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ABSTRACT Multi-view stereo estimates the depth maps of multiple perspective images in a scene and then
fuses them to generate a 3D point cloud of the scene, which is an essential technology of 3D reconstruction.
In this paper, we propose a deep learning method GDINet, applying probabilistic methods to the pyramid
framework, which can significantly improve reconstruction quality. In detail, we first establish a Gaussian
distribution for each image’s pixel and iterate it in the pyramid framework. The mean value is the estimated
depth, and the variance represents the depth estimation error. In addition, we design a novel loss function
with excellent convergence to train our network. Finally, we present an initialization module to generate
the coarse Gaussian distribution, controlling the parameters in a reasonable range. Our results rank 2nd on
both DTU and Tanks & Temples datasets, showing that our network has high accuracy, completeness, and
robustness. We also make a visualization comparison on the BlendedMVS dataset (containing many aerial
scene images) to demonstrate the generalization ability of our model.

INDEX TERMS Multi-view stereo, 3D reconstruction, deep learning, Gaussian distribution.

I. INTRODUCTION

Multi-view stereo (MVS) calculates the depth information
of images through overlapping views and restores the 3D
architecture, which is a meaningful branch of 3D reconstruc-
tion [1], [2], [3], [4], [5]. As one of the critical technolo-
gies of environment perception, it has been widely used in
various applications, such as remote sensing [6], augmented
reality [7] and image-based rendering [8], [9], [10], [11].
Furthermore, MVS is a significant methodology in many
areas of computer vision and photogrammetry [12], [13],
[14], [15], [16].

The early traditional MVS methods [17], [18], [19], [20]
use the matching pixels of adjacent photos to construct the
energy function calculating the depth information. However,
the depth estimation is inaccurate in some reflective and
texture-less areas [21], [22], [23] due to the large difference of
matching pixels. So many hand-crafted operators are needed
to alleviate these areas’ influence, which takes much time.

Compared to traditional methods, deep learning meth-
ods [24], [25], [26], [27] make it better to reconstruct scenes.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongjie Li.

|
depth= | depth=
2x0+4x0.6+6x0.3+8x0.1=5 | 2x0.3+4x0.1+6x0.4+8x0.2=5
|

Depth Hypotheses Probabilities 1 Probabilities 2

|
s I— 01 te-|--02
|
|
o I— 03 | 04
|
|
4 06 : 0.1
|
2 I 0 pooi-03
|
|
|
1

FIGURE 1. lllustration of regression method. The depth hypotheses are
some possible depth hypotheses of one pixel; the probabilities are
generated by networks. Regressing depth hypotheses and corresponding
probabilities to calculate the final estimated depth. Many probabilities
can calculate the same result, which may result in error depth estimation.

The deep CNNs [28] extract multi-channel features from
images, which can reduce the impact of environmental fac-
tors such as light intensity, thus improving the reconstruc-
tion effect. The first end-to-end multi-view stereo network
is MVSNet [16]. And the subsequent learning-based MVS
approaches [29], [30], [31], [32], [33], [34], [35], [36], [37]
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FIGURE 2. Comparison with other deep learning methods on the DTU and tanks & temples dataset. The left figure compares
different methods on the DTU dataset (lower is better). The right figure is the result generated through tanks & temples
dataset (higher is better). Our model ranks 2nd on both datasets. However, the TransMVSNet ranking first consumes twice

as much memory as we do.

emulate MVSNet. They all use the regression architecture.
These networks select a series of possible depth hypothe-
ses for each pixel and train the corresponding probabili-
ties through multi-view images. Then regressing the depth
hypotheses and probabilities to calculate each pixel’s depth.
However, this regression method may lead to incorrect con-
vergence of neural network parameters because different
probabilities may get the same depth map, as shown in
Figure 1, which results in bad reconstruction in some areas.
Moreover, these methods all take the probabilities sum over
four depth hypotheses nearest the estimated depth to calculate
the confidence map for filtering out pixels with high depth
estimation errors. However, the simple filtering method is
more vulnerable to environmental impact.

CVP-MVSNet [32] proposes a pyramid framework to pro-
mote the accuracy and completeness of reconstruction. This
method designs a pyramid structure, which takes the previous
layer’s depth map as the next layer’s initial depth map to
conduct depth sampling. This coarse-to-fine architecture is
widely used in MVS [33], [34], [37].

Some novel probabilistic methods [38], [39] can signifi-
cantly improve the reconstruction effect. They assume that
each pixel’s depth hypotheses follow a Gaussian distribution.
The probabilistic methods propose a method for adaptive
sampling depth hypotheses on a Gaussian distribution, which
only requires a few depth hypotheses to achieve good recon-
struction results, greatly reducing memory and computational
time. The other advantage is that this method limits the shape
of depth hypotheses’ probabilities, dramatically reducing the
non-robustness of the regression method. LANet [38] builds a
Gaussian distribution of depth hypotheses through the ground
truth depth and trains the probabilities converging to the dis-
tribution. However, many hyperparameters in the loss func-
tion affect the reconstruction performance. MaGNet [39] is
a depth estimation network, but it provides noval methods
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for estimating distribution parameters. This article establishes
a Gaussian distribution for each pixel and designs an NLL
loss function without super parameters to train the network.
However, when it is greater than the extreme point of standard
deviation, the loss function is too flat, which makes the
network difficult to converge.

To sum up, there are three ways can enhance the recon-
struction results. First, the regression method, which could
lead to error probabilities, should be modified. Second, the
pyramid framework significantly improving reconstruction
results should be added. Third, the probabilistic method can
increase the reconstruction robustness, but the loss function
should be revised.

To this end, we first create a Gaussian distribution for
each pixel. The mean value is the estimated depth, and
the variance is used to filter points with excessive error.
We use it iterating in a pyramid framework to solve the
problem of regression methods. In addition, We propose a
novel loss function, called Gaussian loss, to estimate the
parameters of the Gaussian distribution. Finally, we design
an initialization module to limit the coarse distribution’s
parameters in a reasonable range. The comparison between
our network and others is shown in Figure 2. It is worth
noting that MaGNet [39] did not generate point clouds from
depth maps through filtering and fusion algorithms, so this
method is not added to the comparison on the point cloud
datasets.

In summary, our main contributions are listed as follows:

(1) We propose a novel probabilistic pyramid architec-
ture for reconstruction. We give each pixel a Gaussian
distribution. The mean value is the estimated depth instead
of obtaining it from the regression method and the
variance is used to calculate confidence map for filter-
ing, significantly improving the robustness and effect of
reconstruction.
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(2) We introduce a novel loss function named Gaussian
loss. The loss function has an excellent convergence property,
enhancing pixel depth estimation accuracy.

(3) We design a Gaussian distribution initialization mod-
ule, controlling the parameters within an appropriate range to
ensure the accuracy and robustness of the reconstruction.

Il. RELATED WORKS

A. TRADITIONAL MVS METHODS

MVS methods mainly include direct point cloud methods [1],
[17], volumetric methods [40], [41] and depth map meth-
ods [13], [19], [20], [42], [43]. The point cloud methods
directly process point clouds, consuming much time. The vol-
umetric methods divide the space into voxels which take up
much memory. The depth map methods calculate the pixels’
depth of each image and then project all the depth maps into
space through filtering and fusion algorithms [44] to generate
point clouds. This method is carried out in 2D space. Com-
pared with the above two models in 3D dimension, it can save
a lot of time and memory. Patchmatch [45] and SGM [46],
[47] are basic algorithms in multi-view stereo algorithms.
Patchmatch initializes a depth and normal vector for each
pixel and optimizes them through the propagation algorithm.
SGM establishes the energy function for the matched pixels
in the image pair and obtains the image depth map after
optimization. These works significantly improve the accuracy
and speed of 3D reconstruction. However, for texture-less
regions and highly reflective areas, the depth estimation of
traditional methods may cause a high error, which needs some
hand-crafted features.

B. LEARNING-BASED MVS METHODS

Compared with traditional methods, deep learning methods
are more accurate and robust. The first deep learning method
to fully implement end-to-end MVS is MVSNet [16]. It gen-
erates cost volume through differentiable homography and
regulars the volume in 3D CNN to infer a probability volume.
The depth map is calculated by regressing the probability
volume and corresponding depth hypotheses. This paper also
gives the fusion and filtering algorithms for projecting depth
maps to space. However, the regression method is not robust
enough, and the large 3D CNN consumes a lot of memory.
R-MVSNet [48] uses 2D CNN to get a probability for each
depth hypothesis and uses a classification loss function to
train the model. This method saves much memory com-
pared with MVSNet. Nevertheless, the receptive field of 2D
CNN is much smaller than that of 3D CNN, affecting depth
estimation accuracy. Based on these works, CVP-MVSNet
[32] proposes a pyramid framework for MVS. This archi-
tecture iterates the depth map and optimizes it coarse-
to-fine, dramatically improving the reconstruction effect.
However, this method also uses the regression method to
calculate the depth map. CasMVSNet [33] achieves the train-
ing with low-resolution images, which significantly improves
training speed. However, this method increases the overall
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error in depth estimation. PatchmatchNet [34] uses adap-
tive neighborhoods to improve the reconstruction effect and
reduce memory. However, this method is susceptible to the
environment.

C. PROBABILISTIC METHODS

Introducing probabilistic methods into deep learning meth-
ods can significantly improve reconstruction performance.
LANet [38] trains the probabilities of hypotheses converg-
ing to a Gaussian distribution, enhancing the robustness of
reconstruction. However, too many hyperparameters in the
loss function.

MaGNet [39] gives each pixel a Gaussian distribution.
This work samples depth hypotheses adaptively using the 3o
principle of Gaussian distribution. The advantage is that only
selecting a few depth hypotheses can achieve a good recon-
struction effect, significantly reducing memory. This method
also designs the NLL loss function without hyperparameters
to train the network. However, this loss function is too flat
when the standard deviation exceeds the extreme point, harm-
ing the convergence. Furthermore, the initial parameters are
learned through a 2D CNN, which may lead to unreasonable
parameters.

Based on CVP-MVSNet, giving each pixel a Gaussian
distribution, modifying the NLL loss, and designing an ini-
tialization module, we achieve an excellent reconstruction
effect by iterating the Gaussian map.

lll. METHOD

This section describes the details of GDINet. Based on
CVP-MVSNet [32], we use the iteration of the distribution
map to enhance the reconstruction effect. Our network is
illustrated in Figure 3.

We aim to estimate each reference image’s depth map uti-
lizing the multi-view stereo algorithm. Inputs of the GDINet
are the reference image I and N source images {I i}f.V: | with
the known camera parameters. After the multi-scale feature
extraction, the images are converted into feature maps of
different sizes.

Beginning at the coarsest stage, we design an initializa-
tion module to generate an initial Gaussian distribution for
each pixel. The mean value represents each pixel’s estimated
depth, and the variance reflects the reconstruction quality
and is used for filtering. This module’s advantage is limiting
the mean and the variance in a reasonable range. After this
is a pyramid framework divided into four modules. First,
the sampling and warping module warps the source feature
maps to the reference view and calculates the similarity with
the reference feature map to generate N similarity volumes.
Second, the cost aggregation module generates cost volume
by weighted aggregating those similarity volumes. Third,
the regularization module calculates the probability volume
through a regular 3D CNN module. Finally, the optimization
module estimates the residuals of distribution’s parameters
to refine the initial Gaussian map. The refined Gaussian map
is upsampled as the initial value of the next stage, using the
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FIGURE 3. lllustration of GDINet. The iteration starts at the coarsest stage. For each different perspective image, the shared 2D CNN first extracts
multi-scale features. Then, the initialization module estimates an initial Gaussian map for the reference view. Through adaptive sampling, we sample D
(D =5 in the network) depth hypotheses for each reference image’s pixel. The group-wise warping calculates the similarity between the source and
reference features on each depth hypothesis. After that, weighted aggregating the similarity volumes to obtain the cost volume. The probability volume
(D channels) is generated by a regularization network. GNet can learn the residual of mean and variance to update the initial Gaussian map. Finally, We

design a novel Gaussian loss function (GL) to train the GDINet.

similar method for depth inference. We design the Gaussian
loss function with a high convergence to train our network.

We first introduce the multi-scale feature extraction in
Section III-A; then we give the details of initialization module
in Section III-B; next, we will describe the iteration of Gaus-
sian distribution in the pyramid framework in Section III-C; in
addition, we design a novel loss function to train our network
in Section III-D; Finally, we give a new filtering method in
Section III-E.

A. MULTI-SCALE FEATURE EXTRACTION

We use the Feature Pyramid Network (FPN) [49] (detailed
presentation in Appendix Table 12) to hierarchically extract
the features of the input images. The FPN makes the feature
maps in three scales. On stage / (I = 0, 1, 2, stage 2 is the
coarsest stage), the resolution of the feature maps are % X %,
with the input images of size H x W. FPN uses the small
receptive field to extract rich texture information and the large
receptive field to extract the information of the texture-less
areas and fuses them, which is very helpful for reconstruction.

B. INITIALIZATION MODULE

MaGNet [39] applies a large 2D CNN module to learn the
initial Gaussian distribution. However, the problem is that the
learned value may be too large or too small when datasets
are insufficient. So we design an initialization module to
limit these parameters to a reasonable range. The structure
of this module is shown in Figure 4. We can obtain the initial
Gaussian map from the probability volume.
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1) GROUP-WISE WARPING

This module converts the source feature maps to the reference
view according to the depth hypotheses, and it performs
the similarity calculation with the reference feature map to
generate the similarity volumes. This module contains differ-
entiable warping and group-wise correlation.

a: DIFFERENTIABLE WARPING

This method warps the source feature maps to the reference
view. With images’ intrinsic matrices {K i}f.vz o relative trans-
formations {[Ro, ilto, i] }fvzl (Ro.; and £y ; represent the rotation
and translation from the reference view 0 to the source view i)
and the jth depth for a pixel p in the reference image, defined
as dj := d; (p), we can calculate the corresponding pixel p; ;
in the view i

pij=Ki- (Roi- (Kg'op-dj) +000) (O

Through the differentiable warping, in the feature maps
extracted by FPN, we can get one reference feature Fy’s
corresponding future F;; in the source view i on the jth
depth hypothesis. Then we calculate the similarity of these
to generate the similarity volume.

b: GROUP-WISE CORRELATION

In some previous methods [16], [32], the similarity volumes
contain all feature channels, increasing the computing time
and memory. We use the group-wise correlation method [50]
to alleviate this problem. The reference feature F and cor-
responding source feature F;; with C channels are evenly
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FIGURE 4. lllustration of the initialization module. The uniform sampling module evenly divides the space from the minimum to
maximum depth to obtain the depth hypotheses. The group-wise warping module converts the source feature maps to the
reference view and calculates similarity with the reference feature map. A similarity network regresses the similarity volume to
obtain the probability volume. The Gaussian map can be obtained by processing the probability volume.

divided into G groups. The similarity of the gth group features
Fg, Ffj is calculated as:

G
g 8 8 18
s (F§FS)) = = (FS. FS) @)
where (,) represents the inner product. We compute the
similarity of all source view’s features on all depth hypotheses
with the corresponding reference features to obtain the simi-
larity volumes, reducing a large number of feature channels.

2) OBTAINING INITIAL GAUSSIAN MAP

This module fuses similarity volumes into a probability vol-
ume and initializes the Gaussian map within a reasonable
range.

The N similarity volumes are regressed by a sim-
ple 3D CNN similarity network (detailed presentation in
Appendix Table 9) with a sigmoid activation function to
eliminate environmental factors such as light intensity and
reflection. Due to lack of view weights, for each pixel of
each depth hypothesis, We choose the perspective that best
matches the reference view (the perspective with the highest
similarity). So we take the maximum value of all regressed
similarity volumes to generate the probability volume.

In the probability volume P, P (x) represents the possi-
bility that the kth depth hypothesis is the pixel x’s true depth.
Therefore, the pixel should have the highest probability at
the ground truth depth and a gradually decreasing probability
further away from the true depth. We define pixels along the
depth hypotheses (D layers) dimension are {P (x)}szl. The
depth index closest to the ground truth depth is:

d, = arg linax{Pk Y, 3)

We take the d.th depth hypothesis as the mean value u
of the pixel’s Gaussian distribution so that we can obtain a
mean map (depth map). We hope the standard deviation o
of the Gaussian map should have the property: Each pixel
has a different variance, those matched confidently should
have a low variance, and those matched ambiguously should
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TABLE 1. The dimensional analysis in the initialization module.

We denote the number of source images as N, the number of depth
hypotheses as D, the resolution of images as HxW, the number of feature
channels as C, the number of groups for dividing feature channels as G.

Feature Structure Dimension
Reference Feature Map& Source Feature Map HxWxC
Similarity Volumes NxDxHXxWxG
Cost Volume DxHXWxG
Probability Volume DxHxWx1
Initial Gaussian Map HxWx2

have a relatively high variance. This can expand the sampling
range for pixels with inaccurate depth estimation and narrow
the sampling range with confident depth estimation, resulting
in more accurate depth estimation. LANet [38] proposes a
method to calculate the o, but it has many hyperparameters
that do not easily converge to the best value. We revise it as
follows:

o=q (1 — max{Py (x)}',?zl) “4)

We denote the distance between the two depth hypotheses
as dis, and the range of sampling in the adaptive sampling (in
Figure 3) as [u — dis, i + dis] (sampling between two adja-
cent layers). We use the 30 principle to sample. Therefore,
it can be deduced that the value of « is % So the variance
map can be calculated. Because the variance can measure the
quality of reconstruction results, we also refer the variance
map as confidence map. Finally, we splice the mean map and
confidence map to generate the initial Gaussian map. The
dimensional analysis is shown in Table 1.

C. PYRAMID FRAMEWORK

The pyramid method is proposed by CVP-MVSNet [32]. This
paper uses multi-scale feature extraction to generate multiple
resolution feature maps. Firstly, the depth map corresponding
to the minimum resolution feature map is obtained. After
upsampling, it serves as each pixel’s initial depth of the next
stage. Then sampling depth hypotheses near the depth to
calculate a more accurate depth. This coarse-to-fine method
dramatically improves the reconstruction effect. However,
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FIGURE 5. lllustration of Gaussian distribution iteration. GD refers to the
estimated Gaussian distribution of the point at (504, 669) position.

GT refers to the ground truth depth 565.47626 of this point. The coarsest
stage 2 with a large depth estimation error has a higher variance, which
makes a broader range of depth sampling. As the iteration progresses,
the estimated mean value is closer to the ground truth depth and the
variance is lower.
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FIGURE 6. The adaptive sampling of Figure 5's Gaussian distribution.
Adaptive sampling is densely near the mean value (estimated depth) and
sparsely far from the mean value. As the iteration progresses, the depth
estimation becomes more accurate and the sampling range becomes
more smaller.

this method also uses the regression method to calculate depth
maps resulting in non-robust depth estimation. In our method,
we use the iteration of the Gaussian map instead of the depth
map to solve this problem. The Gaussian distribution iteration
of a pixel on different stages is shown in Figure 5. We use
the nearest neighbor interpolation to upsample the refined
Gaussian map as the initial Gaussian map to the next stage.

1) ADAPTIVE SAMPLING
One of the advantages of Gaussian distribution is that each
pixel’s depth hypotheses can be sampled adaptively. In some
previous pyramid framework [32], [33], [34], the interval of
per pixel’s hypotheses is a hyperparameter that needs enough
intensive sampling. Compared with these methods, adaptive
sampling requires only a few layers to achieve state-of-the-
art results, which can save much memory. Figure 6 illustrates
the adaptive sampling of Figure 5’s Gaussian distribution.
As for MaGNet [39], for each pixel (&, v), we use the mean
value p, , and variance 03,‘, to sample depth hypotheses.
We define the search space is [/,LL,’V — Bouvs Puy + ,Bou,v].
In our work, we use the Gaussian distribution’s 30 (8 = 3)
principle for sampling, which contains 99.74% parts of the
distribution. For the standard Gaussian distribution, when the
sampling range is [B, —B], the probability mass P}, , covered
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FIGURE 7. lllustration of the view weights module. The differential
warping method is described in Section 11I-B. We only select the mean
layer and warp the source feature maps to the reference view on this
depth. Then we calculate the similarity with reference feature map (inner
product) as the weights of different view images.

by this search space is:

PZ,V = (bu,v (,3) - q)u,v (_ﬂ)

_ erf (%) s)

where ®,, and erf(-) are the cumulative distribution func-
tion and the error function of standard Gaussian distribution.
We sample D layers for pixel (u, v), the kth depth hypothesis
du,v,k = Uuy + bkau,v
1 k—1
by = = [cb—l (—P;v +

dy.v k 18 calculated as:
1-P;,
2 D 2

(K 1—P*
+@~! (BP;V + T)} (©6)

This adaptive sampling method can achieve a dense sam-
pling near the mean value (current depth of a pixel), and a
sparse sampling at a distance from the mean value, which
makes the depth hypotheses more conducive.

2) VIEW WEIGHTS AND WEIGHTED AGGREGATION

We can calculate similarity volumes through adaptive sam-
pling and group-wise warping (described in Section III-B).
Next, we calculate each perspective’s weight according to the
initial Gaussian map, then aggregate the similarity volumes to
generate the cost volume. The view weights module is shown
in Figure 7.

This module is similar to the initialization module. How-
ever, this module only selects the mean layer of the Gaussian
map as the depth hypothesis. The other difference is that
each pixel’s feature channels are not divided into G groups.
In contrast, whole channels do the inner product to calculate
the similarity between reference and source features. So the
dimension of the view weights is N x H x W. We can calculate
the cost volume by weighted aggregating similarity volumes.

3) GNet

Then, the probability volume is obtained by regressing the
cost volume through a regularization network (detailed pre-
sentation in Appendix Table 11). The probability volume rep-
resents the probability of each pixel at each depth hypothesis.
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TABLE 2. The dimensional analysis in the pyramid framework. On the
current stage, we denote the number of source images as N, the number
of depth hypotheses as D, the resolution of feature maps extracted by
FPN as HxW, the number of feature channels as C, the number of groups
for dividing feature channels as G.

Feature Structure Dimension
Initial Gaussian Map HxWx2
Similarity Volumes | NXDXxHxWxG
View Weights NXxHxW
Cost Volume DxHXxWxG
Probability Volume DxHxWx1
Gaussian Map HxWx2

Regression method regresses probability volume and depth
hypotheses to calculate each pixel’s depth, resulting in poor
robustness of depth estimation. Here, we use the probability
volume to calculate a refined Gaussian distribution for depth
estimation. The module adopts the ResNet [51] to optimize
the Gaussian map. The advantage is that this method can
alleviate the lack of information and the problem of gra-
dient disappearance, thus significantly improving training
accuracy.

The GNet (detailed presentation in Appendix Table 10) is
a simple 2D CNN. For each pixel (u, v), the GNet estimates
the normalized residual (i} — fu.v) /0u,v to update mean
value and elu (0,4 /oy,,) to update the variance. The elu (-)
function is:

x, x>0
elu(x)—{ex7 <0 @)

The elu (-) function can ensure the residual of the standard
deviation is greater than 0. So we can get the refined Gaussian
map from this module. Moreover, the dimensional analysis in
the pyramid framework is shown in Table 2.

D. GAUSSIAN LOSS FUNCTION

In this section, we introduce the loss function NLL (negative
log-likelihood) of MaGNet [39] and design the Gaussian loss
function GL with excellent convergence. For a pixel (u, v),
with the ground truth depth dfffv, the NLL, , is defined as:

1 2 Ly
NLLM’V = E IOg Uu’v + F
u,v
2
L, = (d,itv - ,uu,v) (8)

This loss function has only one minimum point in the
domain of w,,, and o,,. The loss function has the min-
imum value where the o,, equals /L, when we fix the

, Where

d,ffv — uu‘v‘. Figure 8 shows loss function NLLS)

Ly = 10 and NLL,, ,, where L, = 50.

We can observe that the o,,, is smaller when the p,,, is
closer to the dffv. It means that when the depth estimation
error is small, the o, , is low, reducing the sampling range to
obtain more accurate depth layers and when it is challenging
to limit the error Ly, the pixel haves a relative high o, ,,, which
can increase the range of depth sampling.

However, this loss function has two disadvantages. One
is that when o, > /L2, the trend of the NLL is too flat,
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FIGURE 8. lllustration of NLL) , and NLL}, ,.. The minimum point of
NLLg’V is lower than that of NLL,‘,,V.
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FIGURE 9. lllustration of GLy,y and NLLy,y when |df,’,tv - ,L,,,vl = 10. The
GLy,v has a strong convergence and a more reasonable variance.

which may lead to poor convergence. The other is when the
d,‘ffv — y,v| is high, the (~)2 in the L, will lead

to excessive variance, resulting in an unreasonable range of
depth hypotheses. We design a novel loss function named
Gaussian loss to solve these problems as follows:

1, L

value of

GLM,V = EO‘M!V + 202
u,v
1 2
I = E (Mu,v - d,itv) s |H/u,v - d,f‘tv <1 ©)

1 .
|ty — dS',| — o otherwise

The Gaussian loss function is shown in Figure 9. This
function has the only minimum point & = 4/L; when fixing
the ‘df’tv — [u,v|, and has a strong convergence. The variance
calculation is more reasonable, significantly promoting the
reconstruction effect.

E. POST-PROCESSING

We use photometric consistency and geometric consistency
to filter the pixels with large error in depth maps and then
project all depth maps to generate 3D point clouds as shown
in Figure 10.

1) PHOTOMETRIC CONSISTENCY FILTERING

The regions with a high depth estimated error also have a
high variance. So we set a threshold to generate a photometric
consistency from the confidence map. When the standard
deviation of one pixel is higher than this threshold, we filter
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FIGURE 10. The process of post-processing. The photometric consistency
and geometric consistency filter the error depth. Then projecting all depth
maps to generate the point cloud.

Filtering High Value

Bt
ke

Photometric Consistency

Confidence Map

FIGURE 11. Illustration of calculating photometric consistency. The white
areas of the photo consistency are the reserved regions.

Photometric Consistency Geometric Consistency

Fusing Consistency

FIGURE 12. Consistencies and 3D reconstruction results filtered by
corresponding consistencies on the 4th scene of DTU dataset.

this depth, as shown in Figure 11. In our network, we set
this threshold as 1.4. The left column of Figure 12 shows the
photometric consistency of a image and the 3D point cloud
only filtered by photometric consistency. The photometric
consistency is mainly used to filter out the inaccurate points
outside the object.

2) GEOMETRIC CONSISTENCY FILTERING
This method is followed by [34]. Geometric consistency aims
to filter out pixels with high re-projection error. The middle
column of Figure 12 presents the geometric consistency of
a image and the 3D point cloud only filtered by geometric
consistency. The geometric consistency is mainly used to
filter out the inaccurate points on the object.

Combining the photometric consistency and the geometric
consistency, the final consistency and the final 3D point cloud
is shown in the right column of Figure 12.

IV. EXPERIMENTS AND RESULTS
A. DATASETS

We train our network on the DTU dataset and evaluate it on
the DTU and Tanks & Temples datasets.
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1) DTU DATASET

DTU dataset [21] contains 124 different scenes for MVS.
Each scene is photographed from different directions and
different light intensities. The camera is fixed on the mechan-
ical arm, and the rotation angle of the mechanical arm is
strictly controlled, so the internal and external parameters
of the camera can be accurately obtained. Each scene has
49 views, and each view has 7 different brightness. Therefore,
there are 343 pictures in each scene folder. The resolution
of each image is 1600 x 1200. This dataset contains each
perspective’s photos, camera parameters, masks, and depth
maps. We select 79 scenes to train our network and 22 to
evaluate as the same as [32].

2) TANKS & TEMPLES DATASET
Tanks & Temples [22] dataset is mainly utilized to verify the
networks’ robustness and whether they still have a relatively
accurate reconstruction ability for scenes with large light
changes and dynamic targets. This dataset divides scenes
into advanced scenes (6 scenes) and intermediate scenes
(8 scenes). The advanced scenes include more uncertain con-
ditions compared with the intermediate scenes. The resolu-
tion of the images in the advanced scenes is 1920 x 1080,
while the intermediate datasets include 2048 x 1080 sized
images and the 1920 x 1080 sized images. The lidar scans
objects to obtain ground truth point clouds. The generated
point clouds are uploaded to the official website for evalu-
ation and published on the leaderboard.

We also make a visual comparison on the BlendedMVS
dataset [52] (including many large-scale scenes) to illustrate
the generalization ability of our network.

B. TRAINING AND EVALUATING CONFIGURATIONS

We present the details of the parameters on the DTU and
Tanks & Temples datasets.

1) TRAINING ON DTU DATASET

The original size of images in the dataset is 1600 x
1200 which will take a lot of time and memory during train-
ing. For preprocessing, we resize the images to 864 x 512 and
process the camera intrinsic matrices, depth maps, and masks
accordingly. 5 different perspective images of a scene (one
reference view and four source views) are the inputs of our
network. We build the Gaussian map pyramid with 3 stages,
Beginning at the coarsest stage 2. In the FPN, the number of
extracted feature channels on stage 2, 1, 0 are seted as 64, 32,
16. In the initialization module, we set the number of depth
hypotheses as 48. For adaptive sampling, we set the number
of depth hypotheses on each stage as 5 and the sampling range
of Gaussian distribution as 3 covering 99.73% of the region.
For group-wise correlation, we set the number of groups on
stage 2, 1, 0 as 8, 8, 4. The number of iterations on all
stages is 2. We set the weight of loss function on stage 2,
1, 0 as 0.82, 0.8, 1. Our network is trained with Adam [53]
(B1 =0.9, B =0.999) for 16 epochs. We set the learning
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FIGURE 13. The comparison of different methods’ photometric consistencies. Our result preserves relatively complete object

information.
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FIGURE 14. The comparison of different methods’ filtered depth maps. Our result is more explicit in detail.

rate as 0.0004 multiplied by 0.5 at the 10¢h, 12th, 14th epoch.
Here, we use 4 batches and train on 4 Nvidia TeslaV100-PCIE
GPUs.

2) EVALUATING ON DTU DATASET

We resize the original images to 1152 x 864 and choose
5 views of a scene as the inputs with the corresponding
camera matrices. We use the 1 batch to evaluate the depth
map of each image. We use photometric and geometric con-
sistency to filter the depth map. Finally, we fuse depth maps
of all perspectives to generate 3D point clouds [34]. Other
parameters are the same as training.

3) EVALUATING ON TANKS & TEMPLES DATASET

We use this dataset to test the robustness of our method.
We resize the images of intermediate scenes to 1728 x 960 and
the images of advanced scenes to 1536 x 864, then process
the camera intrinsic matrices accordingly. Other parameters
are the same as the model evaluated on the DTU dataset.

C. ACCURACY METRICS
To evaluate the estimated reconstruction performance on the
DTU dataset, we follow the MATLAB script provided by [21]
to compute the accuracy error (Acc.) and completeness error
(Comp.) of each reconstruction result, and combine them to
calculate the overall error (OA.), which is defined as:

Acc. + Comp.

OA = ———— (10)

Low OA. indicates that the 3D point cloud has a good
reconstruction effect.

We calculate the F-score F (d) to evaluate the results gen-
erated on the Tanks & Temples dataset. The F-score is defined
as:

) — 2R (d) P (d)

" Rd)+P(d) (i

VOLUME 11, 2023

where the R (d) is the recall of the reconstruction and P (d) is
the precision of the reconstruction with the distance threshold
d. The calculation of R (d) and P (d) can be found in [22].
High F (d) means the 3D cloud point has a good reconstruc-
tion effect. We upload the reconstructed point cloud to the
official website for evaluation.

D. RESULTS
In this section, we show our reconstruction results on different
datasets.

1) RESULTS ON DTU DATASET

The results of our method and other SOTA networks are
shown in Table 3. Among all methods, our method ranks
7th in Acc., 3rd in Comp. and 2nd in OA.. A signifi-
cant advantage of our method is that we can calculate a
high-quality photometric consistency to filter the miscel-
laneous points. We compare our photometric consistency
with baseline and patchmatchnet (with the lowest comput-
ing memory), as shown in Figure 13. The two networks
simply take the probabilities sum over four depth hypothe-
ses nearest the estimated depth to measure the estimation
quality. This is an experimental conclusion that if the depth
estimation is accurate, the sum of adjacent four-layer depth
hypotheses’ probabilities is relatively high. Due to the lack
of restrictions on the shape of probability, some pixels may
experience situations where the depth estimation is accurate
but the sum is small, or the depth estimation is inaccurate
but the sum is high, resulting in unreasonable filtering. Our
filtering method has theoretical support, which can obtain
more accurate depth maps and achieve better reconstruction
results. The black areas are the filtered pixels and the white
areas are the reserved pixels. The photometric consistency
generated by CVP-MVSNet only filters several pixels on the
object’s boundary. The PatchmatchNet’s photometric con-
sistency filters many pixels on the object. Our photometric
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FIGURE 15. The comparison of different methods’ reconstruction results on the 11th scene of DTU dataset. Our result is more

accurate and complete.

Original Image
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FIGURE 16. The comparison of different methods’ photometric consistencies on the Francis scene of Tanks & Temples dataset. Our
photometric consistency contains relatively complete object information.

TABLE 3. Quantitative results of reconstruction quality on the DTU
evaluation dataset (lower is better). Bold numbers perform best in each
column.

Methods Acc.(mm) Comp.(mm) OA.(mm)
Camp [42] 0.835 0.554 0.695
Furu [17] 0.613 0.941 0.777
Tola [13] 0.342 1.190 0.766
Gipuma [19] 0.283 0.873 0.578
MVSNet [16] 0.396 0.527 0.462
R-MVSNet [48] 0.383 0.452 0.417
Point-MVSNet [30] 0.342 0.411 0.376
FastMVSNet [35] 0.336 0.403 0.370
CasMVSNet [33] 0.325 0.385 0.355
UCS-Net [36] 0.338 0.349 0.344
PatchmatchNet [34] 0.427 0.277 0.351
LANet [38] 0.320 0.349 0.335
TransMVSNet [54] 0.321 0.289 0.305
PA-MVSNet [55] 0.313 0.437 0.375
HighRes-MVSNet [37] 0.346 0.345 0.346
Baseline [32] 0.296 0.406 0.351
Ours 0.335 0.312 0.323

consistency preserves relatively complete object information,
thus improving the reconstruction effect.

We compare our filtered depth map with these two meth-
ods, as shown in Figure 14. The two methods’ results are
incomplete in some areas, while ours is more explicit in
details. The comparison illustrates that the Gaussian distri-
bution iteration method can enhance reconstruction quality.

We also make a visual comparison on other scene as shown
in Figure 15. Our result is more accurate and complete at the
bottom of the object.

2) MEMORY COMPARISON ON DTU DATASET

The comparison of our method with baseline and Trans-
MVSNet which achieves the highest reconstruction effect
is shown in Table 4. The memory comparison of all meth-
ods is shown on the left of Figure 2. Our model uses two
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TABLE 4. Relating GPU memory to the input resolution of 1152 x 864 on
DTU’s evaluation set (lower is better). Bold numbers perform best in each
column.

Methods OA.(mm) Memory(GB)
TransMVSNet | 0.305 10
Baseline 0.351 5.9
Ours 0.323 5.1

strategies to reduce memory and computing time: (1) The
group-wise correlation module can significantly reduce the
number of feature channels. The number of extracted feature
maps’s channels are 64, 32, 16 on stage 2, 1, 0 and the
module convents those to 8, 8, 4, which saves many resources.
(2) We perform adaptive sampling on the Gaussian distribu-
tion, which only needs a few depth hypotheses.

3) RESULTS ON TANKS & TEMPLES DATASET
We test the robustness of our method on the Tanks & Temples
dataset and compare it with other networks. This dataset is
divided into intermediate scenes and advanced scenes. The
reconstruction results are shown in Table 5. We use the
F-score (higher is better) to evaluate the final results.
Compared with other methods, our result ranks 2nd in the
intermediate scenes, 3rd in the advanced scenes, and 2nd in
the overall scenes. TransMVSNet has the best reconstruction
effect in all scenes, but it takes almost twice as much memory
as our method, as shown in Table 4. We compare our pho-
tometric consistency with CVP-MVSNet and Patchmatch-
Net, as shown in Figure 16. CVP-MVSNet’s result retains
more miscellaneous points and PatchmatchNet’s result fil-
ters out the pixels on the object, while ours result contains
relatively complete object information. The comparison of
filtered depth maps is shown in Figure 17, which shows the
robustness of our network.

VOLUME 11, 2023



X. Zhang, S. Li: Multi-View Stereo Network With Gaussian Distribution Iteration

IEEE Access

Original Image CVP-MVSNet
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FIGURE 17. The comparison of different methods’ depth maps on the Francis scene of Tanks & Temples dataset. Ours is more

robust when changing datasets.

Family Panther

Playground

FIGURE 18. 3D reconstruction results of some intermediate scenes. Our method has a good reconstruction effect on texture details

and texture-less areas.

Ballroom

Courtroom

FIGURE 19. 3D reconstruction results of some advanced scenes. Our method can reconstruct the whole area almost perfectly.

TABLE 5. Different methods perform on the Tanks & Temples dataset
evaluating by F-score (higher is better). Bold numbers perform best in
each column. Some methods refrain to evaluate on more challenging
advanced scenes.

Methods Intermediate Advanced Overall
COLMAP [2] 42.14 27.24 34.69
MVSNet [16] 43.48 - -

R-MVSNet [48] 48.40 2491 36.65
CIDER [50] 46.76 23.12 34.94
Point-MVSNet [30] 48.27 - -
FastMVSNet [35] 47.39 - -
CasMVSNet [33] 56.42 31.12 43.77
UCS-Net [36] 54.83 - -
PatchmatchNet [34] 53.15 32.31 42.73
LANet [38] 55.70 - -
TransMVSNet [54] 63.52 37 50.26
HighRes-MVSNet [37] 49.81 - -
Baseline [32] 54.03 - -
Ours 56.42 31.31 43.86

Figure 18. shows our results on some intermediate scenes.
The scenes of Family and Panther show our ability to recon-
struct texture details, and the Playground scene shows the
reconstruction effect for the texture-less areas. Compared
with the intermediate scenes, the advanced scenes have more
texture-less regions and more demanding lighting transfor-
mations, increasing the reconstruction challenge. Figure 19.
shows the results on some advanced scenes. Scenes of the
Courtroom and Ballroom are indoor conditions, and we
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almost completely reconstruct them. The scene of Temple is
a challenging outdoor scene, and we show its integrity and
texture details well. Our method has a significant robustness
to environmental impact.

4) A VISUAL COMPARISON ON THE BLENDEDMVS DATASET
We verify the generalization ability of our method on the
BlendedMVS dataset. This dataset contains many large-scale
scenes increasing the difficulty of reconstruction. The results
are shown in Figure 20. Compared with the other two meth-
ods, our result is more explicit in detail and complete on the
whole, indicating our method has an excellent generalization
ability.

E. ABLATION STUDIES

In this section, we do some ablation experiments to prove
the rationality and superiority of our network structure. All
experiments are trained and evaluated on the DTU dataset.

1) CORE MODULES
Our core modules are the Gaussian distribution iteration
(GDI), initialization module (IM) and view weights module
(VW). Table 6 shows the effect of these modules.

Overall, the baseline’s Acc. is the lowest, while our final
method No.4 has the best Comp. and OA.. The reason is
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FIGURE 20. Comparison of 3D reconstruction results on the BlendedMVS dataset. Our result is more explicit in detail and more complete on the whole.

TABLE 6. Different core modules perform on the DTU evaluation dataset
(lower is better). Bold numbers perform best in each column.

No. Baseline GDI IM VW Acc. Comp. OA.

1 v 0.296 0.406 0.351
2 v 0.337 0.433 0.385
3 v v 0.350 0.324 0.337
4 v o v v 0335 0312 0.323

TABLE 7. GDINet using different loss functions performs on the DTU
evaluation dataset (lower is better). Bold numbers perform best in each
column.

Loss Function Acc.(mm) Comp.(mm) OA.(mm)
NLL [39] 0.306 0.831 0.568
GL 0.335 0.312 0.323

that CVP-MVSNet has fewer parameters and is easier to
converge but ours has a more vital generalization ability. No.2
initializes each image’s pixel with the same Gaussian distri-
bution, making the iteration slow and difficult. Comparing
No.3 with No.2, the reconstruction effect can be significantly
improved when the initialization module gives each pixel a
differemt Gaussian distribution. Comparing No.4 with No.3,
view weights can promote the accuracy and completeness of
reconstruction.

2) LOSS FUNCTION

MaGNet [39] proposes an NLL loss function to train the
Gaussian distribution. However, this function is too flat when
exceeding the extreme point of standard deviation. We pro-
pose anovel loss function, GL (Gaussian loss), with excellent
convergence. We use two loss function to train GDINet, and
the results are shown in Table 7.

The results show that the Acc. of NLL is lower than GL,
but the Comp. is much higher than GL. The reason is NLL
uses the quadratic term L, while GL uses the single term L to
optimize each pixel’s mean value. So NLL is easier to make
the mean convergence. However, L; could cause a consider-
able variance, which leads to an unreasonable sampling of
depth hypotheses. Moreover, unreasonable variance leads to
unreasonable filtering, which badly impacts the completeness
of reconstruction.

3) THE NUMBER OF STAGES IN PYRAMID FRAMEWORK

In our network, we use 3 stages to refine the Gaussian map.
We compare it with GDINet using 2 stages. The results are
shown in Table 8.
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TABLE 8. GDINet with different number of stages performs on the DTU
evaluation dataset (lower is better). Bold numbers perform best in each
column.

Methods Acc. Comp. OA. Memory

Baseline 0.296 0.406 0.351 5.9
Ours (3 stages) 0.335 0.312 0.323 5.1
Ours (2 stages) 0.344 0.323 0.333 4.8

TABLE 9. Details of similarity network in the initialization module. Input
is the feature map (FeaMap) generated by FPN. Conv3D means the 3D
convolution operation. BnRelu denotes the batch normalization and
rectified linear unit. The output channels, kernal size, stride, padding of
convolutional layers are denoted as (output channels, kernal size, stride,
padding). D denotes the number of depth hypotheses, H x W denotes the
resolution of input images.

Input Layer Output | OutDimension
FeaMap | Conv3D,BnRelu,(16,1,1,0) F1 DxHXxWx16
F1 Conv3D,BnRelu,(8,1,1,0) Fo DxHXxWx8
Fo Conv3D,BnRelu,(1,1,1,0) Out DxHxWx1

TABLE 10. Details of the GNet. Conv2D means the 2D convolution
operation. Input is the probability volume (PV). Relu denotes the rectified
linear unit. The output channels, kernal size, stride, padding of
convolutional layers are denoted as (output channels, kernal size, stride,
padding). H x W denotes the resolution of current stage feature maps.

Input Layer Output | OutDimension
PV | Conv2D,Relu,(128,3,1,1) | Fy HXxWx128
F1 | Conv2D,Relu,(128,1,1,0) | Fa HxWx128
Fo | Conv2D,Relu,(128,1,1,0) | F3 HXxWx128
F3 Conv2D,Relu,(2,1,1,0) Out HxWx2

We can conclude that more stages can improve the accu-
racy and completeness of reconstruction results. But much
GPU memory can be saved by using fewer stages while the
OA. only increases by 0.01.

V. CONCLUSION

In this paper, we propose a novel probabilistic method sig-
nificantly improving the reconstruction effect. First, we give
each pixel a Gaussian distribution to construct a Gaussian
map. The mean value is the estimated depth, and the vari-
ance is used for filtering. In addition, we use the pyramid
framework to gradually refine the Gaussian map and design a
loss function with excellent convergence to train the Gaussian
distribution. Finally, we design an initialization module to
limit the coarse parameters of distribution within a reasonable
range. Our results rank 2nd on both DTU and Tanks &
Temples datasets. The memory consumption is also less than
our baseline.
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TABLE 11. Details of the regularization network. Input is the cost volume
(CV) generated by weighted aggregating similarity volumes. Conv3D
means the 3D convolution operation. BnRelu denotes the batch
normalization and rectified linear unit. The output channels, kernal size,
stride, padding of convolutional layers are denoted as (output channels,
kernal size, stride, padding). It should be noted that some convolutions
have different stride on the (D, H, W) dimension. D denotes the number
of depth hypotheses, H x W denotes the resolution of current stage
feature maps. DeConv3D means upsampling convolution, and it has an
extra parameter termed output padding (OutPadding).

Input Layer Output | OutDimension
CV Conv3D,BnRelu,(8,3,1,1) F1 DxHxWx8
F (2‘1’223313“21)2611)“ Fo |DxH2xW/2x16
Fa Conv3D,BnRelu,(16,3,1,1) | F3 |DxH/2xW/2x16
F3 C(gg‘?g];’“zl}ell)” F, |DxH/4xW/4x32
Fy Conv3D,BnRelu,(32,3,1,1) F5 DxH/4xW/4x32
Fs C(gi‘?ggnzl)‘ell)“ Fg | DxH/8xW/8x64
Fg Conv3D,BnRelu,(64,3,1,1) | Fy | DXxH/8xW/8x64

DeConv3D,BnRelu
Fr (32,3,(1,2,2),1) Fs | DxH/4xW/4x32
OutPadding=(0,1,1)
Fg,F5 Addition Fo |DxH/4xW/4x32
DeConv3D,BnRelu
Fg (16,3,(1,2,2),1) Fio |DxH/2xW/2x16
OutPadding=(0,1,1)
Fi10.F3 Addition Fi1 DxH/2xW/2x16
DeConv3D,BnRelu
Fi1 (8,3,(1,2,2),1) Fi2 DxHxWx8
OutPadding=(0,1,1)

F12,F1 Addition Fi3 DxHXWx8

Fi3 Conv3D,(1,3,1,1) Out DxHxWx1

TABLE 12. Details of feature extraction pyramid (FPN) network. Conv2D
means the 2D convolution operation. BnRelu denotes the batch
normalization and rectified linear unit. The output channels, kernal size,
stride, padding of convolutional layers are denoted as (output channels,
kernal size, stride, padding). We use the bilinear interpolation for up
sampling. HxW denotes the resolution of input images.

Input Layer

Conv2D,BnRelu,(16,3,1,1)
Image | Conv2D,BnRelu,(16,3,1,1)
Conv2D,BnRelu,(16,3,1,1)
F1 | Conv2D,BnRelu,(32,5,2,2) | Fa | H/2XW/2x32

Conv2D,BnRelu,(32,3,1,1

F2 Conv2D,BnRelu,E32,3,1,1; Fs | H2XxW/2x32
F3 | Conv2D,BnRelu,(64,5,2,2) | F4 |H/A4XW/4x64
Conv2D,BnRelu,(64,3,1,1)

Output | OutDimension

F1 HxWx16

Fa | ConvaD,BnRelu,(64.3,1.1) | Outr | HAX W/ 64
F3 Conv2D,(64,1,1,1) Fs |H2xW/2x64
F1 Conv2D,(64,1,1,1) Fg HxWx64
Outy Interpolate Fr H/2xW/2x64
Fs, Fr Addition Fgs |H2xW/2x64
Fg Conv2D,(32,1,1,1) Outy | H2XW/2x32
Fs Interpolate Fo HxWx64
Fg, Fg Addition Fi0 HxWx64
Fio Conv2D,(16,1,1,1) Out3 HxWx16

TransMVSNet [54] is the most effective reconstruction
network. This method uses an attention mechanism to
enhance feature description. In the future, we will add an
attention layer after the multi-scale feature extraction struc-
ture to extract more accurate object contour information,
which may significantly improve the accuracy and complete-
ness of the reconstruction.
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APPENDIX

DETAILS OF SOME NETWORK STRUCTURES

Table 9 shows the details of the the similarity network in
the initialization module. Table 10, Table 11 and Table 12
describes the GNet, regularization network, and FPN network
in the pyramid framework.
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