUME 11, 2023 54005

http://dx.doi.org/10.1109/SERA.2011.24
http://dx.doi.org/10.1109/RePa.2014.6894844
http://dx.doi.org/10.1109/SECon.2012.6196989
http://dx.doi.org/10.1109/SECON.2013.6567463
http://dx.doi.org/10.1109/SECON.2013.6567413
http://dx.doi.org/10.1109/SECON.2015.7133007
http://dx.doi.org/10.18293/SEKE2019-107
http://dx.doi.org/10.18293/SEKE2018-107
http://dx.doi.org/10.1007/978-3-319-67618-0_22
http://dx.doi.org/10.1002/smr.2247
http://dx.doi.org/10.1109/SECon.2012.6196988
http://dx.doi.org/10.1109/RE48521.2020.00021
http://dx.doi.org/10.1145/3077286.3077565
http://dx.doi.org/10.1109/ACCESS.2020.3014381
http://dx.doi.org/10.1145/1774088.1774153
http://dx.doi.org/10.1007/978-3-642-23391-3_3
http://dx.doi.org/10.14569/ijacsa.2016.071044
http://dx.doi.org/10.1109/RE.2017.51
http://dx.doi.org/10.1109/ICECCE49384.2020.9179321
http://dx.doi.org/10.1007/978-3-662-43610-3_3
http://dx.doi.org/10.1007/978-3-662-43610-3_3
http://dx.doi.org/10.5220/0002927900200029
http://dx.doi.org/10.1016/j.procs.2016.04.194
http://dx.doi.org/10.14569/ijacsa.2019.0100569

