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ABSTRACT As a first step towards decreasing greenhouse gas emissions originating from transportation,
it is critical that we create efficient systems for monitoring individual travel patterns and the associated carbon
footprints. To this end, this paper presents a COse emission estimator that combines transportation mode
classification with mode-specific emissions data. In addition to assessing the accuracy of the final emission
estimation, we also categorize error sources and discuss their relative importance. Finally, we provide
recommendations for designers of future carbon footprint estimators. Experimental results support the notion
that transportation mode classifiers used for carbon footprint estimation should be evaluated based on their
ability to identify carbon emitting transportation modes, while giving lower priority to recognition of various
stationary activities and low-emission transportation modes. Additionally, it is demonstrated that errors in
the estimated traveled distance have a low impact on the overall emissions error compared to errors in the
transportation mode classification or in the assumed emissions per traveled distance for a specific mode.

INDEX TERMS Transportation mode classification, carbon footprint estimation.

I. INTRODUCTION

Climate change is one of the greatest challenges of our age.
The continuous release of greenhouse gases causes rising
atmospheric temperatures, and thereby disrupts nature’s frag-
ile balance. Between 1990 and 2019, the global warming
effect increased by 45% [1]. While there are several con-
tributing factors, including deforestation and livestock, trans-
portation is one of the main contributors. In the US, over a
quarter of all greenhouse gas (GHG) emissions in 2020 were
due to transportation, with road and rail modalities liable
for about 75% alone [2]. In the UK, other sectors within
the economy, such as energy, have steadily declined their
emissions by, for example, using alternate energy sources.
Meanwhile, the transportation sector has remained relatively
static, and in 2016 became the largest emitting sector in the
UK [3]. Globally, the emissions due to transportation have
increased by 2% annually over the last decade, with some
regions seeing annual increases exceeding 4% [4].
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By monitoring an individual’s travel patterns, it would
be possible to both estimate their carbon footprint and pro-
vide incentives towards changing their travel behavior. One
way to do this is to use smartphone-embedded sensors [5].
Smartphones are increasingly fundamental in modern day
life, with the smartphone penetration rate exceeding 90%
in many developed nations [6]. Moreover, they are embed-
ded with a wealth of sensors, including inertial sensors and
GPS receivers, and are natural platforms for user feedback.
All in all, the high availability and versatility of smartphones
make them very attractive devices for transportation mode
classification. The first transportation mode classification
systems only utilized cellular positioning [7]. However, fol-
lowing the widespread increase in smartphone usage, these
systems have mainly relied on measurements from GPS
receivers and inertial sensors. Important features include the
speed [8], which tends to be very different for motorized and
non-motorized modes; the rate of change in the velocity direc-
tion [9], with non-motorized modes allowing for more rapid
and frequent turns; the position [10], which, for example, can
provide information on whether the user is travelling a along
a highway or a railway line; the acceleration distribution [11],

VOLUME 11, 2023


https://orcid.org/0009-0006-7579-4679
https://orcid.org/0000-0003-1546-9752
https://orcid.org/0000-0003-2058-0834

0. Brimacombe et al.: Smartphone-Based CO,e Emission Estimation

IEEE Access

Mode-specific ° enmm
emissions data | | g o
Section IlI-A ° e

COye emission
( COye emission
AN

Transportation mOdq Mode w estimates
classification > estimation >
Secti .
ection || J m L Section llI J
Sensor A
measurements

f

Travelled
distance

\ Travelled distance 1
\/ estimator
Section I1I-B J 9 9

FIGURE 1. Process diagram illustrating the information flow within the proposed CO, e emission estimation system.

which generally looks different depending on whether a vehi-
cle is moving alongside other traffic (like a car) or uses a
separate track with few disruptions (like a train); and the
number of stops per driven distance, which generally is higher
for public transport than for other modes. The window length
used for classification can either be a fixed variable or it can
be allowed to vary based on the output from a separate algo-
rithm used for identifying switches from one transportation
mode to another [12]. Moreover, classification algorithms
are categorized as either heuristic rule-based approaches or
machine-learning approaches [13].

Although transportation mode classification can be used
within a variety of applications [14], including urban trans-
portation planning [15], traffic safety [16], traffic manage-
ment [17], and insurance telematics [18], the focus of the
present study is on carbon footprint estimation [19]. Despite
the critical nature of climate change and the large number
of studies within transportation mode classification, research
which utilizes mode classification results for the estima-
tion of carbon emissions is very rare. There are scientific
studies on transportation mode classification that are moti-
vated by carbon footprint estimation [20], however, most of
these only implement and evaluate the transportation mode
classification, and do not describe how to compute emis-
sion estimates [21]. For example, [22] describes a trans-
portation mode classifier based on a decision tree that uses
frequency-domain features computed from accelerometer
measurements. The choice to not utilize GPS measurements
is motivated by the associated increase in energy consump-
tion. Nevertheless, at the end of the article, the authors
point out that GPS measurements would be necessary to
obtain CO, emission estimates. Similarly, the study in [23]
describes a smartphone-based system for CO, emission esti-
mation. However, the study does not evaluate the CO; emis-
sion estimation (only the transportation mode classification),
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and there is no description of the algorithm for estimating the
traveled distance.

In this paper, we design a CO; estimator all the way from
sensor measurement to individual carbon footprint estimates.
As illustrated in Fig. 1, the estimator combines informa-
tion from a transportation mode classifier with GPS-based
estimates of traveled distance and mode-specific data on
emissions per distance to estimate the total carbon equiva-
lent emissions during a specific time window. By adding up
multiple such emission estimates over a longer time period,
it is possible to obtain, for example, daily or monthly indi-
vidual transportation carbon footprints. The resulting esti-
mator could be integrated in a smartphone app that pro-
vides detailed emission statistics and encourage the use of
eco-friendly modes through, for example, gamification and
discount awards. While analyzing our emission estimation
system and the associated experimental results, we discuss
several implementation and performance aspects that have
previously been ignored in the context of smartphone-based
carbon emission estimation. As an example, we analyze and
compare the error sources of our estimation system. In par-
ticular, note that the emission estimation system described
above can be said to have three error sources: (i) errors in the
transportation mode classification, (ii) errors in the estimated
traveled distance, and (iii) errors in the assumed emissions per
traveled distance for a given mode. So far, there have been no
investigations of how these error sources compare or how to
reduce their impact on the final emission estimates.

The main contributions of this paper are as follows:

1) An investigation into the relationship between trans-
portation mode classification accuracy and CO2 emis-
sion estimation accuracy. As is demonstrated, a high
classification accuracy does not necessarily imply a
high emission estimation accuracy. Therefore, it is
important that the transportation mode classification is
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specifically designed for emission estimation applica-
tions.

2) A comparative analysis of the impact of the different
error sources in the emission estimation. This analysis
is based on both experimental results and surveys of
available datasets.

3) Based on experimental data, we provide insight into the
relationship between algorithm parameters, such as the
classification window length and the chosen sensors,
and performance characteristics.

Il. ALGORITHM DESIGN: TRANSPORTATION MODE
CLASSIFICATION

The design of the transportation mode classifier will be con-
strained by the chosen dataset. We have chosen the commonly
used Sussex-Huawei Locomotion (SHL) Dataset [24]. This
dataset considers a wide variety of sensor modalities (includ-
ing accelerometers, gyroscopes, GPS receivers, magnetome-
ters, orientation, gravity, linear accelerometers, pressure,
altitude, temperature) and provides manually annotated mode
information at a high resolution. Most sensor data and the
mode labels have a sampling rate of 100 Hz, while the GPS
measurements have a sampling rate of 1 Hz. The mode labels
are categorized as null (recordings that cannot be classified
with confidence or are not any of the other possible trans-
portation modes), still, walk, run, bike, car, bus, train, and
subway. We used the data from user2 since all sensor modal-
ities were available for this user. Given that this is a new area
of study, our focus has been on assessing the accuracy that
could be achieved when training and testing on a single user.
Estimating the accuracy on larger cohorts or on unseen users
is left for future studies. Since many individuals have their
smartphone in their hand while travelling [25], we decided to
use the measurements from the handheld smartphone.

A. DATA CLEANING

Generally, data from smartphone-embedded sensors often
contain missing values [26]. The SHL dataset, in particular,
includes a sizable number of missing completely at random
(MCAR) rows at the head and tail of various files, due to
the asynchronous initialization and finalization of various
sensors. The presence of MCAR data is due to external
factors, and thus cannot be accurately predicted based on
observed values. Therefore, in this study, readings where the
number of missing values exceed a user-specified threshold
are removed from the dataset to create a reliable and unbiased
model. The omission of these samples was deemed safe,
given their small contribution to the overall dataset [27].
Another data cleaning approach that was considered was
imputation, in which missing data is replaced through ana-
lyzing patterns in the dataset. This method should only be
applied when the number of missing values is low, as guessing
large portions of data will reduce a dataset’s natural variation
and the reliability of the resulting model [28]. With these
caveats in mind, imputation will not be applied to the SHL
dataset which often includes long series of missing data.
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Moreover, imputation has proven time-consuming within
real-time applications [29], and researchers that impute
smartphone-sensor data mostly do so in the context of offline
data recovery [30]. Further, this paper will assess the relative
performance of sensors. Therefore, imputing values for one
whilst implementing real values for another would result in
an unfair comparison.

B. SEGMENTATION AND FEATURE ENGINEERING

The transportation mode classification utilized non-
overlapping sliding windows. There is no standardized win-
dow length for transportation mode classification. Papers
using only inertial-based sensors use shorter window sizes.
For example, [31] uses window sizes of between 2 and 10 sec-
onds with only accelerometer data. However, location-based
transportation mode classification studies tend to use longer
window sizes that span several minutes [32]. Given that this
paper will use a combination of inertial and location-based
sensors, it is necessary to find a balance between the varying
window sizes. Therefore, in most experiments, the classi-
fication features are computed using data from one-minute
windows. However, additional window sizes are studied in
Section V-A, where we analyze the relationship between the
window size, the mode classification performance, and the
emission estimation performance. The computed features are
the sum, minimum and maximum of each sensor axis over a
given window size.

To mitigate dimensionality issues, we used the maximum
relevance — minimum redundancy (MRMR) feature selec-
tion method, in which the number of desired features is input
as a parameter K . It is worth noting that feature selection does
not always improve classification accuracy. If K is insuffi-
cient, the model may not identify strong enough relationships
to make adequate predictions. Conversely, excess features
will encourage overfitting and reduce the model’s perfor-
mance on unseen smartphone sensor data. For these reasons,
this study will consider several values for K and analyze the
effect of K on the emission estimation in Section I'V-B.

C. CLASSIFICATION

To ensure that the classifier is able to utilize information
from all different sensor modalities, all features are scaled
to have zero mean and unit variance. This is particularly
important given the large number of different sensor modal-
ities. The data is then split into training and testing sets.
In similarity with previous studies on transportation mode
classification, we use 75% of the dataset for training and
25% for testing [33]. The trained models do not consider
the temporal dependency of sequential time windows. The
SHL dataset has an unequal proportion of transportation
modes. Therefore, stratified sampling is implemented to
ensure that the relative proportions of different modes is con-
sistent across the original, training, and test datasets, thereby
reducing potential sampling bias [34]. Two classifiers will
be explored, namely support vector machines (SVM) and
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random forests (RF). Both of these have been proven effec-
tive in previous studies on transportation mode classifica-
tion [35], [36]. For SVMs, both the linear and the Gaussian
kernel will be considered, and for RF, we will study how the
performance varies with the number of decision trees.

lll. ALGORITHM DESIGN: CO,e EMISSION ESTIMATION
Once the transportation mode classifier has output a trans-
portation mode m; for each window i in a given time period,
this can be used to compute the emission estimate

N
E=Y"D;-Ep 0]
i=1

Here, E is the estimated total emissions over the time period
composed of the windows numbered from 1 to N, D; is the
estimated traveled distance over window i, and Eg; is the
emissions per traveled distance for transportation mode ;.
Details on how we obtained emissions data Ez; for each
considered transportation mode and how we estimated the
traveled distance Di are presented in Sections III-A and III-B,
respectively.

A. EMISSIONS DATA

The greenhouse gas protocol [37] outlines desired charac-
teristics of datasets used to measure GHG emissions for
private and public sectors. Specifically, the protocol states
that in order to create accurate carbon footprint estimates,
the dataset must be relevant (to the project’s purpose), current
(relative to the data collection period), reliable, and consistent
(allowing for fair comparisons over time). To achieve these
objectives in our emission estimation, this study uses the
UK Department for Business, Energy & Industrial Strategy
(BEIS) Conversion Factors 2018 [38]. Note that while the
SHL dataset was recorded in 2017, the conversion factors
from 2018 were chosen since the conversion factors for
2017 lack crucial information regarding battery electric vehi-
cles (BEVs), which are becoming increasingly popular with
a market share increase in the UK from 0.7% (2018) to
11.6% (2021). The conversion factors are specified in g/km
of produced emissions. The GHG protocol further highlights
general practices that studies should follow when computing
carbon footprint estimates. Firstly, the project must outline
comprehensible and unambiguous details of the processes
and sources utilized. Secondly, there must be detailed rea-
soning of any assumptions and justifications of omissions.
In this study, we have made the following assumptions when
extracting mode-specific emissions data:

« The BEIS provides several different conversion factors
for cars, based on e.g., the size of the car and the fuel
type. In this study, we used information from these
multiple conversation factors to compute one conversion
factor for cars. This conversion factor was computed by
considering the data for cars of “Average” size, and by
using the market share of cars by fuel type in 2018 to
weigh the conversion factors for cars with varying fuel
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types [39]. Although the market share data contains the
category “Mild Hybrid Electric Cars”, this category is
not among the BEIS conversion factors and is therefore
omitted in the weighting. Given that these cars only
make up 0.6% of the total market share, this decision is
not expected to have any major impact on the analysis.

« Sampling instances labelled as Bike in the SHL dataset
are assumed to refer to regular non-emitting bicycles,
rather than motorcycles or e-bikes.

o Sampling instances labelled as Subway in the SHL
dataset are assumed to refer to the London Underground
as the data was collected in the south-east of the UK,
including London, and there are no other known under-
ground passenger systems around this area.

« Sampling instances labelled as Train in the SHL dataset
are assumed to refer to National Rail. The emissions
for travelling via Eurostar are excluded since no subject
traveled on this modality during the data collection.

B. ESTIMATING THE TRAVELED DISTANCE

The distance traveled over a classification window was esti-
mated by computing the distance in between sequential GPS
position measurements and then adding these up. The dis-
tance between sequential GPS position measurements was
computed using the Haversine formula, which outputs the
great-circle distance between latitude and longitude pairs on
a sphere [40]. Thus, the input to the Haversine formula is
consecutive GPS position measurements and the output is
the distance between these measurements. To illustrate this
process, Fig. 2 shows an example of GPS coordinates at
varying sampling rates within a one-minute window. Each
line represents the shortest distance between two consecutive
readings. Evidently, at 0.1 Hz, the GPS sensor misses several
readings. Section V discusses the effect of the sampling
rate on the computed distances, and the resulting emission
estimation error.
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FIGURE 2. lllustration of latitude and longitude measurements over a
minute at different sampling rates.

C. EVALUATION METRICS

The classification models will be evaluated based on two
metrics. The first, called the overall F1-score, is the F1-score
when considering all modes. Classification models are com-
monly evaluated using the Fl-score, commonly referred to
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as the “harmonic” mean between precision and recall. The
F1-score metric works well when the dataset is imbalanced,
and given that the number of Run windows makes up only
2.8% of the dataset, whilst 15.3% is comprised of Train,
this metric is very suitable. The second considered evalua-
tion metric is the carbon Fl-score. This is the Fl-score for
the binary classification between carbon emitting and non-
emitting modes. Note that the binary classification of modes
is only used for performance evaluation; all the implemented
models did a transportation mode classification using all
available modes. The carbon Fl-score was used to evaluate
how well a model differentiates between carbon emitting and
neutral modes, as this ability is considered more desirable
for carbon footprint estimation applications than accurately
differentiating between, for example, Walk and Run, or Car
and Bus. In the context of the carbon F1-score, false positives
will refer to false classifications of non-emitting modes as
carbon emitting mode and vice versa.

IV. PARAMETER TUNING AND FEATURE SELECTION

Both the SVM and RF require parameter tuning and fea-
ture selection. In addition, studying the impact of the model
parameters will help us analyze how errors in the trans-
portation mode classification propagate through to the COze
emission estimation. When studying parameter tuning in
Section IV-A, both classifiers used all available features.

A. PARAMETER TUNING FOR TRANSPORTATION MODE
CLASSIFIERS

1) SVM KERNEL

Two common SVM kernels are the linear and Gaussian
kernels, both of which have been considered previously in
transportation mode classification [41]. Fig. 3 shows the
confusion matrix when using a linear kernel. With a lin-
ear kernel, the SVM achieved an overall F1-score and car-
bon Fl-score of 79% and 90%, respectively. Three of the
nine classes reach nearly 100% accuracy, and only 4% of
windows were misclassified as a false negative (FN), and
even fewer as a false positive (FP) (3%). In comparison, the
Gaussian kernel outperforms the linear kernel with respect
to classification performance, with an overall Fl-score of
81%. Fig. 4 displays how it more accurately differentiates
between Train and Subway compared to the linear kernel,
and all classes — bar one — reach a minimum accuracy of
73%. These results align well with previous studies that con-
cluded that the Gaussian kernel produce the best results for
transportation mode classification [41]. However, although it
achieved the same carbon F1-score as the linear kernel (90%),
it does falter in some ways. In fact, 6% of windows were FN,
an unsought increase from the linear kernel, which can be
attributed to over half of the Bus windows being classified as
carbon neutral modes. Further, note that the Gaussian kernel
achieved an emission estimation error of 3.1%, whilst the lin-
ear kernel achieved an error of 0.77% (only considering errors
from the transportation mode classification). Therefore, in the
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FIGURE 4. Confusion matrix for the SVM with a Gaussian kernel.

subsequent analysis, we have used the linear kernel for COze
emission estimation.

2) RF DECISION TREE CLASSIFIERS

For the RF, we need to set the number of decision tree (DT)
classifiers. To evaluate the effect of this parameter on the
COse emission estimation, the RF classifier was trained using
between 1 and 200 decision trees. Fig. 5 shows how the over-
all F1-score and training time are dependent on the number of
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decision trees. As can be seen, the F1-score begins to stabilize
at around 30 decision trees. This indicates that to optimize
performance without wasting computational resources, the
number of decision trees should be around 30. It is important
to note that while the training time here is rather short,
datasets may be much larger than what is considered here.
Likewise, there may also be reasons to consider incremental
on-device training. As a result, both the training time and
the motivations to reduce it will be greater. Fig. 6 displays
the emission error and carbon F1-score as dependent on the
number of DTs. Here, when the number of DTs is 30, both the
carbon F1-score and the emission error reaches optimal val-
ues of 97% and —0.1%, respectively. Thus, in the subsequent
analysis, we used a RF with 30 DTs.

B. FEATURE SELECTION FOR TRANSPORTATION MODE
CLASSIFIERS

The number of features in the transportation mode classifiers,
K, was optimized based on the resulting COze emission
estimates. As illustrated in Fig. 7, the RF achieves a higher
overall F1-score than the SVM for all values of K. Further,
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as seen in Fig. 8, the RF is more stable than the SVM in
terms of the CO»e emission error. The SVM ranges between
emission errors of —19% and 100%, whilst the RF has a
much smaller range of —16% to 17%. Interestingly, the SVM
fluctuates between —20% and close to 0% seemingly ran-
domly, whilst the RF model stabilizes quickly. As a result,
only the RF model will be considered for the rest of the
study, as they have proven to perform consistently better than
SVMs with respect to overall classification performance and
emission estimation. Unlike for the number of DTs, there
is no point at which both the Fl-score and emission error
are at their respective optimal values. As a result, 10-fold
cross validation was performed on the number of features,
and the highest balanced accuracy (88%) was achieved when
K = 81, therefore making this number suitable for minimiz-
ing the estimation error. Based on these findings, the next
section will, unless otherwise specified, use an RF trained
with 30 DTs and 81 features.

V. RESULTS AND ERROR ANALYSIS
This section will present the results of the emission estima-
tion. In addition, we will analyze and compare the impact of
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three error sources in the emission estimation system, namely
errors in the transportation mode classification, errors in the
estimated traveled distance, and errors in the data specifying
emissions per traveled distance. When studying one error
source, the analysis will be performed as if there are no errors
originating from the other error sources.

Train, Subway Null, Bus Still, Train

083% | 8-05%/ 0.60%
/Car, Null

3.92%

Car, Subway
18.22%

Train, Car |
49.50%

Bus, Null

" 10.78%

Bus, Still
2.71%

Train, Stil — Bus, wM Bus, Car

0.23% 2.08% 3.09%

FIGURE 9. lllustration of how various misclassifications, specified as
“correct mode, assumed mode”, contribute to the final estimation error.

A. EFFECT OF ERRORS IN THE TRANSPORTATION MODE
CLASSIFICATION

Implementing an RF with the parameter settings described in
Section I'V-B results in an emission error of —0.97%. Fig. 9
demonstrates which misclassifications that are responsible
for the emission error. The majority of the error can be
attributed to mistaking Train as Car, which results in an over-
estimation of 55g COse per kilometer. The second biggest
contributor was mistaking Car as Subway, with around 20g
of emissions lost per kilometer. Generally, the carbon neutral
modes (mainly Walk, Run, and Bike) account for a very small
share of the emission error. This is because when they are
misclassified, the mode is commonly assumed to be another
carbon neutral mode (e.g., Still mistaken for Walk). Next,
we will investigate how variations in the chosen window
length and in the employed sensors impact the transportation
mode classification and, in turn, the emission estimates.

To investigate the impact of the window size, we computed
the F1-score of the RF model for window sizes ranging from
1 second to 2 minutes. First, it is important to consider how
the training time is affected by the window size. Fig. 10
shows that the training time plateaus at around 20 seconds,
and that the computational power required is significantly
higher when the segments are smaller. This relationship will
be considered throughout the following analysis.

Fig. 11 shows the overall and carbon F1-score as depen-
dent on the window size. Notably, the performance is highly
unstable, and gradually begins to decrease as the win-
dow size increases, particularly for the overall Fl-score.
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FIGURE 12. The overall F1-score as dependent on the window size.

Fig. 12 demonstrates how the overall F1-score changes with
the estimation error. The reference line at 0% on the sec-
ondary y-axis is solely used as a visual aid to indicate the opti-
mal emission estimation performance. When the window size
is 1 second, the overall F1-score is 96%, and we also achieve
a good carbon F1-score of 98%. Further, the emission error
is only 0.47%, making this window size the ideal value for
carbon footprint emission estimation. However, as demon-
strated in Fig. 10, the training time at 1 second is exception-
ally high. For window sizes between 5 and 11 seconds, the
emission error is relatively stable, not exceeding 0.2%, and
reaches a minimum absolute value of 0.06%. After this point,
the emission error becomes unpredictable, and the F1-score
begins to decline. However, throughout this, the largest over-
and underestimations were only 5.05% and —5.04%, respec-
tively. It should be noted that the sensors chosen by MRMR
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differ as the window size varies. The distance traveled was
not considered important until the window size increased to
around 3 seconds. Generally, as the window size increased,
the contributions from the GPS measurements were gradually
seen as more and more essential to the RF model.

Carbon F1-Score Overall F1-Score  —Emission Error (%) ~ —Reference Line
1 40.00%

30.00%

0.8

07 20.00%
06 10.00%
05

04 0.00%
0.3 -10.00%
02

-20.00%

0 -30.00%

FIGURE 13. The overall F1-score achieved using only data from one
sensor.

To investigate the impact of the sensors chosen to be
used for transportation mode classification, the RF model
was trained individually on the ten sensors. For the first six
sensors, we considered a combination of the features obtained
from their respective dimensions (i.e. X, Y, Z). Fig. 13 shows
the overall F1-score obtained by each sensor. The accelerom-
eter and gravity sensors, the former being one of the most
commonly used sensors in transportation mode classifica-
tion [32], [42], achieved the best performance with respect to
overall classification. However, note that the best performing
sensor still had an emission estimation error around 5.6%.
To gain a better understanding of how the performance of
the transportation mode classification relates to the emission
estimates, we also studied the confusion matrices to see how
well each sensor can differentiate between different trans-
portation modes (for reasons of brevity, we only present the
accuracy for each sensor-transportation mode pair in Fig. 14).
One thing to note is that linear acceleration is the best sensor
at separating Walk and Run, which is intuitive given the close
connection between linear acceleration and walking speed.
The altitude and pressure sensor is the best at classifying
Subway, with an accuracy of 78 % and 80%, respectively. This
can be explained by the fact that the Subway is underground,
thus averaging at a lower altitude than other modes, while the
air pressure in the London underground can be significantly
higher than the air pressure above ground [43]. Moreover, the
temperature sensor is the best at differentiating between Train
and Subway, two modes which commonly are mixed up by
the other sensors.

The analysis above clearly motivates the need to combine
information from multiple sensors. On their own, individual
sensors typically struggle to classify individual modes. For
example, the orientation sensor mistakes 50% of Run win-
dows for Walk, and 35% of Bus windows for Subway. In fact,
Run was misclassified entirely by three sensors, namely ori-
entation, temperature, and GPS. Similarly, accelerometers
encounter significant challenges when attempting to differ-
entiate between different forms of locomotive transportation,
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mistaking nearly half of Bus windows as Car or Subway.
Further, the pressure sensor mistakes 50% of Run windows as
Bike, and 43% of Train windows as Car. In fact, no isolated
sensor could classify every class with at least 50% accuracy.
This analysis agrees with findings from [44], which only used
iPhone accelerometer data and discovered that their GDA
model often confused Biking and Driving, only reaching an
accuracy of 45% for Biking. It should also be noted that
the misclassifications often transcend the boundary between
carbon emitting and non-emitting modes. Temperature per-
formed the worst in this respect, misclassifying 11% of sam-
ples as FN. Contrarily, the pressure sensor performed best
at 4%, but produced a large estimation error of —19.12%,
due to its inability to accurately differentiate between carbon
emitting modes. In addition to combining information from
multiple sensors, it may also be useful to incorporate addi-
tional information such as bus stop locations [45] or dwell
times at these stops [46].

B. EFFECT OF ERRORS IN THE ESTIMATED TRAVELED
DISTANCE

As discussed in III-B, the traveled distance is estimated using
GPS measurements sampled at 1 Hz. To analyze the impact
of imperfect estimation of traveled distance on the final
emission estimation, we looked at how the GPS sampling
rate affects the estimated distances, and subsequently, the
emission error. Fig. 15 visualizes how the computed distance
for each mode changes with the GPS sampling rate. As can
be seen, the differences are comparatively small, with only
around 3km lost for Car, corresponding to about 1.5% of the
total traveled distance. Fig. 16 shows how these distances
subsequently affect the emission estimation error. Here, the
largest emission error was only 1.68%. These results indicate
that for applications prioritizing energy efficiency, using a
more sparse GPS sampling rate is a viable option and will
in many cases only contribute to minor errors in the car-
bon footprint estimation. Likewise, the emission estimation
system should be able to provide accurate estimates also
in situations with occasional GPS outages. However, note
that to analyze the total impact of missing GPS samples we
must also consider how this affects the transportation mode
classification.

C. EFFECT OF ASSUMED EMISSIONS PER TRAVELED
DISTANCE

We will analyze the effect of errors in the assumed emissions
per traveled distance on the emission estimation in two ways.
First, we will simulate errors in the assumed car type (note
that car emissions contribute to a substantial share of the
total emissions). Second, we will study the impact of using
emissions data from the wrong year.

In Section III-A, we used emissions data for a fictional
“average” car. In practice, however, an individual will use
either a petrol, diesel, hybrid, plug-in hybrid electric, or bat-
tery electric vehicle. For the purpose of this analysis, the
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FIGURE 14. Accuracy for each individual mode using only data from one sensor.
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FIGURE 15. Illustration of the relationship between estimated traveled
distance and GPS sampling rate.
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FIGURE 16. Total estimated traveled distance and emission error as
dependent on the GPS sampling rate.

“ground truth” fuel type is assumed to be a petrol car,
since this was the most common car type in 2018 [39].
Fig. 17 shows how the total emission error changes when the
estimation system incorrectly assumes that the car is using
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FIGURE 17. Illustration of the impact of inaccuracies in the assumed car
fuel type on the estimated emissions.

an alternative fuel type. As expected, we see much larger
emission errors for the more environmentally friendly fuel
types. For example, assuming the use of a plug-in hybrid
electric car, the estimated emissions drop by about 50%.
In conclusion, it is crucial for carbon footprint estimation
applications to consider the user’s actual fuel type. While
it is unlikely that the car fuel type can be inferred from the
sensors considered in this study, it is possible to provide the
user with opportunities to specify this as manual input (see
the discussion in Section VI-B).

In similarity with the car fuel type, the year in which the
emissions data is taken from can also affect the carbon foot-
print estimation (as discussed in Section III-A, the 2018 BEIS
conversion factors were chosen based on the time period in
which the SHL Dataset was collected). To analyze this effect,
the BEIS Conversion Factors from 2019 [47] and 2020 [48]
were used to recompute the emission estimates. It should
be noted that the relative market shares for the different fuel
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FIGURE 18. Illustration of the impact of inaccuracies in the BEIS
conversion factors on the estimated emissions.

types of cars were also updated accordingly. Fig. 18 shows a
decline in emissions between 2018 and 2020. This change
can be attributed to two factors. Firstly, cars powered by
crude oil have been emitting less carbon in recent years. The
emissions of both diesel and petrol cars decreased by 10g
of COse per kilometer on average between 2018 and 2020.
A similar trend can be seen for public transportation, with
National Rail and underground lines decreasing by 7g/km
and 10g/km, respectively. Secondly, in terms of the market
share, there was a simultaneous decrease in crude oil cars
and increase in electric vehicles. Petrol shares dropped from
61.9% to 55%, and plug-in hybrid cars increased from 1.8%
up to 4%. In total, using BEIS conversion factors and market
share data for the year 2020 resulted in an emission error
of 21%, which highlights the importance of using up-to-
date emissions data when calculating an individual’s carbon
footprint.

VI. SUMMARY AND DISCUSSION

In this section, we will summarize and draw conclusions from
the results in Sections IV and V. In addition, we will discuss
design choices related to manual input, energy consumption,
and cloud computing, and how these impact accuracy and
usability.

A. ERROR SOURCES AND ERROR CHARACTERISTICS

As described in Section I, the presented emission estimation
system has three error sources: (i) errors in the transporta-
tion mode classification, (ii) errors in the estimated trav-
eled distance, and (iii) errors in the assumed emissions per
traveled distance for a given mode. Examples of how these
error sources affect the emission estimates are presented in
Section V. The worst-case emission estimation errors found
in these examples were about 20%, 2%, and 52% given errors
in the transportation mode classification, estimated traveled
distance, and conversion factors, respectively. This indicates
that updated and accurate conversion factors are of utmost
importance for the overall performance of an emission esti-
mation system. Likewise, these findings also highlight the
importance of being able to differentiate between traditional
petrol cars and electric cars, a task which is outside of the
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scope of transportation mode classification. The results also
indicate that errors in the estimated traveled distance are of
lesser importance. This can partly be explained by the fact
that a large share of the emissions derives from travelling in
a car, which is a mode for which it is comparatively easy to
estimate the traveled distance also with sparse GPS samples.

One important finding from our studies is that the per-
formance of the transportation mode classification is not
always a good indication of the performance of the emission
estimation system. For example, when the window size was
4 seconds long, the transportation mode classifier reached a
rather high Fl-score of 94%. At the same time, the emis-
sion estimation error was —4.08%, which was one of the
largest errors obtained during the study of window sizes. For
this reason, designers of emission estimation system need to
ensure that their transportation mode classification is specif-
ically tailored to emission estimation. In particular, note that
mistaking a non-emitting mode for an emitting mode comes
with a much greater penalty than mistaking a non-emitting
mode for another non-emitting mode. Thus, when evaluating
a transportation mode classifier that is intended for use in an
emission estimation system, the evaluation metric should give
a higher penalty to those misclassifications that are associated
with 1) a greater difference in the emissions per kilometer
and 2) a greater traveled distance. To reduce the total number
of misclassifications, developers may also consider merg-
ing all non-emitting modes into one class (or, more to the
point, any two modes with same emissions per kilometer).
However, from a user perspective, there are some benefits
associated with using a more fine-grained mode classifica-
tion. For example, the user could be provided with special
offers or value-added services based on their travel habits.
Additionally, being able to annotate their travel diary in detail
would encourage more confidence in the emission estimation,
and thereby increase user retention.

Additional design factors that were studied in Section V-A
include the window size and the sensor set used for the trans-
portation mode classification. Obviously, a smaller window
size will increase both the computational complexity and the
rate at which the emission estimation system can provide
real-time updates. As demonstrated in Section V-A, a smaller
window size will generally also result in a lower emission
estimation error. Further, it should be noted that the analy-
sis in Section V-A does not consider the loss in granularity
resulting from the use of a longer window sizes. For example,
a one-minute window that consists of 30 seconds of driving
a car and 30 seconds of walking will always result in a loss
of information. With regards to the sensor set, the results in
Section V-A demonstrate clear benefits of using a diverse
set of sensors. However, if only one sensor can be utilized,
the accelerometer should be used. Other than being widely
available as a smartphone-embedded sensor, it provides both
the highest overall classification performance and one of the
lowest emission estimation errors.

Future research on reducing emission errors could, for
example, consider the relationship between emissions and
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driving style (aggressive driving, eco-driving, idling, etc.)
and study the use of human activity recognition models
to improve transportation mode classification. In addition,
there will be a great need for solutions based on federated
learning.

B. THE INCORPORATION OF MANUAL INPUT

Allowing for manual input or prompting the user for input
at selected time points could provide several benefits. For
example, in Section V, it was shown that missing information
regarding the car fuel type could lead to errors of up to 50%
in the emission estimates. However, if the user is able to
provide information about what car is being used, errors of
this kind can be avoided. Similarly, the model of the car will
specify the size of the vehicle, which also impacts the user’s
emissions; the BEIS conversion factors in 2018 claim that a
small petrol car emits 0.156g of COze per kilometer, whilst a
large petrol car emits nearly twice as much at 0.284g. It would
also be beneficial to know whether or not a user has a driving
license. If they do have a driving license, it can be assumed
that they may complete some car journeys alone, and will thus
be solely responsible for the emissions produced during those
trips. Conversely, if they do not have a license, this means that
every detected car trip is being made together with at least
one other person (that is, the driver). If we take this one step
further, it would be possible to give users the opportunity to
input the total number of passengers for every trip that they
take part in. Assuming that the responsibility for the total
emissions of a car trip should be split equally between all
individuals in the car, the number of people present in the
car will have a huge impact on the total emissions attributed
to any single individual. Allowing users to manually input
the number of people in the car would result in more accurate
emission estimates, and may also encourage users to car share
during commutes to work, etc. This being said, designers
of emission estimation systems must also consider potential
negative consequences of manual input, including the added
inconvenience for users and how this may impact user satis-
faction [49], and whether this may inadvertently give users
incentives to provide false information.

C. ENERGY CONSUMPTION, COMPUTATIONAL
COMPLEXITY, AND CLOUD COMPUTING

Applications aiming to promote more environmentally
friendly travel habits should also aim to reduce the applica-
tion’s own energy consumption as much as possible. There-
fore, since GPS receivers are notoriously energy-expensive,
there have been several studies on transportation mode clas-
sification that have intentionally excluded GPS receivers. For
example, [50] compared classifiers that used either a com-
bination of GPS and accelerometer measurements or WiFi
and Bluetooth data, and found that for five out of six modes,
using GPS and accelerometers led to greater classification
performance. It was only on train journeys with an unstable
GPS connection but stable proximity to other Bluetooth
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devices that the latter information source resulted in a bet-
ter classification accuracy. Thus, the authors concluded that
alternative sensors should mainly be used to enhance the
accuracy of the GPS data, or to infer location in the event
of GPS signal loss [51]. Similarly, the general agreement
across the literature is that that WiFi data works better for
coarse-grained transportation mode classifications (that is,
identifying whether or not the user is on motorized transport)
than for the fine-grained mode classification that is required
for carbon footprint estimation [52]. There is also the option
to dynamically change what sensors are being used based on
the user’s access to power outlets. For example, since GPS
receivers are rather power hungry, they should not be used
when the user is unlikely to have access to a charger for an
extended period of time (for example, when on a train or
subway); in this situation, Bluetooth and WiFi signals should
be utilized instead.

Another way to increase the energy efficiency of a
emission estimation system is to reduce the sampling rate
of the GPS receiver. As discussed in Section V, reduc-
ing the GPS sampling rate to 0.1 Hz only has a minor
effect on the performance of the COze emission estimation.
One study in this area used a particle filter to create a
dynamic sampling rate, thereby avoiding unnecessary sens-
ing and waste of energy [53]. They found that after reduc-
ing their energy-consumption by 15.0%, they still achieved
a classification accuracy of 96.3%. To further improve the
energy-efficiency of the application, developers should con-
sider hosting their product on the cloud. Cloud servers make
data hosting and computations more energy-efficient by using
techniques such as flexible processing allocation. For exam-
ple, research by Berkeley Lab and Northwestern University
found that a business using cloud computing can reduce their
energy consumption by 87% [54]. Further, storing the user’s
data on their smartphone will require storage space and could
slow it down significantly, problems which may be alleviated
by cloud hosting. However, it is important to consider the
energy consumed during the transfer of data between the
data center and the user. Those promoting cloud computing
as a more environmentally friendly alternative often do not
take the data transfer into account. Additionally, develop-
ers should consider the risks involved in cloud computing
itself, such as user privacy, data security, and availability of
service [55].
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