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ABSTRACT We present a detailed hierarchical graph drawing technique that is based on the Path Based
Framework (PBF). Extensive edge bundling is applied to draw all edges of the graph and the height of the
drawing is minimized using compaction. We present experimental results and a user study for hierarchical
drawings of graphs that show the usefulness of the new drawing technique. The drawings produced by the
new framework are compared to drawings produced by the well known Sugiyama framework in terms of
area, number of bends, number of crossings, and execution time. The new algorithm runs very fast and
produces drawings that are readable and more efficient in terms of area and number of bends. Furthermore,
since there are advantages (and disadvantages) to both frameworks, we performed a user study. The results
show that the drawings produced by the new framework are well received in terms of clarity, readability, and
usability. Hence, the new technique offers an interesting alternative to drawing hierarchical graphs, and is
especially useful in applications where user defined paths are important and need to be highlighted.

INDEX TERMS Hierarchical graph drawing, edge bundling, experimental results, user study.

I. INTRODUCTION
Hierarchical graphs are very important for many applica-
tions in several areas of research and business because they
often represent hierarchical relationships between objects
in a structure. They are directed (often acyclic) graphs
and their visualization has received significant attention
recently [1], [2], [3]. An experimental study of four algo-
rithms specifically designed for (Directed Acyclic Graphs)
DAGs was presented in [4]. DAGs are often used to describe
processes containing some long paths, such as in project man-
agement applications, model-based engineering, constraint
graphs, and biological networks, protein-protein interactions
networks, and more, see for example [3], [5], [6], [7]. The
paths can be either application-based, e.g., critical paths,
user defined, or automatically generated paths. Furthermore,
DAGs are used tomodel causal graphs. They provide a simple
way to graphically represent and understand key concepts of
causal relationships such as in epidemiology and in clinical
studies [8], [9].
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The Sugiyama Framework [10] has been extensively used
in research [3] and in industrial systems [11], [12] to visualize
hierarchical graphs over the past decades. A new frame-
work to visualize directed graphs and their hierarchies was
introduced in [13] and [14]. It is based on a path/channel
decomposition of the graph and is called (Path-Based Frame-
work or PBF). It computes readable hierarchical visualiza-
tions in two phases by hiding (abstracting) some selected
edges, while maintaining the complete reachability informa-
tion of the graph. However, these drawings are not satis-
factory to users that need to visualize all the edges of the
graph.

In this paper, we extend the hierarchical graph drawing
framework (PBF) of [13] and [14] in order to draw all the
edges of the graph using extensive edge bundling. We also
minimize the height of the drawing using a compaction tech-
nique. The width of the drawing of the DAG is minimized
by applying algorithms similar to task scheduling. The total
time required for the aforementioned extensions is O(m +

n log n), where m is the number of edges and n the number of
nodes of a graph G, which means that all problems (except
cycle removal) are solved in polynomial time. The main
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contributions of our work are summarized as follows: a) we
present a polynomial technique for drawing aDAGwith small
area and few bends, b) we present experimental results that
show that our technique is faster and produces better drawings
than the ones produced by the most updated (state of the art)
implementation [15] of the Sugiyama framework [10], and c)
we present results from an extensive user study that confirm
that the drawings produced by our technique are clearer, more
understandable, and more user friendly. Figure 1 shows an
example DAG drawn by the two frameworks.

Another advantage of our technique is that the edges of G
are naturally split into three categories: path edges, path tran-
sitive edges, and cross edges. Path edges connect consecutive
vertices in the same path, see Figure 1(a) (see also Figure 2b).
Path transitive edges connect non-consecutive vertices in the
same path and can be easily bundled, see the blue edges in
Figure1(a) (see also Figure 2c. Cross edges connect vertices
that belong to different paths, see the edges between the left
and right path in Figure 1(a) (see also Figure 2d). Figure 2
shows a small DAG and the three categories of edges.

The Sugiyama Framework consists of four phases, and
for each phase various methods and variations have been
proposed in the literature over the years, see [3] for more
recent information regarding this framework. A compara-
tive study [4] concluded that the Sugiyama-style algorithms
performed better in most of the metrics with respect to
other alternatives available at the time. Commercial software
such as the Tom Sawyer Software TS Perspectives [11] and
yWorks [12], use this framework in order to offer automatic
visualizations of directed graphs. Even though it is very
popular, the Sugiyama Framework has several important lim-
itations: most problems and subproblems that are used to
optimize the results in various steps of each phase have turned
out to be NP-hard. Additionally, the insertion of dummy ver-
tices increases the size of the input graph. Hence, the overall
time complexity of this framework (depending upon imple-
mentation) can be O((nm)2), or even higher if one chooses
algorithms that require exponential time. Another important
limitation of this framework is the fact that heuristic solu-
tions and decisions that are made during previous phases
(e.g., crossing reduction) will influence severely the results
obtained in later phases. Nevertheless, previous decisions
cannot be changed in order to obtain better results.

By contrast, the path-based framework [14] departs from
the typical Sugiyama Framework as it consists of only two
phases: (a) Cycle Removal, (b) the path/channel decom-
position and hierarchical drawing step. Furthermore, most
problems of the second phase can be solved in polynomial
time. It is based on the idea of partitioning the vertices of
a graph into node disjoint paths/channels, where in a channel
consecutive nodes are connected by a path but not necessarily
connected by an edge. In the rest, we only use the term ‘‘path’’
but of course our algorithms work also for ‘‘channels.’’ The
vertices in each path are drawn vertically aligned on some
x-coordinate; next the edges between vertices that belong

to different paths are drawn. Note that the computation of
a path/channel decomposition of minimum cardinality takes
polynomial time [16], [17], [18], [19].

If a path decomposition contains k paths, the number of
bends introduced is at most O(kn) and the required area is
at most O(kn). We also show how to draw optimally the
path transitive edges that are not drawn in the framework
of [14]. We present experimental results comparing drawings
obtained by the extended-PBF to the drawings obtained by
running the hierarchical drawing module of Open Graph
Drawing Framework (OGDF) [15], which is based on the
Sugiyama Framework, and is a quite active research software
that implements this framework. The results show that PBF
runs much faster, and produces drawings with better area and
less bends. OGDF produces drawings with less crossings,
especially for sparse graphs. Furthermore, the two frame-
works produce vastly different drawings.

Therefore, we decided to perform a user study between
these two drawing frameworks, in order to obtain feedback
from users using these drawings. The users had to perform a
set of tasks on the drawings of some DAGs. The tasks include
determining if two given vertices are connected, finding the
length of a shortest path, and determining if some vertices
are successors of a given vertex. The users’ answers were
correct above 90% for PBF and above 84% for the Sugiyama
Framework (implemented in OGDF). The users were also
asked to express their preference, in terms of clarity and
readability, between the two frameworks. 58.3% of the users
showed a clear preference to using drawings produced by
PBF. Hence, this technique offers an interesting alternative
to drawing hierarchical graphs, especially if there are user
defined paths that need to be clearly visualized. Section IV
describes a detailed analysis of the user study and the exper-
imental results.

II. OVERVIEW OF THE TWO FRAMEWORKS
The two hierarchical drawings shown in Figure 1 demonstrate
the significant differences between the two frameworks: Part
(a) shows a drawing of G computed by our algorithms that
customize PBF. Part (b) shows the drawing of G computed
by the Sugiyama Framework (as implemented in OGDF).
The graph consists of 20 nodes and 31 edges. The drawing
computed by our algorithms has 12 crossings, 18 bends,
width 10, height 15, and area 150. On the other hand, OGDF
computes a drawing that has 5 crossings, 22 bends, width
18, height 15 and area 270. Clearly, the two frameworks
produce vastly different drawings with their own advantages
and disadvantages.

The original Path Based Hierarchical Drawing Framework
follows an approach to visualize DAGs that hides some edges
and maintains their reachability information [14]. As dis-
cussed before this framework is based on the idea of parti-
tioning the vertices of the graph G into (a minimum number
of) channels/paths, called channel/path decomposition of G,
which can be computed in polynomial time. By contrast, the

VOLUME 11, 2023 55619



P. Lionakis et al.: Experiments and a User Study for Hierarchical Drawings of Graphs

FIGURE 1. Example of a DAG G drawn by our proposed framework (left). Same DAG drawn by the Sugiyama
framework as implemented in OGDF (right).

FIGURE 2. Figure 2a shows a graph G drawn by PBF. Figure 2b shows the path edges of G. Figure 2c shows the path transitive edges of G.
Figure 2d shows the cross edges of G.

Sugiyama framework performs a horizontal decomposition of
a graph, even though the final result is a vertical (hierarchical)
visualization. In this sense PBF is orthogonal to the Sugiyama
framework since it is a vertical decomposition of G into (ver-
tical) paths/channels. Thus, most resulting problems are verti-
cally contained, which makes them simpler, and reduces their
time complexity. This framework does not need to introduce
any dummy vertices and keeps the vertices of a path vertically

aligned, which is important for specific applications (such
as visualizing critical paths in Program Evaluation Review
Technique (PERT) diagrams [5]).

Let Sp = {P1, . . . ,Pk} be a path decomposition of G such
that every vertex v ∈ V belongs to exactly one of the paths of
Sp. Another advantage of PBF is that any path decomposition
naturally splits the edges of G into: (a) path edges (b) cross
edges and (c) path transitive edges, that are drawn differently.
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Given any path decomposition Sp of a DAGGwith n vertices
and m edges, the main algorithm of [14], draws the vertices
of each path Pi in Sp vertically aligned on some x-coordinate
depending on the order of path Pi. The y-coordinate of each
vertex is equal to its order in any topological sorting of G.
Hence the height of the resulting drawing is n − 1. It is also
important to highlight that the Path-Based Framework works
for any given path decomposition. Therefore, it can be used in
order to draw graphs with user-defined or application-defined
paths, as is the case in many applications, see for example [5],
[6]. If one desires automatically generated paths, there are
several algorithms that compute a path decomposition of
minimum cardinality in polynomial time [16], [17], [18],
[19]. Since certain critical paths are important for many appli-
cations, it is extremely important to produce clear drawings
where all such paths are vertically aligned, see [14]. In the
rest of this paper, we assume that a path decomposition of G
is given as part of the input to the algorithm.

OGDF is a self-contained C++ library of graph algo-
rithms, in particular for (but not restricted to) automatic
graph drawing. The hierarchical drawing implementation of
the Sugiyama Framework in OGDF is implemented follow-
ing [20], [21] and it uses the following default choices: For
the first phase of Sugiyama, it uses the LongestPathRanking
(to assign vertices into layers) which implements the well-
known longest-path ranking algorithm. This is where many
dummy vertices are introduced, which increases the size of
the original graph. Next, it performs crossing minimiza-
tion using the BarycenterHeuristic. This module performs
two-layer crossing minimization and is applied during the
top-down and bottom-up traversals [15]. The crossing min-
imization is repeated 15 times, and it keeps the best configu-
ration. Finally, the final-coordinates (drawing) are computed,
attempting to reduce the number of bends and final crossings,
with FastHierarchyLayout layout of OGDF.

III. COMPUTING COMPACT AND BUNDLED DRAWINGS
Now we present an extension of the framework of [14] by
(a) compacting the drawing in the vertical direction, and
(b) drawing the path transitive edges that were not drawn
in [14]. Since the edges of G are split into three categories,
it clearly adds new possibilities to the understanding of the
user and allows a system to show the different edge categories
separately, without altering the user’s mental map.

A. COMPACTION
Let G = (V ,E) be a DAG with n vertices and m edges.
Following the framework of [13] and [14] the vertices of V
are placed in a unique y-coordinate, which is specified by
a topological sorting. Let T be the list of vertices of V in
ascending order based on their y-coordinates. We start from
the bottom and visit each vertex in T in ascending order. For
every vertex v in this order we assign a new y-coordinate,
y(v), following a simple rule that compacts the height of the
drawing: ‘‘If v has no incoming edges then we set its y(v)
equal to 0, else we set y(v) equal to a + 1, where a is the

highest y-coordinate of the vertices that have edges incoming
into v.’’

The produced drawings as shown in Figure 3, have the
following simple properties:

Property 1. Two vertices of the same path are assigned
distinct y-coordinates.
Property 2. For every vertex v with y(v) ̸= 0, there is an
incoming edge into v that starts from a vertex w such that
y(v) = y(w) + 1. Based on the above algorithm and property
the height of the compacted drawing of graph G is at most L
and it can be computed in O(n+ m) time.

B. DRAWING THE PATH TRANSITIVE EDGES
An important aspect of our work is the preservation of
the mental map of the user that can be expressed, in part,
by the reachability information of a DAG. Recall that path
transitive edges are not drawn by the framework of [13]
and [14]. In this subsection we show how to bundle and
draw these edges while preserving the user’s mental map
of the previous drawing. Additionally, one may interact
with the drawings by hiding the path transitive edges at
the click of a button without changing the user’s men-
tal map of the complete drawing. We describe an algo-
rithm that bundles and draws the path transitive edges
using the minimum extra width (minimum extra number of
columns) for each (decomposition) path as shown in Fig-
ure 4. The steps of the algorithm are briefly described as
follows:

1) For every vertex of each decomposition path we com-
pute the indegree and outdegree based only on path
transitive edges.

2) If all indegrees and outdegrees are zero the algorithm
is over, if not, we select a vertex v with the highest
indegree or outdegree and we bundle all the incoming
or outgoing edges of v, respectively. These bundled
edges are represented by an interval with starting and
finishing points, the lowest and highest y-coordinates
of the vertices, respectively.

3) Next, we insert each interval on the left side of the path
on the first available column such that the interval does
not overlap with another interval.

4) We remove these edges from the set of path transitive
edges, update the indegree and outdegree of the vertices
and repeat the selection process.

5) The intervals of the rightmost path, are inserted on
the right side of the path in order to avoid potential
crossings with cross edges.

6) A final, post-processing step can be applied because
some crossings between intervals/bundled edges can
be removed by changing the order of the columns
containing them.

The above algorithm can be implemented to run in
O(m + n log n) time by handling the updates of the inde-
grees and outdegrees carefully, and placing the appropriate

VOLUME 11, 2023 55621



P. Lionakis et al.: Experiments and a User Study for Hierarchical Drawings of Graphs

FIGURE 3. A DAG G drawn without its path transitive edges: In 3a, drawing 01 is computed, without
applying compaction; in 3b, drawing 02 is computed applying the compaction step.

FIGURE 4. Examples of Bundling path transitive edges from left to right: (a) incoming edges into the last vertex of the
path, (b) bundling the incoming edges, (c) outgoing edges from the first vertex of the path, (d) bundling the outgoing
edges.

intervals in a (Max Heap) Priority Queue. As expected, the
fact that we draw the path transitive edges increases the
number of bends, crossings, and area, with respect to not
drawing them.

For each decomposition path, suppose we have a set of b
intervals such that each interval I has a start point, sI , and
a finish point fI . The starting point is the position of the
vertex of the interval with the lowest y-coordinate. Similarly,
the finish point fI is the position of the node of the interval

with the highest y-coordinate. We follow a greedy approach
in order to minimize the width (number of columns) for
placing the bundled edges. The approach is similar to Task
Scheduling [22], for placing the intervals. It uses the optimum
number of columns and runs in O(b log b) time, for each path
with b intervals. Since the sum of all b’s for all paths in a path
decomposition is at most n we conclude that the algorithm
runs in O(n log n) time. For details and proof of correctness
see [22].
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FIGURE 5. Bundling of cross edges: Figure 5a shows the cross edges
before bundling while Figure 5b shows the cross edges after bundling.

C. DRAWING AND BUNDLING THE CROSS EDGES
Cross edges connect vertices that belong to different paths.
The number of bends of any cross edge (u, v) depends on
the vertical distance of its incident nodes, u and v, and is
determined as follows. An example before and after bundling
of cross edges is shown in Figures 5a and 5b, respectively.

1) Two bends if the vertical distance between u and v is
more than two.

2) One bend if the vertical distance between u and v is two.
3) The edge is a straight line segment (no bend) if the

vertical distance between u and v is one.
We bundle all incoming cross edges for each vertex whose

vertical distance is more than one unit from the target. The
bundled cross edges are placed between the paths/channels
using the same technique we used for path transitive edges,
i.e., using a technique that relies on task scheduling, as above.

IV. EXPERIMENTAL EVALUATION AND USER STUDY
In this sectionwe present experimental results obtained by the
extended path-based framework and we compare them with
the respective experimental results obtained by running the
hierarchical drawing module of OGDF. In order to evaluate
the performance, we used the following standard metrics:

• Number of crossings.
• Number of bends.
• Width of the drawing: The total number of distinct x
coordinates that are used by the framework.

• Height of the drawing: The total number of distinct y
coordinates that are used by the framework.

• Area of the drawing: The area of the enclosing rectangle.
Based on these metrics, we conducted a number of exper-

iments to evaluate the performance of the two hierarchical
drawing frameworks using a dataset of 20 randomly gener-
ated DAGs. The dataset was created using the Path-Based
DAG Model [23]. In this model, graphs are randomly gen-
erated based on a number of predefined but randomly created
paths. Additionally, the metrics of PBF could vary depending
on the path/channel decomposition algorithm we use and the
ordering of the columns.

TABLE 1. Results on the number of crossings, bends, width, height and
area for PBF and OGDF for all the DAGs created by the generator.

FIGURE 6. Results on the number of bends for PBF and OGDF for all the
DAGs created by the generator.

Table 1 shows the results of our experiments based on these
metrics for PBF as implemented in TS Perspectives [11]
compared to the results produced by OGDF. In order to be
consistent with the experimental settings of OGDF, we used
the default parameters. In the experiments that we present in
this section, we see that in all cases our approach gives better
results than the ones produced by OGDF with respect to the
number of bends, width, height, and as expected the total area
of the drawings. For the number of bends we observe that our
proposed technique produces bends that are a small fraction
of n, whereas OGDF produces bends that are proportional to
m. The bar charts (see Figure 6) show how the number of
bends grows as the DAGs grow in size and average degree and
provide a clear evidence that the number of bends for PBF is
significantly lower thanOGDF in all cases. On the other hand,
the drawings of OGDF have a lower number of crossings
when the input graphs are relatively sparse. However, when
the graphs are a bit denser (e.g., average degree higher than
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TABLE 2. Results on the number of crossings, bends, width, height and
area for PBF and OGDF for a sample of DAGs taken from
www.graphdrawing.org.

five) the PBF drawings have less crossings. Since the two
frameworks use a different coordinate system, for a fair com-
parison between them we chose to count as height of a draw-
ing the number of different layers (or different y-coordinates)
and as width the number of different x-coordinates of nodes
and bends, used by each system. In other words, we normalize
the two coordinate systems by mapping them on a ‘‘grid’’.

In general, our experiments showed that PBF produces
readable drawings. Additionally, it clearly partitions the
edges into three distinct categories, and vertically aligns cer-
tain paths, which may be user/application defined. This may
be important in certain applications. The results showed that
our approach differs from the Sugiyama Framework com-
pletely, since it examines the graph vertically. The extended
PBF performs bundling very efficiently and computes the
optimal height of the graph. In most cases, the drawings
based on PBF need less area than OGDF and contain fewer
bends. On the other hand, OGDF generally has fewer cross-
ings than PBF. This is expected since OGDF places a major
computational effort into the crossing minimization step,
whereas PBF does not perform any crossing minimization.
Figures 7, 8 show that the time for PBF grows linearly in
contrast to ODFG where its time complexity seems to be
cubic. We observe that comparing quantitative metrics alone
does not lead to a concrete conclusion. Hence, we decided to
perform a user study in order to evaluate the readability and
clarity of PBF comparing it with the Sugiyama framework
from the perspective of a user.

A. USER STUDY
In order to proceed with our user evaluation, we conducted
another series of experiments in order to further validate
the previous statements with respect to the graphs that will
be chosen for the user study. To this respect, we used the
benchmarks found in www.graphdrawing.org. For the user
evaluation we chose appropriate graphs in terms of size and
density. Namely, we selected rather small and sparse graphs
so the users can perform the series of tasks required for
the evaluation. The archive consisted of graphs with 10 to
100 nodes with average degree about 1.6. The results of these
additional experiments were similar to the results reported

FIGURE 7. Execution time of PBF and OGDF on Graphs with average
degree 1.6.

FIGURE 8. Execution time of PBF and OGDF on Graphs with average
degree 5.6.

above, see Table 2. They also highlighted the fact that the
two frameworks focus on different aspects of the graphs
and produce vastly different drawings (notice that for such
small and sparse graphs both techniques produce drawings
of optimum height). Finally, from these graphs, we chose
four graphs (two with 20 vertices and two with 50 vertices)
that were most appropriate to be used by the users for the user
study.

Evaluation of visualizations [24] and analysing data is
a difficult research challenge [25], [26]. Motivated by the
work of [27], we designed an evaluation with users, with
a set of tasks that focus on revealing any usability issues.
To this respect, we chose a set of ‘‘cognitive tasks’’ [28]
where we evaluated the two systems based on attributes
of clarity and readability as expressed by the reachability
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TABLE 3. Graphs dataset.

information within a drawing. Moreover, in order to design
our evaluation we took into account the various restrictions
of [28] where the authors emphasized the basic guidelines in
that particular direction. In our case, the participants had to
choose an answer among ‘‘Yes’’,‘‘No’’, or ‘‘Do Not Know’’.
Even though there was no time limit, the participants were
expected to answer ‘‘Do Not Know’’ if a question was too
difficult or too time-consuming to answer. The purpose of
this assumption was to focus on tasks that can be easy also
for non-expert users in order to detect any usability issues.

1) USERS
We recruited 72 participants. In order to have more accurate
and sophisticated results, we selected an audience that was
familiar with graph theory and graph drawing styles. More
specifically, 35% were software developers and researchers
and 65% were postgraduate and advanced undergraduate stu-
dents.

2) TRAINING
We created a Google form and we invited all participants to
fill it in. Initially, the users were asked to watch a short video
used for training: the tutorial gave a short description of the
two hierarchical drawing frameworks (the video is available
at https://youtu.be/BWHc2xO4jmI).

3) DATASETS
We experimented with a dataset of 3 graph categories with
different number of nodes (20 nodes, 50 nodes and 100 nodes,
i.e., small, medium and large graphs) with average degree
around 1.6 (Table 3).

4) TASKS
We asked the users to answer a set of questions for the two
different drawings and carry out a sequence of basic tasks.
Similar to previous user studies (see, e.g., [29], [30], [31],
[32]), we decided to choose tasks involving graph reading
which are easily understandable also to non-expert users.
Moreover, we also took into account that the purpose was to
evaluate hierarchical drawings and as expected some tasks
such as counting incoming or outgoing edges were rather
simple and they would not produce useful insights. Thus,
we considered the tasks shown in Table 4.

For questions on Task 2, the participants had to choose a
number as an answer. We did not require numeric answers

TABLE 4. The set of tasks participants had to answer for each of the
2 different graph drawing frameworks over various graphs.

for all the tasks. More specifically, for Tasks 1, 3 and 4 the
participants had to choose an answer among ‘‘Yes’’, ‘‘No’’,
or ‘‘Do Not Know’’. There was no time limit, although partic-
ipants were expected to answer ‘‘Do Not Know’’ if a question
was too difficult or too time-consuming to answer. Each of
the previous tasks was repeated for each drawing framework
model 4 times: i.e., 2 using small size graphs and 2 using
medium size graphs. Note that for each question of the same
task we used different highlighted nodes. In total, the number
of tasks was 32 i.e., 16 questions for PBF drawings and
16 for OGDF drawings. The questions on small graphs (20
nodes) preceded those on medium graphs (50 nodes). Finally,
to counteract the learning effect, the questions appeared in a
randomized order. Figure 9 shows a snapshot for the question
‘‘Is there a path between the two highlighted vertices?’’ for
both drawings.

5) TASK BASED COMPARISON
For the results, we recorded the total number of correct
answers for each question of the 2 different drawing frame-
works, for all participants. Also note that the ‘‘DoNot Know’’
answer was considered incorrect. More specifically, regard-
ing the first graph (i.e., graph1) for all tasks, we have that the
users had the same performance in terms of correct answers
for both PBF and OGDF drawings. By examining the rest
of the results the average percentage revealed that for all the
graphs the performance of both drawing frameworks was not
significantly different, although it was slightly better for PBF
drawings for almost all tasks and drawings. We observed the
same when comparing the average percentage for each task:
the numbers for PBF drawings were consistently better than
the numbers for OGDF drawings, but the differences were
small. We showed a comprehensive visualization of these
results in Figure 10. It shows the ratio of participants that
answered ‘‘Yes’’, ‘‘No’’ and ‘‘Do Not Know’’ on the various
tasks for each of the two drawing frameworks, over the dif-
ferent graphs where we observed again that PBF is slightly
better than OGDF for all cases (Tables of Figures 13, 14).
We observed that although the numbers are very low for
both, the number of users that answered ‘‘Do Not Know’’ for
OGDF is often double the corresponding number for PBF,
which may imply that some OGDF drawings may be more
confusing to some users.

In general, the performance of the participants is slightly
better when they are working with PBF drawings than with
OGDF drawings. Since the differences are rather small we
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FIGURE 9. Snapshots of drawings of the same graph used in the user study for the question ‘‘Is
there a path between the two highlighted vertices?’’.

FIGURE 10. Results (the ratio of participants that answered ‘‘Yes’’, ‘‘No’’ and ‘‘Do Not Know’’ over the total number of answers) on the
various tasks for each of the drawing framework (PBF), (OGDF) over different graphs.

cannot extract a concrete conclusion as to which is better for
the users. However, it has become clear that the path-based
framework is an interesting alternative to the Sugiyama
Framework for visualizing hierarchical graphs. Furthermore,

for specific applications, that require to visualize specific
paths (such as critical paths) it would be the preferred
choice since the nodes of each path are placed on the same
x-coordinate.
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FIGURE 11. Percentage results for PBF and OGDF for the question I , over
graph5.

FIGURE 12. Percentage results for PBF and OGDF for the question II , over
graph6.

FIGURE 13. Results (number of correct answers) on the various tasks for
each of the drawing framework (PBF), (OGDF) over different graphs.

FIGURE 14. Results (number of ‘‘Do Not Know’’ answers over the total
number of all answers) on the various tasks for each of the drawing
framework (PBF), (OGDF) over different graphs.

6) DIRECT COMPARISON OF THE TWO FRAMEWORKS
As a second-level of analysis, we perform a direct comparison
of the two drawing frameworks. We used the two (large)

FIGURE 15. Snapshots of the same graph as used in our survey. Drawing
1 is the one computed by PBF and Drawing 2 is the one as produced by
OGDF.

graphs of 100 nodes. To this respect we asked the participants
to rate each of the 2 models by answering the following
questions:

1) On a scale of 1 to 5, how satisfied are you with the
following graph drawings?

2) Do you believe it would be easy to answer the previous
tasks for the following graph?

3) Which of the following drawings of the same graph do
you prefer to use in order to answer the previous tasks?

Similar to the previous experiments, we had two PBF draw-
ings and two OGDF drawings. Since the objective of this sec-
tionwas to evaluate the usability of both drawing frameworks,
using the System Usability Score (SUS) [33], we asked the
users to answer questions I and II , by giving a rate using
the following scale <Very Unsatisfied, Unsatisfied, Neutral,
Satisfied, Very Satisfied> and<Strongly Disagree, Disagree,
Neutral, Agree, Strongly Agree> respectively. The results
show that for Question I , 41% of the participants rated PBF
from scale 4 to 5, in contrast to 36% for OGDF, as shown in
Figure 11. Notice that the answers scale 1 and 2 are worse for
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FIGURE 16. Percentage results for the task ‘‘Which of the following
drawings of the same graph do you prefer to use in order to answer the
previous tasks.’’

PBF. This probably signifies that the users are not familiar
with this new hierarchical drawing style. For Question II ,
almost 50% of the participants rated PBF from scale 4 to 5,
in contrast to less than 30% for OGDF, see Figure 12.

At the end of this user study, we asked the participants to
perform a direct comparison of the two drawing frameworks
for the same graph, by answering this question: ‘‘Which of the
following drawings of the same graph do you prefer to use in
order to answer the previous tasks?’’ (Figure 15). The results
as shown in Figure 16 highlight that 58.3% of the participants
stated that they prefer the drawing produced by PBF over the
OGDF drawing. In terms of statistical significance, the exact
(Clopper-Pearson) 95% Confidence Interval (CI) is (48%,
72%) indicating that PBF drawings are preferred by the users
over OGDF drawings. However, given the small differences,
we conclude that PBF is a significant alternative to the
Sugiyama Framework for visualizing hierarchical graphs.

V. CONCLUSION
We present a detailed general-purpose hierarchical graph
drawing framework that is based on the Path Based Frame-
work (PBF) [14]. We apply extensive edge bundling to draw
all the path transitive edges, and cross edges of the graph and
we minimize its height using compaction. The experiments
revealed that our implementation runs very fast and produces
drawings that are efficient and readable. We also evaluated
the usability of this new framework compared to OGDF
which follows the Sugiyama Framework. The experimental
results show that the two frameworks produce drawings that
differ considerably. Generally, the drawings produced by
our algorithms have lower number of bends and are signif-
icantly smaller in area than the ones produced by OGDF,
but they have more crossings for sparse graphs. Thus the
new approach offers an interesting alternative for visualizing
hierarchical graphs, since it focuses on showing important
aspects of a graph such as critical paths, path transitive edges,
and cross edges. For this reason, this framework may be par-
ticularly useful in graph visualization systems that encourage
user interaction. Moreover, the user evaluation shows that

the performance of the participants is slightly better in PBF
drawings than in OGDF drawings and the participants prefer
PBF in overall rating compared to OGDF.
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