
Received 21 April 2023, accepted 16 May 2023, date of publication 29 May 2023, date of current version 7 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3281304

Imperative vs. Declarative Modeling of Industrial
Process. The Case Study of the Longwall
Shearer Operation
EDYTA BRZYCHCZY 1, MARCIN SZPYRKA 2, (Senior Member, IEEE), JACEK KORSKI3,
AND GRZEGORZ J. NALEPA 4,5,6, (Member, IEEE)
1Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30-059 Kraków, Poland
2Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Science and
Technology, 30-059 Kraków, Poland
3ITG KOMAG Institute, 44-100 Gliwice, Poland
4Faculty of Physics, Astronomy and Applied Computer Science, Institute of Applied Computer Science, Jagiellonian University, 31-007 Kraków, Poland
5Jagiellonian Human-Centered AI Laboratory (JAHCAI), Jagiellonian University, 31-007 Kraków, Poland
6Mark Kac Center for Complex Systems Research, Jagiellonian University, 31-007 Kraków, Poland

Corresponding author: Edyta Brzychczy (brzych3@agh.edu.pl)

This work was supported in part by the AGH University of Science and Technology (AGH UST) Grant; and in part by the PACMEL
Project funded by the National Science Centre, Poland, through the CHIST-ERA Program under Grant NCN 2018/27/Z/ST6/03392.

ABSTRACT Process modeling is an important and necessary step for further analysis and monitoring of
industrial processes. In the process modeling two main paradigms exist, namely imperative and declarative
ones. In our work, we analyzed information potential of these model paradigms regarding to conformance
checking task of real life industrial process – longwall shearer operation carried out in an underground
coal mine. The objective of our work was an analysis of selected imperative and declarative models to
discover which approach is more appropriate from a practical point of view, taking into consideration criteria
formulated by the domain expert. The first novelty of our work rely on real life industrial sensor data analysis
and creation of event log with heuristic approach for case ID identification and labeling with expert rules.
In parallel, we created prescribed processmodels. As representatives of imperative and declarative languages,
we have selected the Petri nets and Declare models, respectively. We created two Petri nets (with Inductive
and Heuristic Miner) and seven declarative models differ in restriction power. Due to the better description
of the ideal cycle, to the further analysis and conformance checking task, we selected the Petri net created by
HeuristicMiner. After the process model creation, we compared selected Petri net with Declare models using
the natural language approach and constraints hierarchy. Based on created similarity measures, we choose
one declarative model to conformance checking task and comparison with Petri net due to formulated
quantitative and qualitative criteria. As main artifact in the conformance checking task, we used obtained
real event log. Evaluation of the created models indicates that in the case of the longwall shearer operation
monitoring, the declarative model better captures the necessary information to decision-makers than the Petri
net, thus being more appropriate for practical use.

INDEX TERMS Process modeling, petri net, WF-nets, declare model, sensor data, shearer, underground
mining.

I. INTRODUCTION
In the digitized organization, there are new opportunities to
support analysis and improvement of the executed processes.
One of them is process mining, which enables discovery,

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiwu Li .

monitoring, and improvement of real processes by extracting
knowledge from data available in IT systems [1]. Nowadays,
process mining is a quite well-established standard in auto-
mated process model discovery and analysis, e.g., see [2].1

1This paper was funded by the National Science Centre, Poland under
CHIST-ERA programme, the CHIST-ERA 2017 BDSI PACMEL Project,
NCN 2018/27/Z/ST6/03392.

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 54495

https://orcid.org/0000-0002-0315-5636
https://orcid.org/0000-0003-4925-3271
https://orcid.org/0000-0002-8182-4225
https://orcid.org/0000-0003-1547-5503


E. Brzychczy et al.: Imperative vs. Declarative Modeling of Industrial Process.

In industrial practice, an essential issue is process monitoring
concerning the real performance of a process, as well as the
identification of its deviations. To do so, one should know
the prescribed model of the process and validate if its actual
execution conforms to the process model. In process mining,
this task is known as conformance checking [3].

A process model is always the result of a compromise
between full imitation of reality and simplification. It is
only an approximation of the real execution of an industrial
process, satisfactory from the practical point of view. Process
models can be hand-made [4] or can be discovered automat-
ically with the use of process mining based on event logs.
In process modeling, the following decisions should be made:
• on the type of model (imperative, declarative, or hybrid),
• the process modeling language used, and
• the level of abstraction, which provide the most valuable
information from the point of view of process analysis
and improvement for domain users.

Imperative models are more popular in business process
modeling (e.g., Business Process Model and Notation mod-
els – BPMN) due to clear notation and understandability to
the users. Imperative modeling techniques have been imple-
mented in almost every modeling tool [5]. However, declara-
tive models have attracted much attention over the last years
and new tools enabling declarativemodeling have been devel-
oped, e.g., Rule Mining application called RuM [6].

The abstraction level of the model should be related to the
needs of the domain user. It is strictly related to the available
data on the execution of the process. In many real-world sce-
narios, events and traces are not readily available, and before
process modeling, event logs have to be developed from
existing data sources [7]. This is a widespread phenomenon
in industrial process modeling using sensor data. In the aspect
of process modeling for industrial needs, the following issue
also has to be raised: ‘‘domain experts are typically not famil-
iar with business process modeling languages’’ [8], therefore,
during process modeling collaboration between the process
analyst and domain expert is indispensable.

The paper presents the results of research work conducted
in the CHIST-ERA Pacmel project. One of the main objec-
tives of the project is to provide new insights into the rela-
tionship of low-level sensor data recorded in the monitoring
of industrial processes and their high-level models provided
to decision makers. Pacmel is a fundamental research project,
implemented with close cooperation with several companies.
They provide real-life data, models, and expert knowledge to
the project. Moreover, they are very interested in the possible
exploitation of the project results.

In this setting, our paper provides an application-driven
analysis of modeling approaches. We introduce a use case of
modeling and analysis of longwall shearer operation indus-
trial process. This process was selected by us as it is quite
special. At first sight, it can be described as a very simple
sequence of operations. However, what makes it interesting
is that its real execution shows that it is highly unstructured.
Cycle executions can vary; nevertheless, not all deviations are

errors from the mining reality point of view. Thus, a model
which is too restrictive can return a lot of unnecessary infor-
mation to decision makers during the conformance checking
task, which would jeopardize its practical usefulness.

Our motivation for the analysis was related to the theo-
retical process model which existed in the domain literature
for the analyzed process. Apparently, it is a relatively sim-
ple one and does not represent a variety of behavior and
unstructured specificity. We translated this model into a
Petri net as an imperative model. We wanted to discover how
this process model can support the conformance checking
to obtain valuable information about process execution and
deviations. Since we observed a high variability in the event
log, we believed that in the case of unstructured behavior,
a better approach with a better quality of information would
be the declarative one (as suggested in [9]).

The specific research problem we are considering is a
comparison of imperative and declarative models of real life
industrial process to select a better approach for practical
application.

Our hypothesis in this paper is as follows: in the case of
analysis of an industrial process whose execution is unstruc-
tured, the use of declarative models instead of imperative
ones is more useful from a practical point of view. To perform
a practical evaluation, we formulate metrics for the quantita-
tive evaluation and criteria for the qualitative one. We exam-
ine a number of different process models (imperative and
declarative) aiming at their comparison and selection of the
best one for practical application in the company responsible
for process monitoring. In our experiments, we decided to use
a subclass of Petri nets called workflow nets (WF-nets) and
Declare models as the main representatives of the mentioned
modeling paradigms.

The remainder of this paper is composed as follows. Sec-
tion II presents related works on imperative and declar-
ative approaches in process modeling, selected modeling
languages, and the process models comparison. Section III
describes our case study, i.e., the longwall shearer operation
process. Section IV deals with the introduction to WF-nets
and the Declare language. Section V gives an overview of our
approach. In Section VI, we present the results of evaluation
and experiments showing the advantages and disadvantages
of the evaluated process models due to the formulated cri-
teria. Finally, Section VII concludes the paper and presents
directions for future work.

II. RELATED WORKS
In practice, we have to deal with various types of processes
(Fig. 1). Some of them are well structured, repeatable, thus
easier to manage and predict. On the other hand, we have
unstructured and non-repeatable processes with high flexibil-
ity, which can be challenging for their modeling and analysis.

The nature of the process influences its modeling process
and the selection of model type. There are two main types
of modeling paradigms – imperative and declarative (Fig. 2).
The differentiation between the imperative and declarative

54496 VOLUME 11, 2023



E. Brzychczy et al.: Imperative vs. Declarative Modeling of Industrial Process.

FIGURE 1. Spectrum of processes (based on [10]).

approach has its roots in computer programming [11]: Imper-
ative programming implies to ‘‘say how to do something’’,
whereas declarative programming implies to ‘‘say what is
required and let the system determine how to achieve it’’.

FIGURE 2. Visualization of imperative and declarative approaches
(after [12]).

Imperative models represent an ‘‘inside-out’’ approach;
therefore, every possible execution sequence must be explic-
itly modeled. Thus, imperative modeling may lead to over-
specification and lack of flexibility in real process modeling.
In contrast to imperative approaches, declarative models take
an ‘‘outside-in’’ approach. Instead of exactly specifying how
the process should be executed, only the essential character-
istics are described in the form of constraints. Constraints
are represented by rules that restrict the possible execution of
activities [5]. Probably the most notable difference between
imperative and declarative modeling is how a given behavior
can be classified as satisfying or not satisfying the model [9].

While imperative approaches are a strong concept regard-
ing well-defined processes, they lack clarity once an observed
behavior allows for flexible execution. In this case, models
following a declarative approach can describe the behavior in
a more compact way [13]. The description of circumstantial
dependencies may be easier on the basis of a declarative
process model than an imperative process model [9].

The most known and useful (from the process min-
ing point of view) imperative process modeling languages
are Petri nets. Since their beginning in the 1960s, many
classes and extensions were proposed, ranging from low-level
classes [14], [15], to high-level ones [16], [17], [18]. The
former are used to build models at a high level of abstrac-
tion. The latter combine the capabilities of Petri nets with
the capabilities of a high-level programming language that
provides primitives for the definition of data types, variables,
expressions for describing data manipulation, etc., and thus
are used to build models that are closer to real systems [19].
From the conformance checking point of view, WF-nets
are very popular [1]. This is because they are suitable for
automatic model generation from event logs. WF-nets are
used for building imperative models in this paper. Impera-
tive models are more popular in business process modeling

(especially in the form of Event-Driven Proces Chain (EPC)
or BPMNmodels) and have been implemented in many tools
(e.g., ARIS, Bizagi, Signavio).

In recent years, there has been a growing interest in declar-
ative modeling, both from the scientific and practical point
of view [5]. In declarative modeling, we build a model as
a set of constraints that are true for the model. A well-
known example of declarative languages is Declare [20]. The
language consists of activities and constraints [21] and is
equipped with a graphical representation of these elements.
An activity is marked as a rectangle and constraints are
expressed as arcs. An example of a model built using Declare
is shown in Fig. 6. The flexibility of declarative models can
be burdensome in modeling processes of a rather procedural
nature. If the desired execution of the process is well defined,
it is easier to express in the form of an imperative model how
the process is to run than to introduce constraints that are to be
met. Furthermore, when we introduce too many (also interre-
lated) constraints, the declarative model may become hardly
understandable to the user [20]. There are other declarative
modeling languages, e.g. PENELOPE [22], Business Process
Constraint Network [23] or DCR Graphs [24]. A review of
selected declarative languages is presented in [25].

Currently, one of the development directions for process
modeling languages is the so-called hybrid approach that
enables the construction of process models, using both ele-
ments of imperative and declarative languages [26], [27].
It is a response to the actual internal heterogeneity of pro-
cesses, which consist of certain structured and unstructured
fragments. However, there is a challenge in choosing which
parts would be shown better in either way [13]. It is also
worth mentioning that an extension of the BPMN language
with declarative elements (BPMN-D) exists. This proposal is
described in detail in [28].

In modeling reality, it is important to answer the question if
there is a possibility to represent the same behavior regardless
of the notation. As an initial response, the authors in the
paper [13] presented an approach for the transformation of
a declarative model (Declare) into a behaviorally equivalent
imperative model in the form of a Petri net. The proposed
transformation consists of three main steps: (i) translation of
declarative constraints to regular expressions, (ii) translation
of regular expressions to Finite State Automaton (FSA), and
(iii) transformation of FSA to PN, based on the regions theory.
Applying the mentioned steps enables building an imperative
model from declarative constraints. When a transformation
of declarative models into imperative models is possible, the
comparison of their ability to model the reality similarly is an
important question, especially for process model users.

The similarity of business process models (mainly in the
form of imperative models) was investigated in many papers
(e.g., [29], [30], [31], [32]), often in the context of a model
repository. Analysis of model similarity can be useful before
adding a new process model to the model repository to
avoid process model duplication. Various similarity metrics
have been proposed, e.g. [29]: for node matching similarity,

VOLUME 11, 2023 54497



E. Brzychczy et al.: Imperative vs. Declarative Modeling of Industrial Process.

structural similarity, and behavior similarity. At the same
time, research on similarity matching for declarative models
has not been highly developed [33].

Comparison of declarative and imperative modeling
approaches was discussed considering a number of important
directions, such as: understability [9], [11], maintainabil-
ity [34], flow dependencies [33] or, more recently, the quality
of models [35].

The first interesting approach, related to our work [33]
comprises a proposal of extracting the flow dependencies
from both imperative and declarative process models. After
that, based on the hierarchy of dependencies, process models
can be compared considering a subsumption relation, contra-
dictory, or their non-comparability. The cases inconsistencies
can be located. The flow dependencies are investigated only
locally (avoiding a potentially irresolvable problem with all
possible executions in the model). The approach is based on
dependency matrices that consider the dependencies between
activities and the dependency hierarchy. However, none of the
specific similarity measures is proposed.

The second paper [36] worth mentioning in the context of
our work empirically studies the consequences of the selec-
tion of the modeling approach (imperative / declarative) on
the quality of the output model. For model quality evaluation,
the authors used notation-agnostic metrics for precision and
generalization. The developed framework (‘‘qmpm’’) enables
building Petri nets (with Inductive Miner) and a declarative
model (with MINERful) with the calculation of the men-
tioned metrics. However, recently, the framework requires
that all traces are replayable on the model (perfect fitness),
and thus a comparison of other input models than default
(built with Inductive Miner and MINERful) is currently not
available.

For the sake of clarity, it is worth mentioning that confor-
mance checking can detect two types of deviations between
an imperative process model and a log [37]: 1) behavior
observed in the log but disallowed by the model (unfitting
behavior, known also asmove in the log only), and 2) behavior
allowed by the model but not observed in the log (additional
behavior, known also as move in the model only). In the
case of declarative models, conformance checking shows the
activation of the constraints, their fulfillment, or violation.
In practice, the trace may not activate a constraint at all,
than vacuously satisfies the constraint [38]. A comprehensive
review of the conformance checking techniques is presented
in [3]. The most recognized include token-based replay [39],
casual footprints [1], behavior profiles [40], and the most
popular alignment techniques [41]. Our work is also related
to the well-established trend in the literature regarding the
declarative models in the form of Petri nets to the analysis
of industrial systems, e.g. see [17].

In our approach, as a reference, we assume similar repre-
sentatives of declarative and imperative models as presented
in [36]. However, due to the requirement of perfect fitness of
input models in the qmpm framework, we defined our own
metrics to compare the similarity of the developed models.

FIGURE 3. Model of the shearer cycle [4].

In the work at hand, we present our approach for the
comparison of imperative and declarative models using
a translation of a WF-net model to the regular expressions
and calculation of similarity between the created models
considering the constraints hierarchy, presented in [42]. After
comparison, the selected imperative and declarative models
are conformed to real process traces to evaluate their usability
with respect to the formulated criteria (see Section VI). In the
following section, we introduce the specific industrial case
study, which is later used for the evaluation.

III. CASE STUDY: THE CHARACTERISTICS OF THE
LONGWALL SHEARER INDUSTRIAL PROCESS
The longwall mining process can be defined as a cyclical
implementation of a set of operations (activities) repeated
in a specific order and time in a longwall face. The set of
these activities depends on technology, equipment, and work
organization. In our work, we focus on the process modeling
of longwall shearer as the main machinery in the longwall
face in the undergroundmine.Most often (i.e., in the two-way
mining technology) the shearer operation process consists
of the following activities (Fig. 3): 1) Cutting beginning
(along), 2) Stoppage beginning (along), 3) Return to drive
(along), 4) Stoppage beginning (along), 5) Cutting beginning
(along), 6) Cutting middle (along), 7) Cutting end (along),
8) Stoppage end (along), 9) Cutting end (return), 10) Stop-
page end (return), 11) Return to drive (return), 12) Stoppage
end (return), 13) Cutting end (return), 14) Cutting middle
(return), 15) Cutting beginning (return), and 16) Stoppage
beginning (return).

Themain operations of the shearer are related to the cutting
of coal. The Cutting can occur in any location in the longwall
face. TheReturn to the drive stage can occur only at the begin-
ning or at the end of the longwall face. There are also other
characteristic stages at the beginning and end of the longwall
face, named the Stoppage in ON mode (marked in Fig. 3 with
red bullets). They are strictly related to the planned changes
in the position of the organs. In the shearer process, some
additional operations can occur in relation to unexpected
changes of shearer moving direction or organ usage. The first
operation is called Reversion and can be defined as cutting in
the opposite direction than expected in the along and return
direction. The prescribed model of the shearer process also
does not include the Moving stage, because it is undesirable

54498 VOLUME 11, 2023



E. Brzychczy et al.: Imperative vs. Declarative Modeling of Industrial Process.

in a two-way cutting system. However, it can occur when the
cleaning of the conveyor path is needed.

In the mine, the operations performed in the longwall face
are monitored by various IT systems. One of them is the
monitoring system of machinery, usually directly used as
a data supplier for the dispatcher system. In the case of a
longwall face, the monitoring system most often provides
the following inputs: a) the main information from compact
stations and converters (e.g., connectors statuses, protection
activation, currents, voltages, resistances), b) data from a
longwall machinery (e.g. oil temperature, element’s pres-
sures, moving of elements, location), c) input and output of
industrial PLC drivers. Based on the domain knowledge, the
following variables are useful for shearer operations descrip-
tion: 1) shearer main status, 2) currents on shearer drums,
3) currents on shearer haulages, 4) shearer arms move event,
5) shearer move direction, 6) shearer speed, 7) shearer loca-
tion, and 8) general direction of shearer operation.

Based on the domain knowledge from the company in the
form of expert rules, we are able to label the sensor data
as shearer operations and model them with process model-
ing languages in the form of a higher-level process model.
This model is built using the methods introduced in the next
section.

IV. LANGUAGES AND TOOLS
Workflow nets (WF-nets) are a subclass of low-level Petri
nets with a well-defined net structure [1]. A WF-net is
equipped with a dedicated start place and a dedicated end
place. Moreover, all nodes are on a path from start to end.
The formal definitions are as follows:
Definition 1: A Petri net is a tuple N = (P,T ,F,M0),

where

• P and T are finite sets of places and transitions such
that P ∩ T = ∅,

• F ⊆ P× T ∪ T × P is the flow relation (a set of arcs),
• M0 : P → N is the initial marking, where N =

{0, 1, 2, . . . }.
The preset of a transition t is the set •t = {p ∈ P : (p, t) ∈

F}; the postset of t is the set t• = {p ∈ P : (t, p) ∈ F}. Presets
and postsets for places are defined in the same way.
Definition 2: Let N = (P,T ,F,M0) be a Petri net. N is

a workflow net (WF-net) if and only if

• P contains an input place i (start place) such that •i = ∅;
• P contains an output place o (end place) such that
o• = ∅;

• N ′ = (P,T ∪ {τ̄ },F ∪ {(o, τ̄ ), (τ̄ , i)},M0) is strongly
connected, i.e., there is a directed path between any pair
of nodes in N ′ – referred to as the short-circuited net.

Usually, labeledWF-nets are used. Let A be a set of activity
labels. We use a labeling function l : T → A. A special
τ label is used to indicate unobservable (silent) transitions.
AWF-net model for the longwall mining process is presented
in Figs. 4,5: i = P0, o = P20, transitions without labels are

FIGURE 4. Resulting WF-net.

silent transitions.We use the standard definition of transitions
activity.
Definition 3: A marking M is a mapping M : P→ N, i.e.

it is a distribution of tokens in places of the net.
A transition t is enabled in a marking M iff ∀p ∈

•t : M (p) ≥ 1.
If a transition t is enabled in a marking M it may fire,

changing the marking M to a marking M ′ (M
t
−→ M ′), such

VOLUME 11, 2023 54499



E. Brzychczy et al.: Imperative vs. Declarative Modeling of Industrial Process.

FIGURE 5. Resulting reachability graph.

that for any p ∈ P

M ′(p) =


M (p)+ 1 for p ∈ t• \ •t
M (p)− 1 for p ∈ •t \ t•

M (p) otherwise

(1)

A firing sequence starting at marking M is a sequence
transitions t1, . . . , tn such that there exists a sequence of
markings M1, . . . ,Mn such that M

t1
−→ M1 . . .

tn
−→ Mn.

In such a case we say that t1, . . . , tn leads fromM toMn and
thatMn is reachable fromM . Am empty firing sequence leads
fromM toM . The set of all markings that are reachable from
M is denoted by Reach(M ).
Definition 4: A Labeled Transition System (LTS) is a tuple

LTS = (S,E,L, S0), where S is non-empty, countable set of
states, L is countable set of labels, E ⊆ S × L × S is a set of
arcs, and S0 is the initial state.
A reachability graph of a Petri net N = (P,T ,F,M0) is

the transition system LTS = (S,E,L, S0), such that
• S = Reach(M0),
• L = T ,
• (M , t,M ′) ∈ E iff M

t
−→ M ′,

• S0 = M0.

For labeled Petri nets, transition labels are usually used
instead of transition names. Figure 4 presents a WF-net and
Fig. 5 its reachability graph. The number inside a node indi-
cates the only place that contains a token for the given state
(marking).

Imperative process modeling approaches understand a pro-
cess as an LTS as shown in Fig. 5, where control has a clearly
defined begin, end, and flow between begin and end. In the
case of a declarative approach, models focus on specifying
constraints as rules that have to be followed during process
execution. In this context, the definition of declarative process
models can be formulated as follows [43].
Definition 5: Let6 be an alphabet, and τ ∈ 6 is a special

symbol denoting a silent action. Declarative Process Model
(DPM) is a tuple DP = (R,T ,A, l,K ), where:

• R is repertoire of templates, i.e. predicates
R(x1, . . . , xn) ∈ R on variables x1, . . . , xn (we say n ∈ N
is the arity of R),

• T is a finite non-empty set of transitions,
• A = 6 ∪ {τ },
• l is labeling function l : T → A, and
• K ∋ κ is a set of constraints, namely templates of arity n
whose variables are assigned by a mapping with labeled
transitions xi

κ
← ti with ti ∈ T , 1 ≤ i ≤ n.

• A constraint κ ∈ K can be denoted as R(t1, . . . , tn).
The constraints are formulated with the use of specific

templates. The following basic templates can be used [44]:

• existence - a unary cardinality constraint describing the
number of possible activity executions;

• relation - a binary constraint that forces the pres-
ence of an action in conjunction with another activity
(e.g., response, precedence or succession);

• choice - n-ary constraints expressing a choice between
activities;

• negation - negative version of the relation constraints.

Selected templates are presented in Table 1. An example of
a declarative model is shown in Fig. 6.

There is a plethora of algorithms enabling automated pro-
cess models discovery in the form of declarative or imper-
ative models. An exhaustive review of existing methods is
presented in [45]. In our work, we have implemented the
Inductive Miner [46] and Heuristic Miner [47] algorithms
for Petri net creation. All experiments on Petri nets were
performed using the ProM [48] tool. In declarative modeling,
we used Declare Miner [49]. All experiments on Declare
models we have performed using the RuM [50] software.

V. MODELS COMPARISON METHOD
The overview of our approach to the comparison of impera-
tive and declarative models presented in this paper is given in
Fig. 7. The approach consists of three main stages: 1) event
log creation, 2) process modeling, and 3) process mining.

Firstly, we transform sensor data into a raw event log
enabling process mining. Sensor data are raw data without
case ID and event labels. Then, after cleaning the sensor

54500 VOLUME 11, 2023



E. Brzychczy et al.: Imperative vs. Declarative Modeling of Industrial Process.

TABLE 1. Selected templates of Declare language – regular Expression semantics.

FIGURE 6. Example of declarative model.

data (due to outliers, missing data), we perform case labeling
using the detection technique presented in [51]. After case
identification, we label the records with rules provided by
domain experts (described in [4]). Since case ID and event
labeling are very sensitive to data quality, the raw event log
is additionally inspected to detect unreliable traces in the log.
The cleaned event log is our first input into the conformance
checking task (CC).

On the other hand, we prepare an ideal event log that
includes perfect cases. It enables us to create process mod-
els in an automatic manner. In our work, we use a Petri
net model (as a representative of the imperative approach)
and Declare (as a declarative representation). In the case of

declarative models, we create them (i) automatically, (ii) as
hand-made models, and (iii) as enhanced models discovered
automatically. After model creation, we compare Petri nets
and Declare models using natural language approach and the
constraints hierarchy. The next step is selection of the most
similar processmodels (imperative-declarative) and introduc-
tion to the CC task.

In the CC task, we use real event logs and replay their
content on the created models. We compare the quantity
and quality of information provided by each model to the
user. The quantity of information we defined as the sum
of deviations revealed by each model during the CC task.
In the quality assessment, we adopt the following criteria
formulated by the domain expert: do the CC results show
us directly (with available software): a) the Reversion or
Moving events, b) the Stoppages event in the middle of the
longwall and their number, or c) how many stoppages events
are at the beginning and at the end of the longwall. In our
approach, we want to evaluate whether declarative models
are appropriate from a practical point of view to model and
monitor the longwall shearer operation process. The results
of our experiments and evaluation are presented in the next
section.

VI. EVALUATION RESULTS FOR THE CASE STUDY
To provide a practical evaluation on real data, for our case
study, we used an event log file collected from a coal mine
in Poland. The event log obtained during the event log cre-
ation process (described in the previous section) contains
222 cycles (Fig. 8). The event log comprises 222 vari-
ants of trace execution; thus variability of the process is
unquestionable.

We also prepared an ideal event log containing 10 per-
fect cases to generate ideal process models, imitating the
ideal cycle as shown in Fig. 3. With the implementation of

VOLUME 11, 2023 54501



E. Brzychczy et al.: Imperative vs. Declarative Modeling of Industrial Process.

FIGURE 7. Stages of our experiments.

FIGURE 8. Characteristic of the event log we used.

two process model discovery algorithms (with perfect fitness
settings), we have obtained two Petri net models (slightly
different, especially in the modeling of the beginning part of
the cycle) – with Heuristic Miner shown in Fig. 4 and with
InductiveMiner shown in Fig. 9. Due to the better description
of the ideal cycle (clear indication of an initial activity), as the
representative of the imperative process model for the further
stages, we selected the Petri net created by Heuristic Miner.

As a comparative base, we created seven declarative pro-
cess models, described in the form of used templates, shown
in Table 2. In our attempts, we tried to create various variants
of the process, aiming at finding the declarative model most
similar to the selected Petri net.

The first two declarative models were prepared manu-
ally using the RuM software and validated by the domain
expert, checking whether the templates used properly
describe behavior in each part of the model. Model 1
is more restrictive than Model 2 due to the imple-
mentation of ChainPrecedence and ChainResponse con-
straints. Moreover, the hand-made models include the
Absence constraint, which can not be discovered from the

ideal event log automatically. Model 3 was discovered
automatically with Declare Miner (we used the following
settings: pruning type – all reductions, min. constraint sup-
port = 100%) concerning the following templates: Init(a),
Existence(a), ChainPrecedence(a, b), ChainResponse(a, b)
and ChainSuccession(a, b). Model 4 includes Model 3 tem-
plates enhanced with Absence constraints. Model 5 is a trans-
formation of Model 4 – Existence templates were replaced
by more restrictive ones: Exactly(1, a) and Exactly(2, a).
Model 6 is a relaxed version of Model 5 without Exactly(2, a)
and limitation of the Exactly templates. Finally, Model 7
is an enhanced version of Model 1 with the Exactly
templates.

To address the question whether the declarative approach
is better than the imperative one, for the longwall mining
case study, we had to choose the declarative model that is
the most similar to theWF-net. Therefore, to facilitate further
considerations, we mapped the original labels to single letters
as presented in Table 3.

Thus, using the alphabet6 = {A,B, . . . ,R} any legal trace
can be treated as word over 6. To find the legal traces, from
the WF-net model point of view, we must analyze the reacha-
bility graph presented in Fig. 4 (the right graph). For example,
ACEFGHIJ is such a trace (τ transitions are omitted). The set
of legal traces is infinite, but can be represented as a single
regular expression:

L ≡ (AD(BD)∗)∗ACEF(GK (LK )∗)∗GHIJ (2)

where ∗ denotes zero or more copies of the subexpression
inside the braces.

The main idea here is to count the words in the lan-
guage (2) that are accepted by the considered declara-
tive model. Unfortunately, the language contains infinitely
many words because some subexpressions can be repeated
infinitely many times. However, since we apply a theoretical

54502 VOLUME 11, 2023



E. Brzychczy et al.: Imperative vs. Declarative Modeling of Industrial Process.

TABLE 2. Declarative models.

model to a real system where the number of repetitions must
be finite, we can use an upper bound k for ∗, i.e. we assume
that the given subexpression can be repeated at most k times.
Let k = 1 for the considered language L. Then, L reduces

to the language L ′ that contains the words presented in
Table 4.

Let c denote the number of constraints, and n denote the
number of words. For any given constraint ci, the support of
ci is defined as follows:

sup(ci) =
ai
n

(3)

where ai is the number of words accepted by ci.

We formulate two similarity measures to compare a declar-
ative modelMi with the basic Petri net model:

sim1(Mi) =

∑c
i=1 sup(ci)

c
(4)

sim2(Mi) =

∑c
i=1 wisup(ci)

c
(5)

where wi ∈ (0, 1] is the weight of ci.
According to the templates hierarchy, we assumed the

following weights (wi):

• 1 - for Init(a), Absence, Exactly(1, a), Exactly(2, a) and
ChainSuccession(a, b) constraints,

VOLUME 11, 2023 54503



E. Brzychczy et al.: Imperative vs. Declarative Modeling of Industrial Process.

FIGURE 9. Process model in form of Petri net from Inductive Miner.

TABLE 3. Mapping labels into letters.

• 0.9 - forExistence,ChainPrecedence andChainResponse
constraints,

• 0.8 - for Response and Precedence constraints,
• 0.7 - for CoExistence constraint.

TABLE 4. Language L′ .

The similarity measures between the created declarative
models and the Petri net are presented in Tab. 5. The highest
value of the similarity measure was obtained by Model 6.
In our experiments, we conformed event logs to the selected
models (Petri net model – PN and Model 6 – DM) due to the
criteria presented in Tab. 6.

TABLE 5. Similarity measures between declarative models and Petri net.

TABLE 6. Comparison of selected models.

Firstly, we counted the number of deviations between the
model and the event log. During the replay of a real event log
on PN, we took into consideration the difference between the
model and the log expressed by the numbers of moves only
in the log and moves only in the model. In the case of DM,
we summarized a number of constraints’ violations.

The initial results show a general advantage of DM over
PN. However, we performed a detailed analysis for each
trace. On the basis of deviation distributions for each model,
we tested the following hypotheses:
• H0: PN and DM models return the comparable number
of deviations for analyzed event log

• H1: PN model returns more deviations than DM model
for analyzed event log

Due to the fact that the distribution of the analyzed vari-
able is not the normal one, we have used the two-samples
Wilcoxon test. Obtained results (W = 35899, p − value ∼
0.0000) confirmed that at significance level p = 0.05 we can
reject H0 and adopt the alternative hypothesis that PN returns
more deviations than DM for the analyzed event log. We cal-
culated difference (Diff) between the number of deviations
revealed in CC with PN and the number of deviations in CC

54504 VOLUME 11, 2023



E. Brzychczy et al.: Imperative vs. Declarative Modeling of Industrial Process.

FIGURE 10. Histogram of diff variable.

FIGURE 11. Trace (no. 216) with the lowest Diff value (PN over DM).

FIGURE 12. Trace (no. 120) with the highest Diff (DM over PN).

with DM. The histogram of the obtained values is presented
in Fig. 10.

There are 37 traces out of 222, for which fewer devia-
tions indicated CC with PN. To analyze how the number of

FIGURE 13. Visualisation of information about deviations in event log in
RuM.

deviations depends on the trace length, we calculated
the Kendall rank correlation between these variables. The
obtained results (0.94 for PN and 0.54 for DM – with sta-
tistical significance p = 0.05) showed a clear dependence
between the length of the trace and the number of revealed
deviations, clearly, higher for PNmodels. However, the traces
with the highest number of deviations for each model give
an interesting view. The visualization of the trace (no. 216),
in which PN outperforms DM the most, is presented in
Fig. 11. The opposite example (DM outperforms PN) is
presented in Fig. 12.

For the trace (no. 216)with the lowest Diff value (−41), CC
with PN model returned 96 deviations (with DM – 137 devi-
ations). It is a trace with 97 events (equals to the mean trace
length in the event log). The number of deviations from
the PN (according to the existing correlation between the
trace length and the number of deviations) is not a surprise.
Interestingly, for this trace, CC with DM returned much
more deviations. The justification of such a situation comes
from the specific process execution in this trace. There were
multiple executions of activities at the beginning and at the
end of the longwall which are enabled by the Petri net, how-
ever, highly violate the chain precedence constraints (Cutting
beginning along, Cutting middle along) and (Stoppage end
return, Return to drive return). For the trace (no 120) with
the highest Diff value (59), CC with DM models returned
65 deviations in comparison to 124 with PN. The trace is
longer (125 events) and more complex; thus CC with PN
showed more deviations.

The comparison of the deviations revealed byCCwith each
model leads to the conclusion that the length of the trace
(reflecting in some way the complexity of process execution)
is not a predictor of the predominance of any of the models.
Differences in model performance are derived from the exe-
cution of the process.

Before considering qualitative criteria for evaluation, it can
be observed that in the case of declarative models, it is easier
to formulate clear rules that should be met during process

VOLUME 11, 2023 54505



E. Brzychczy et al.: Imperative vs. Declarative Modeling of Industrial Process.

FIGURE 14. Visualization of information about deviations in event log in ProM – selected place statistics.

execution and are of most importance to users who monitor
the execution of the process. It is a matter of the general idea
of the declarative approach – we define the desired behavior
that does not have to be executed in full range, as is in the
case of the imperative approach.

We consider the qualitative criteria based on the informa-
tion available for users provided by the used software. Results
of CC in RuM are presented in the form of a clear visual-
ization of the violated constraints, thus interesting informa-
tion for the user is presented in a direct manner in Fig. 13.
In ProM detailed information has to be additionally filtered
out from the conformance analysis report. In the case of addi-
tional events occurring in the event log, information about
their existence is hidden in the statistics of various places of
PN, see the screenshot in Fig. 14. In the context of the last
criterion, both used software tools present a number of errors.
However, in ProM the detailed information is hidden in the
activities and places statistics. In RuM the number of event
occurrences is provided directly in the constraint’s result box
as existence constraint fulfillment.

In Tab. 6 we summarize the criteria and the summary of
the evaluation of the models we selected. The results show
that the declarative model is superior to the imperative model,
based on the criteria we used. This supports the hypothesis
formulated in the introduction of the paper. In our case of
a complex, unstructured industrial process, the use of the
declarative model for process modeling and further monitor-
ing is more appropriate from the practical point of view.

VII. SUMMARY
In the paper, we focus on the comparison of modeling
approaches for industrial process. Our analysis is application-
driven, based on a specific use case of the longwall shearer
operation process in the domain of underground mining.
Although the model of this process seems conceptually

simple, its practical execution in the industrial environ-
ment shows that it is highly unstructured. Using this case,
we demonstrate how declarative models instead of imperative
ones can be more useful from the practical point of view.
In the paper, we examined several different process models
(imperative and declarative) and formulated criteria for their
comparison.

We conducted practical experiments using Petri WF-nets
and the Declare models as the main representatives of the
two modeling paradigms. We analyzed real-life event logs
from a coal mine in Poland. The paper was prepared in
cooperation with Famur S.A. which is the producer of the
longwall shearers we considered in the paper. The company
also provided us with data for the experiments. In addition,
domain experts from the company participated in the analysis
of the results.

Our finding consists in demonstrating the advantages of the
declarative approach in the modeling of a complex industrial
process of longwall shearer operation. In fact, our approach
extends the idea of comparison of different paradigms [33]
with proposal of a similarity measure based on natural lan-
guage approach and a constraints hierarchy. It also enables
the comparison of models without perfect fitness to an event
log assumed in [36], thus comparison of a hand-made model
can be carried out. Thus, our approach can be a valuable aid
for industrial experts that analyze industrial processes.

Our work has certain limitations. One of them is the
actual presence of the theoretical process model, mostly in
the literature, design, and manuals, which is not always the
case. Another one is the transformation process, which is
manually conducted by an expert at this stage. Furthermore,
the challenge of the uncertainty in the definition of similarity
of the selected models (i.e., finite number of compared traces,
assumed weights for constraints) is important. It is not a triv-
ial task due to the fundamental difference in the presented

54506 VOLUME 11, 2023



E. Brzychczy et al.: Imperative vs. Declarative Modeling of Industrial Process.

approaches and the general issue in the art of modeling itself,
thus building models that equivalently describe reality.

Our future work will be conducted in several directions.
The first is devoted to the identification, based on the revealed
deviations between process instances and compared models,
of potential places of hybrid approach application, since there
exist traces when Petri Net returns fewer deviations than a
Declare model. Another one consists in developing a semisu-
pervised method for model transformation.

ACKNOWLEDGMENT
The authors would like to thank F. M. Maggi and A. Alman
for support with RuM Software, and also would like to
thank C. Olling Back and T. Slaats for support with qmpm
framework.

REFERENCES
[1] W. van der Aalst, Process Mining: Data Science in Action. Heidelberg,

Germany: Springer, 2016.
[2] H. Ariouat, A. H. Cairns, K. Barkaoui, J. Akoka, and N. Khelifa,

‘‘A two-step clustering approach for improving educational process model
discovery,’’ in Proc. IEEE 25th Int. Conf. Enabling Technol., Infrastruct.
Collaborative Enterprises (WETICE), Jun. 2016, pp. 38–43.

[3] J. Carmona, B. van Dongen, A. Solti, and M. Weidlich, Conformance
Checking: Relating Processes and Models. Cham, Switzerland: Springer,
2018.

[4] M. Szpyrka, E. Brzychczy, A. Napieraj, J. Korski, and G. Nalepa, ‘‘Con-
formance checking of a longwall shearer operation based on low-level
events,’’ Energies, vol. 13, no. 24, pp. 1–10, 2020.

[5] H. Reijers, T. Slaats, and C. Stahl, ‘‘Declarative modeling—An academic
dream or the future for BPM?’’ in Proc. 11th Int. Conf. Bus. Process Man-
age., in Lecture Notes in Computer Science, vol. 8094, F. Daniel, J. Wang,
and B. Weber, Eds. Cham, Switzerland: Springer, 2013, pp. 307–322.

[6] A. Alman, C. D. Ciccio, F. M. Maggi, M. Montali, and H. van der Aa,
‘‘RuM: Declarative process mining, distilled,’’ in Proc. 19th Int. Conf.
Bus. Process Manage., in Lecture Notes in Computer Science, vol. 12875,
A. Polyvyanyy, M. T. Wynn, A. V. Looy, and M. Reichert, Eds.
Cham, Switzerland: Springer, 2021, pp. 23–29, doi: 10.1007/978-3-030-
85469-0_3.

[7] K. Diba, K. Batoulis,M.Weidlich, andM.Weske, ‘‘Extraction, correlation,
and abstraction of event data for process mining,’’ WIREs Data Mining
Knowl. Discovery, vol. 10, no. 3, pp. 1–17, May 2020.

[8] M. Dumas, M. La Rosa, J. Mendling, and H. Reijers, Fundamentals of
Business Process Management, 2nd ed. Cham, Switzerland: Springer,
2018.

[9] D. Fahland, D. Lübke, J. Mendling, H. Reijers, B. Weber, M. Weidlich,
and S. Zugal, ‘‘Declarative versus imperative process modeling languages:
The issue of understandability,’’ in Proc. 10th Int. Workshop Enterprise,
Bus.-Process Inf. Syst. Modeling, vol. 29, T. Halpin, J. Krogstie, S. Nurcan,
E. Proper, R. Schmidt, P. Soffer, and R. Ukor, Eds. Cham, Switzerland:
Springer, 2009, pp. 353–366.

[10] C. D. Ciccio and M. Mecella, ‘‘On the discovery of declarative control
flows for artful processes,’’ ACM Trans. Manag. Inf. Syst., vol. 5, no. 4,
pp. 24:1–24:37, 2015.

[11] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, and H. Reijers,
‘‘Imperative versus declarative process modeling languages: An empirical
investigation,’’ in Proc. Int. Workshops Bus. Process Manage. Workshops,
vol. 99, F. Daniel, K. Barkaoui, and S. Dustdar, Eds. Cham, Switzerland:
Springer, 2011, pp. 383–394.

[12] B. Weber, J. Pinggera, S. Zugal, and W. Wild, ‘‘Handling events during
business process execution: An empirical test,’’ in Proc. 1st Int. Work-
shop Empirical Res. Process-Oriented Inf. Syst., in CEUR Workshop
Proceedings, vol. 603, B. Mutschler, J. Recker, R. Wieringa, J. Ralyté, and
P. Plebani, Eds., 2010, pp. 19–30.

[13] J. Prescher, C. Di Ciccio, and J. Mendling, ‘‘From declarative processes to
imperativemodels,’’ inProc. 4th Int. Symp. Data-driven Process Discovery
Anal., in CEURWorkshop Proceedings, vol. 1293, R. Accorsi, P. Ceravolo,
and B. Russo, Eds., 2014, pp. 162–173.

[14] T. Murata, ‘‘Petri nets: Properties, analysis and applications,’’ Proc. IEEE,
vol. 77, no. 4, pp. 541–580, Apr. 1989.

[15] W. Reisig, Understanding Petri Nets. Modeling Techniques, Analysis
Method, Case Studies. Heidelberg, Germany: Springer, 2013.

[16] K. Jensen and L. Kristensen, Coloured Petri Nets. Modelling and
Validation of Concurrent Systems. Heidelberg, Germany: Springer,
2009.

[17] Y. Dong, Z. Li, and N. Wu, ‘‘Symbolic verification of current-state opac-
ity of discrete event systems using Petri nets,’’ IEEE Trans. Syst., Man,
Cybern., Syst., vol. 52, no. 12, pp. 7628–7641, Dec. 2022.

[18] M. Szpyrka, J. Biernacki, and A. Biernacka, ‘‘Tools and methods for
RTCP-nets modeling and verification,’’ Arch. Control Sci., vol. 26, no. 3,
pp. 339–365, Sep. 2016.

[19] B. Jasiul, M. Szpyrka, and J. Sliwa, ‘‘Malware behavior modelling with
colored Petri nets,’’ in Proc. 13th Comput. Inf. Syst. Ind. Manag., vol. 8838.
Cham, Switzerland: Springer, 2014, pp. 667–679.

[20] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg, ‘‘Declarative
workflows: Balancing between flexibility and support,’’ Comput. Sci.-Res.
Develop., vol. 23, no. 2, pp. 99–113, May 2009.

[21] M. Westergaard and F. Maggi, ‘‘Declare: A tool suite for declarative
workflow modeling and enactment,’’ in Proc. Demo Track 9th Conf.
Bus. Process Manage., Clermont-Ferrand, France, vol. 820, Aug. 2011,
pp. 1–5.

[22] S. Goedertier and J. Vanthienen, ‘‘Designing compliant business processes
with obligations and permissions,’’ in Proc. Bus. Process Manage. Work-
shops, J. Eder and S. Dustdar, Eds. Berlin, Germany: Springer, 2006,
pp. 5–14.

[23] R. Lu, S. Sadiq, and G. Governatori, ‘‘On managing business pro-
cesses variants,’’ Data Knowl. Eng., vol. 68, no. 7, pp. 642–664,
Jul. 2009.

[24] T. Hildebrandt and R. Mukkamala, ‘‘Declarative event-based workflow as
distributed dynamic condition response graphs,’’ in Proc. 3rd Workshop
Program. Lang. Approaches Concurrency Commun.-Entric Softw., vol. 69,
K. Honda and A. Mycroft, Eds., 2010, pp. 59–73.

[25] S. Schönig and S. Jablonski, ‘‘Comparing declarative process modelling
languages from the organisational perspective,’’ in Proc. Bus. Process
Manage. Workshops, M. Reichert and H. Reijers, Eds. Cham, Switzerland:
Springer, 2016, pp. 17–29.

[26] T. Slaats, D. Schunselaar, F. Maggi, and H. Reijers, ‘‘The seman-
tics of hybrid process models,’’ in Proc. OTM Confederated Int. Conf.
‘Move Meaningful Internet Syst.’, in Lecture Notes in Computer Science,
vol. 10033, C. Debruyne, H. Panetto, R. Meersman, T. Dillon, E. Kühn,
D. O’Sullivan, and C. Ardagna, Eds., 2016, pp. 531–551.

[27] T. Slaats, ‘‘Declarative and hybrid process discovery: Recent advances and
open challenges,’’ J. Data Semantics, vol. 9, no. 1, pp. 3–20, Mar. 2020,
doi: 10.1007/s13740-020-00112-9.

[28] G. De Giacomo, M. Dumas, F. Maggi, and M. Montali, ‘‘Declarative
process modeling in BPMN,’’ in Proc. 27th Int. Conf. Adv. Inf. Syst.
Eng., in Lecture Notes in Computer Science, vol. 9097, J. Zdravkovic,
M. Kirikova, and P. Johannesson, Eds. Cham, Switzerland: Springer, 2015,
pp. 84–100.

[29] R. Dijkman, M. Dumas, B. van Dongen, R. Käärik, and J. Mendling,
‘‘Similarity of business process models: Metrics and evaluation,’’ Inf. Syst.,
vol. 36, no. 2, pp. 498–516, Apr. 2011.

[30] C. Ekanayake, M. Dumas, L. García-Bañuelos, M. La Rosa, and
A. ter Hofstede, ‘‘Approximate clone detection in repositories of busi-
ness process models,’’ in Business Process Management, A. Barros,
A. Gal, and E. Kindler, Eds. Berlin, Germany: Springer, 2012,
pp. 302–318.

[31] M. Baumann, M. Baumann, S. Schönig, and S. Jablonski, ‘‘Towards
multi-perspective process model similarity matching,’’ in Proc. Enterprise
Organizational Modeling Simulation, J. Barjis and R. Pergl, Eds. Berlin,
Germany: Springer, 2014, pp. 21–37.

[32] M. Baumann, M. H. Baumann, S. Schönig, and S. Jablonski, ‘‘Resource-
aware process model similarity matching,’’ in Proc. Service-Oriented
Comput.-ICSOC Workshops, F. Toumani, B. Pernici, D. Grigori,
D. Benslimane, J. Mendling, N. B. Hadj-Alouane, B. Blake, O. Perrin,
I. Saleh Moustafa, and S. Bhiri, Eds. Cham, Switzerland: Springer, 2015,
pp. 96–107.

[33] M. Baumann, ‘‘Comparing imperative and declarative process models with
flow dependencies,’’ in Proc. IEEE Symp. Service-Oriented Syst. Eng.
(SOSE), Mar. 2018, pp. 63–68.

VOLUME 11, 2023 54507

http://dx.doi.org/10.1007/978-3-030-85469-0_3
http://dx.doi.org/10.1007/978-3-030-85469-0_3
http://dx.doi.org/10.1007/s13740-020-00112-9


E. Brzychczy et al.: Imperative vs. Declarative Modeling of Industrial Process.

[34] D. Fahland, J. Mendling, H. Reijers, B. Weber, M. Weidlich, and S. Zugal,
‘‘Declarative versus imperative process modeling languages: The issue of
maintainability,’’ in Proc. Int. Workshops Bus. Process Manage. Work-
shops, in Lecture Notes in Business Information Processing, vol. 43,
S. Rinderle-Ma, S. Sadiq, and F. Leymann, Eds. Cham, Switzerland:
Springer, 2009, pp. 477–488.

[35] C. Back, S. Debois, and T. Slaats, ‘‘Towards an empirical evaluation of
imperative and declarative process mining,’’ in Proc. Adv. Conceptual
Modeling, C. Woo, J. Lu, Z. Li, T. Ling, G. Li, and M. Lee, Eds. Cham,
Switzerland: Springer, 2018, pp. 191–198.

[36] C. Back, S. Debois, and T. Slaats, ‘‘Imperative versus declarative process
mining: An empirical comparison,’’ Dept. Comput. Sci., Univ. Copen-
hagen, Copenhagen, Denmark, Tech. Rep., 2020.

[37] D. Reißner, R. Conforti, M. Dumas, M. La Rosa, and A. Armas-Cervantes,
‘‘Scalable conformance checking of business processes,’’ in Proc. OTM
Confederated Int. Conf. ‘Move Meaningful Internet Syst.’, H. Panetto, Eds.
Cham, Switzerland: Springer, 2017, pp. 607–627.

[38] F. Maggi, M. Montali, C. Di Ciccio, and J. Mendling, ‘‘Semantical vacuity
detection in declarative process mining,’’ in Business Process Manage-
ment, M. La Rosa, P. Loos, and O. Pastor, Eds. Cham, Switzerland:
Springer, 2016, pp. 158–175.

[39] A. Rozinat and W. M. P. van der Aalst, ‘‘Conformance checking of
processes based on monitoring real behavior,’’ Inf. Syst., vol. 33, no. 1,
pp. 64–95, Mar. 2008.

[40] M. Weidlich, ‘‘Behavioural profiles: A relational approach to behaviour
consistency,’’ Doctoral thesis, Hasso Plattner Inst., Universität Potsdam,
Potsdam, Germany, 2011.

[41] A. Adriansyah, ‘‘Aligning observed and modeled behavior,’’
Ph.D. dissertation, Dept. Math. Comput. Sci., Technische Univ.
Eindhoven, 2014.

[42] D. Schunselaar, F. Maggi, and N. Sidorova, ‘‘Patterns for a log-based
strengthening of declarative compliance models,’’ in Integrated Formal
Methods, J. Derrick, S. Gnesi, D. Latella, and H. Treharne, Eds. Berlin,
Germany: Springer, 2012, pp. 327–342.

[43] B. vanDongen, J. De Smedt, C. Di Ciccio, and J.Mendling, ‘‘Conformance
checking of mixed-paradigm process models,’’ 2020, arXiv:2011.11551.

[44] S.Mertens, F. Gailly, and G. Poels, ‘‘Enhancing declarative process models
with DMN decision logic,’’ in Proc. Enterprise, Bus.-Process Inf. Syst.
Modeling, vol. 214, K. Gaaloul, R. Schmidt, S. Nurcan, S. Guerreiro, and
Q. Ma, Eds. Cham, Switzerland: Springer, 2015, pp. 151–165.

[45] A. Augusto, R. Conforti, M. Dumas, M. L. Rosa, F. M.Maggi, A.Marrella,
M. Mecella, and A. Soo, ‘‘Automated discovery of process models from
event logs: Review and benchmark,’’ IEEE Trans. Knowl. Data Eng.,
vol. 31, no. 4, pp. 686–705, Apr. 2019.

[46] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, ‘‘Discovering
block-structured process models from event logs containing infrequent
behaviour,’’ in Proc. Bus. Process Manage. Workshops, N. Lohmann,
M. Song, and P. Wohed, Eds. Cham, Switzerland: Springer, 2014,
pp. 66–78.

[47] F. Mannhardt, M. de Leoni, H. A. Reijers, and W. M. P. van der Aalst,
‘‘Data-driven process discovery—Revealing conditional infrequent behav-
ior from event logs,’’ in Advanced Information Systems Engineer-
ing, E. Dubois and K. Pohl, Eds. Cham, Switzerland: Springer, 2017,
pp. 545–560.

[48] H. Verbeek, J. Buijs, B. van Dongen, and W. van der Aalst, ‘‘XES,
XESame, and ProM 6,’’ in Information Systems Evolution (Lecture Notes
in Business Information Processing), vol. 72, P. Soffer and E. Proper, Eds.
Cham, Switzerland: Springer, 2010, pp. 60–75.

[49] F. M. Maggi, R. P. J. C. Bose, and W. M. P. van der Aalst, ‘‘Efficient
discovery of understandable declarative process models from event logs,’’
in Advanced Information Systems Engineering, J. Ralyté, X. Franch,
S. Brinkkemper, and S. Wrycza, Eds. Berlin, Germany: Springer, 2012,
pp. 270–285.

[50] A. Alman, C. D. Ciccio, D. Haas, F. M.Maggi, and A. Nolte, ‘‘Rule mining
with RuM,’’ in Proc. 2nd Int. Conf. Process Mining (ICPM), Oct. 2020,
pp. 121–128.

[51] E. Brzychczy and A. Trzcionkowska, ‘‘Creation of an event log from a
low-level machinery monitoring system for process mining purposes,’’
in Intelligent Data Engineering and Automated Learning—IDEAL 2018,
H. Yin, D. Camacho, P. Novais, and A. Tallón-Ballesteros, Eds. Cham,
Switzerland: Springer, 2018, pp. 54–63.

EDYTA BRZYCHCZY is currently an Associate
Professor with the Faculty of Mechanical Engi-
neering and Robotics, AGH University of Sci-
ence and Technology, Kraków, Poland. She has
coordinated projects related to data mining and
expert systems in the mining domain. Her research
interests include the modeling and optimization
of industrial processes, stochastic networks, natu-
ral computing algorithms, process re-engineering
based on sensor data, and process mining.

MARCIN SZPYRKA (Senior Member, IEEE) is
currently a Full Professor with the Department of
Applied Computer Science, AGH University of
Science and Technology, Kraków, Poland. He has
authored over 140 publications in the domains of
formal methods, software engineering, and knowl-
edge engineering. His research interests include
the theory of concurrency, systems security, func-
tional programming, and data science.

JACEK KORSKI is currently pursuing the Ph.D.
(Eng.) degree with the ITG KOMAG Institute,
Gliwice, Poland. He has authored over 130 pub-
lications in the domains of mining technology and
process management and optimization in the min-
ing industry. For more than 40 years, he was the
manager inmining industry and expert and a Board
Advisor with FAMUR SA. He is a fellow of the
ITG KOMAG Institute.

GRZEGORZ J. NALEPA (Member, IEEE) is cur-
rently a Full Professor with Jagiellonian Univer-
sity, Kraków, Poland. He has coauthored over
200 research papers in international conferences
and journals. He was involved in tens of projects,
including research and development projects with
a number of companies. His current research inter-
ests include the applications of AI in industry
4.0 and business, explainable AI, affective com-
puting, context awareness, and the intersection of
AI with law.

54508 VOLUME 11, 2023


