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ABSTRACT A successful application of an Internet of Things (IoT) based network depends on the accurate
and successful delivery of data collected from numerous sources. A significant concern in IoT systems arises
when end-users do not have sufficient transparency and are unaware of any potential data manipulation
and risk in each step involved in data propagation. One potential solution is to integrate security metadata
in IoT-based security-aware provenance graphs that provides better transparency with security awareness
at each step of data propagation. In this paper, we integrate security metadata into the provenance graph
with predefined security policies. We design a hypothetical IoT-Health scenario with possible threats:
node cloning, fault packet injection, denial of service, unauthorized access, and malicious code injection.
We simulate these threats in six cases to identify relevant risks. Our findings show how a security-aware
provenance graph can offer end users greater transparency and security awareness by identifying failed
signature verification (case 1), denial of service (case 2), unauthorized access (case 3), intrusion detection
(case 4), missing WAF (case 5), and permission violation (case 6). We evaluate the transparency through
obtaining authentication, integrity, availability and detecting underlying threats. Accordingly, this study
promotes better risk assessment and decision-making for users with negligible performance overhead.

INDEX TERMS Internet of Things (IoT), data provenance, IoT-Health, transparency, security-awareness.

I. INTRODUCTION
Growing innovations in the Internet of Things (IoT) tech-
nology create opportunities for future visions of smart
cities, smart healthcare, smart transportation, and a smart
world [1], [2], [3]. These are the prospects for future
business investments into new applications all over the
world. In IoT-based environments, different heterogeneous
components are expected to be independent participants
and communicate with each other without human interven-
tion [4]. This intelligent feature of multi-layer IoT architec-
ture promotes productivity, usability, and simplifies the use
of IoT systems. Also, the increasing number of interoperable
protocols and smart entities breaks the traditional technical
barriers and enables novel IoT-based solutions available to
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end-users without the need to have strong technical knowl-
edge of the systems involved [4]

IoT-based environments with heterogeneous components
bring more security concerns compared with the traditional
internet environment [5]. Different security threats and pri-
vacy concerns have been summarized by researchers [2], [4],
[6], [7]. To combat these, studies have proposed novel mech-
anisms, including improved advanced encryption standards
(AES) and quantum walks (QW) to secure data transmission
in IoT networks [8], [9]. Nevertheless, it can be difficult to
verify that every component of multi-layer IoT architectures
maintains an appropriate level of security deployment as there
is no end-to-end security that enables a complete validation
of the security mechanisms used in the overall structure [10].

Moreover, as soon as attacks can have serious conse-
quences to human life or create significant financial dam-
age, it becomes a major concern that end-users are not able
to perceive any potential risks or attacks [11], [12] and
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end-users are not able to estimate or interpret if the data
they see is trustworthy [10]. Thus, users do not have suit-
able cyber-situational awareness [13], [14] to know whether
cyber-attacks are possible or have even occurred while the
data was propagating through IoT systems. As a result, con-
firming trustworthiness by improving transparency and secu-
rity awareness of IoT systems, particularly regarding security
risks, has become a new demand in this domain [11], [15].

Encouraged by the above discussion, in this paper, we aim
to provide transparency in IoT data propagation by identi-
fying relevant risks using a security-aware data provenance-
based approach [16]. Different studies have been carried
out to explore the relationship between data provenance and
IoT networks [17], [18], [19]. Among these, research on
‘secure provenance data’ highlights the security of prove-
nance records and/or provenance graphs themselves [20],
[21], [22], and lacks exploring transparency from security
awareness perspectives. We argue that during data propa-
gation, security relevant information is crucial to provide
security status. Documenting this information along with
data lineage history (data provenance) would provide trans-
parency from security viewpoints. To extend data provenance
graphs with security information, the authors proposed a
novel security-aware IoT provenance model named Prov-IoT
in [16]. It includes evidence on security-aware features
(denoted as security metadata) in data provenance graphs
considering all processing steps of data propagation.

The Prov-IoT model and an associated class diagram
provide a framework for building a suitable provenance
graph with security metadata, relevant granularity policies,
data-subject attribution policies, and provenance validation.
This model is the first theoretical foundation to connect a
data provenance graph with security awareness. However,
its operation in real-life IoT scenarios and practical effects
on system transparency during data propagation are uncer-
tain. Moreover, how different security policies are helpful
as fault/attack detection principles and how security-aware
provenance graphs are validated in a practical setup remains
unknown. Therefore, in this paper, we consider the Prov-IoT
model for further analysis in identifying security threats in a
designed IoT-Health architecture through a proof-of-concept
based implementation using six threat-based cases. Specific
contributions of this research are as follows.

1) We build a hypothetical IoT-health scenario as the
basis of the case study. We generate a security-aware
provenance graph for the designed scenario and present
novel techniques, including pre-defined security poli-
cies, graph identifiers, and operation schemes for the
graph.

2) We simulate the process and conduct implementa-
tion using Alibaba ECS cloud virtual machines and
the Neo4j graph database. We design and simu-
late attacks (node cloning attack, fault packets injec-
tion attack, denial of service attack, an unauthorized
access attack, and malicious code injection attack) in
six case studies to misuse some vulnerabilities. Further,

FIGURE 1. Basic PROV-DM model.

we provide the threat detection principles for these six
case studies.

3) Finally, we evaluate the implementation in terms of
transparency and conduct performance analysis.

The rest of the paper is organized as follows: Section II
discusses the background and motivation of the work.
We demonstrate an IoT-Health case study and associated
threats in section III. Section IV illustrates the construction
and operation of the security-aware provenance graph for the
designed case-study. Experiments on six cases and results are
described in section V. We evaluate the transparency of the
security-aware provenance graph along with an analysis on
system’s performance in Section VI. Section VII projects the
potential implications and limitations of the study. Finally,
we conclude the paper with future works in Section VIII.

II. BACKGROUND, RELATED LITERATURE AND
MOTIVATION
This section introduces relevant background knowledge and
clarifies the motivation to conduct this research.

A. DATA PROVENANCE
The concept of provenance came from the area of art long
time ago. It refers to a document that records the source
along with every owner of an artwork [23]. The purpose of
collecting provenance information is to guarantee the authen-
ticity of every masterpiece. The Open Provenance Model
(OPM) defines the preliminary provenance description and
demonstrates the provenance graph [23].

A standard provenance data model (named PROV-DM)
adopted by W3C is illustrated in Fig. 1. The PROV-DM is
a refinement of the OPM, and covers a broader range of
application domain. It structures the whole system into three
elements along with relationships among them. To illustrate
the model in an IoT scenario, the entity represents the data
transformed within the system. The activity is the action that
causes the change (processing, modifying etc.) of that data.
The agent triggers the action and takes responsibilities for it.
Establishing a standard provenance graph for the hypothetical
IoT scenario is the initial step of achieving the security-aware
provenance graph in our implementation. In the following
subsections, we provide a systematic discussion of existing

55678 VOLUME 11, 2023



F. T. Jaigirdar et al.: Security-Aware Provenance for Transparency in IoT Data Propagation

FIGURE 2. Prov-IoT model [16].

literature on secure provenance and IoT transparency to
project the current research gap and demonstrate this paper’s
motivation.

1) SECURE PROVENANCE
Research in secure provenance can be classified into three
areas: 1) Security of provenance record, 2) Authenticity of
source of the data in provenance records, and 3) Security-
aware provenance (including security metadata at all steps
involved in data propagation).

The first area includes different security mechanisms
to secure provenance graphs/provenance records them-
selves, ranging from digital signatures on hash trees to
blockchain-based approaches [21] and [24]. To illustrate
some, Baracaldo et al. propose a framework on access con-
trol based blockchain technology to protect data provenance
records [25]. A secure data forensic provenance scheme in
cloud computing is proposed by Li et al. [26]. Shams et al.
in [27] present a trustworthy and efficient provenance man-
agementmechanism in the cloud, named SECProv. In a recent
study, Shreya et al. introduce a secure decentralized applica-
tion framework for sharing files and data provenance [28].
In [29], a theory about abstracting provenance graphs is intro-
duced to protect sensitive information from data providers,
when provenance data sharing happens in ad hoc collab-
orative partnerships. Moreover, Sigwart et al. discuss how
introducing blockchain technology with data provenance can
make data more secured [30].

The second area of research deals with identifying the
authenticity of the source of the data in provenance records.
For example, Aman et al. propose secure data provenance in
IoTs in the form of a lightweight IoT protocol [17]. It uses
Physical Unclonable Functions (PUFs) to provide physical
security and uniquely identify an IoT device. In addition
to practicalities with validating PUFs, integration into the
different phases of data propagation and various layers of
the IoT environment are not addressed. Use of blockchain
technology to trace provenance in establishing social trust is
discussed in [31]. This work defines how a technical system
for tracing origins, ownership and authenticity can transform

social trust using two case studies. Since IoT devices are
physically exposed and heterogeneous in nature, research
identifies device registration and data generation to be the
most vulnerable phase [32]. Accordingly, many researchers
discuss authentication approaches (for example, hashing with
element extraction, secure key establishment using elliptic
curve cryptography, lightweight authentication protocol for
securing RFID tags) in the initial phases of data propaga-
tion [33]. Thesemethods can provide an initial root of trust for
origin of authentication, but relating this trust to the end-user
remains open.

However, these two areas of research do not consider the
data processing and fusion among different layers, cross-
layer dependency, and step-wise data propagation in IoT envi-
ronments. Including security-aware properties at each step
of data propagation offers end-users more comprehensive
IoT transparency as it projects the security status/behavior of
device/sensor(s) in an IoT architecture, software running on
the devices, data processing mechanisms, as well as commu-
nication channels’ properties. Therefore, wework on the third
area of secure provenance, which presents security-aware
provenance, including security metadata. The only existing
theory regarding the security-aware provenance model is
the data provenance graph with security metadata named
Prov-IoT model [16]. Fig. 2 presents the Prov-IoT model, the
earlier works of the authors. It includes necessary attributes
for step-wise data propagation and adds security-aware func-
tions (security metadata, data-subject-attribution, policies,
data provenance validation) to store each information from
data generation to visualization through processing. Although
this framework demonstrates a security-aware IoT prove-
nance architecture, it relies more on the theory construction
and leaves an opportunity for real-life implementation along
with acceptability analysis. Therefore, this paper emphasizes
on its usability and feasibility study with a user-friendly
function to bring tangible comprehensive transparency for
IoT end-users via security-aware provenance graphs.

2) RELATED TECHNIQUES
There are several comparable approaches to enhancing sys-
tem transparency via security assessment, which encompass
attack tree, state transition diagram, and attack graph [34],
[35], [36]. For example, authors proposed in [34] an attack
tree model to provide a systematic representation of attack
scenarios and address security issues through quantitative
evaluation. However, attack trees do not possess the abil-
ity to recognize how attacks and defenses interact within a
system. Another representative method, the state transition
diagram, is adopted in [35]. This project aims at identifying
the vulnerabilities in the firmware trust verification procedure
in combination with the state transition diagram. But this
technique is suited for explaining the behavior of a single
object and inherently has difficulty describing activity in an
IoT system that involves several objects. Sahay et al. in [36]
construct the attack graph to prevent the exploitation of the
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vulnerabilities in an IoT network. Attack graph is capable of
modeling the potential pathways that attackers use to pen-
etrate a network but is unable to depict data transition and
propagation processes within an architecture, which is crucial
in the context of particular IoT environments such as medical
care and autonomous driving.

Consequently, the security-aware provenance graph pre-
sented in this work incorporates security metadata that
bridges the connections between attacks and defenses in
the IoT system. Additionally, the provenance model can be
built on multiple entities, which clearly demonstrates their
relations associated with one behavior. Finally, the prove-
nance graph supports the visualization of transitions in the
data lifecycle, which is of great importance for IoT security
since it can locate (possibly) compromised data. The above
discussion explains why the security-aware provenance graph
outperforms alternative techniques in delivering transparency
for IoT scenarios.

3) PROVENANCE AND IoT TRANSPARENCY
Several theories and/or methodologies based on provenance
techniques have been proposed to increase IoT transparency,
some focusing on traceability, others on accountability [37],
[38], [39], [40], [41], [42]. In [37], a software infrastructure
based on W3C provenance recommendations is established
to store a sensor environment’s security-related data. End-
users can specify privacy preferences to get notifications of
possible risks and violations. This project improves users’
control over IoT systems’ transparency and guarantees data
trustworthiness before using the data. However, it does not
consider step-wise data propagation information and only
simulates a simple scenario with a smartphone application;
its scalability and security-aware properties are uncertain.

Based on the PROV-DM model, a provenance collection
framework is created for IoT devices in [39]. This work
integrates provenance and IoT scenarios to provide prove-
nance collection and provenance check functions. Besides,
a database is deployed in the cloud to store all the prove-
nance data, which improves scalability and compatibility.
Nevertheless, no implementation is conducted to test the
performance of this model nor step-wise security information
is documented by the proposed method. Moreover, prove-
nance checking merely shows if an IoT device complies with
rules, but it cannot perceive potential cyber-attacks or system
vulnerabilities. Therefore, it is hard for this level of IoT
transparency to provide comprehensive and valid informa-
tion to end-users. A provenance technique that enhances IoT
traceability with visualization is proposed in [40]. It verifies
the correctness of data propagation by determining linkability
and unlinkability between IoT nodes. However, this plan also
faces the challenge of how to supply evidence to make users
conduct forensic tasks related to attacks. Apart from models
and schemes, algorithms for IoT provenance verification is
introduced in [41]. Nevertheless, it is not achievable to run
complex algorithms in an IoT edge node due to its resource-
constraint characteristics.

FIGURE 3. A hypothetical IoT-health scenario.

To sum up, models or schemes for improving IoT
transparency proposed by the above studies either provide
low-level transparency or lack experiments to validate their
real IoT scenarios’ feasibility. Additionally, transparency
through security awareness is a question that has previously
never been addressed because existing provenancemodels are
unable to preserve security-related evidence of IoT systems.
In our scheme, instead of only being conscious of viola-
tions, we work on security-aware provenance graphs for IoT
consumers to obtain security evidence and understandable
validation results. From external attacks to internal risks,
it senses them, locates them, and eventually gives standard-
ized security evidence to make appropriate decisions. Most
significantly, we consider usability and achieve automated
validation of graphs, which is beneficial for end-users’ deci-
sion making. Therefore, our implementation demonstrates
better applicability for real-life IoT scenarios except provid-
ing more comprehensive transparency.

III. CASE STUDY AND THREAT MODEL
This section presents a hypothetical IoT-based healthcare
scenario as the background for the case study, then elaborates
possible threats related to this IoT system.

A. A HYPOTHETICAL IoT-HEALTH SCENARIO
This hypothetical case study is based on two elderly people,
Tom and Jim. They suffer from Type 2 diabetes and hyperten-
sive disease, respectively. Chronic diseases are controllable
as long as their conditions are monitored and they receive
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doctor’s instructions and comply with those in time [43].
A designed IoT-Health architecture for such a scenario is
projected in Figure 3.

In the sensing layer, each patient wears one or more
IoT devices designed for various health-monitoring tasks.
Monitoring applications run in the IoT gadgets to fetch
raw medical data from sensors placed on a patient’s body.
In the network and data processing layer, smart IoT gate-
ways (deployed in the patients’ homes) and the cloud server
(provides computing services) are essential components. The
IoT gateway pre-processes and aggregates captured data and
transmits this data to the cloud. Meanwhile, it undertakes
device management tasks such as device registration and
device control. After the cloud service identifies and pro-
cesses the data received from the gateway, processed data
and potential results from automated data analysis are stored
in the cloud. In the application layer, the doctor retrieves
patients’ data, analyses results from the cloud via a web
application using his computer in the hospital, and decides on
treatments. We assume that the doctor usually has no access
to the original sensor data. However, if there is an indication
of an increased risk of data being manipulated or insecure
systems being involved, the doctor might need to react by
adding additional checks potentially based on the original
data. Accordingly, a technician, indicated in the system archi-
tecture as an auditor, monitors the system, provides technical
assistance to the doctor, and regularly updates or maintains
the system.

B. THREAT MODEL
Attackers in a heterogenous IoT environment can manipulate
information, insert fake information and violate data integrity.
They can also violate the authenticity by exploiting a weak
security deployment to intrude into the end-user’s device and
modify the availability of IoT data at different steps of data
propagation. Hence, it may cause further damage to the IoT
system or the trustworthiness of IoT data. We summarize
possible threats for the designed IoT scenario in the following
paragraphs.

1) POSSIBLE THREATS
• Node cloning and Injecting fraudulent packets. In a
node cloning attack, an attacker can copy an existing
node’s identifier and violates the node’s authenticity
within the system.
Moreover, an adversary can insert fraudulent packets
into communication traffic between IoT gateway and
sensors/smart watches [44]. This attack is possible in
two different ways: insertion and manipulation. In inser-
tion attacks, the malicious user may generate packets
that seem legitimate and insert them into the traffic.
Manipulation attacks include capturing packets, altering
information within them, and violating data integrity.
In order to identify these types of attacks, security evi-
dence should demonstrate the implementation of secure
communication protocols.

• Denial of service (DoS). With resource constraint IoT
nodes, for example, smartwatches in this scenario, it is
possible to launch DoS attacks [45]. Hence, the attackers
may take advantage of a smartwatch’s low battery status,
aim to violate the availability of IoT services or lever-
age this situation to create more attacks. Although DoS
attacks can not alter data, the provenance graph must
monitor data timing if emergency reactions depend on
the timely reporting of the values.

• Unauthorised access. Attackers can gain unauthorized
access by accessing the cloud API in the given scenario.
API-level attacks may allow attackers to compromise
the API and get cloud services even if their identities
do not meet the access control criteria [46]. Aside from
the possibility of data leaking, the system’s integrity is
also jeopardized. Thus, security controls need to include
application-level mechanisms to prevent manipulations
on the API level. In addition to the cloud service, unau-
thorized access to the smart IoT gateway has an impact
on privacy because it governs andmaintains device man-
agement information.

• Malicious code injection. Since an end-user may access
different web applications, a malicious code injection
attack is very realistic in the designed scenario. An end-
user accesses processed data from the cloud using dif-
ferent web applications, and the application itself can
become a target of those malicious codes. For example,
if the application version is outdated or the end-user’s
device has a weak security control deployment, it is
easy for malicious functions to gain higher permissions
and then capture private information from end-users’
devices [47].

Given the possibility of security threats at different lay-
ers of data propagation, ensuring the accuracy, transparency,
and timeliness of the data transferred throughout the sys-
tem is crucial. Therefore, along with data lineage, including
security-relevant information for devices and communication
steps allows continuous data auditing and security awareness
throughout data propagation.

IV. SYSTEM MODEL: A SECURITY-AWARE PROVENANCE
GRAPH
This section illustrates the construction and operation of the
security-aware provenance graph.

A. GRAPH CONSTRUCTION
The construction of a security-aware provenance graph
consists of initializing the graph structure with necessary
attributes and adding new attributes and relationships to the
graph.

1) INITIALIZATION
According to the standardized PROV-DM model published
by W3C, a general provenance graph for the designed
IoT-Health scenario can be constructed as illustrated in Fig. 4.

VOLUME 11, 2023 55681



F. T. Jaigirdar et al.: Security-Aware Provenance for Transparency in IoT Data Propagation

FIGURE 4. A general provenance graph for the IoT-health scenario.

The whole scenario is depicted by three main node types:
agent, activity, and entity [23]. Relationships among these
three are portrayed as WGeB (Was Generated By), WDeF
(Was Derived From), WInB (Was Informed By), and WAsW
(Was Associated With) [23].

The first activity is registration, which is accomplished by
three agents (patient, sensor, gateway). Data capturing is the
second activity in the sensing layer, where two agents (patient
and sensor) trigger this activity. These two activities produce
the first entity (raw data, sensor ID, and patient ID). The
third activity describes data propagation in the network layer,
which is associated with the sensor, gateway, and cloud. This
activity creates the second entity (aggregated raw data along
with sensor ID and patient ID). The cloud agent conducts
the fourth activity (raw data is processed and stored in the
cloud). At the same time, a new entity (processed data along
with sensor ID and patient ID) is created. The final activity is
data retrieval in the application layer. It is conducted by three
agents (doctor, doctor’s device, cloud), and the final entity
(processed data along with sensor ID, patient ID, and doctor
ID) is generated by this process.

2) NEW ATTRIBUTE AND RELATIONSHIP
The general provenance graph (presented above) represents
the standard flow of data, which describes all the pro-
cesses and how they interconnect with each other in the sys-
tem. However, without security-relevant information in the
provenance graph, activities during data propagation are not
transparent to the end users, and they cannot detect/discover
inconsistent parts, if any. Therefore, we extend the fundamen-
tal structure of the PROV-DM model.

Based on the theory presented in [16], as shown in Fig. 5,
we use a new attribute named security metadata to store
security evidence involved with each activity. The security
metadata records security attributes such as active secu-
rity controls, security protocols, operating system versions,

FIGURE 5. A security-aware provenance graph for the IoT-health scenario.

and/or authentication reports. Also, we put forward a new
relationship between security metadata and activities called
WPrB (Was Proved By). It indicates the presence of security
controls for each activity, which can be proved by its security
metadata. The validation result of inspecting security meta-
data can provide positive or negative indicators. Hence, when
an activity is confirmed to be conducted successfully and
securely, the entities and agents connected with that activity
are proven to satisfy particular requirements.Meanwhile, sus-
picious activities weakening security controls or the existence
of vulnerabilities due to the lack of security controls can
be identified directly under this structure. In contrast to the
original PROV-DM, this structure expands users’ cognitive
understanding of the security context of IoT systems and
further promotes system transparency by linking security
evidence with IoT architecture.

B. GRAPH OPERATION
This section explores how the security-aware provenance
graph operates in the designed IoT-Health scenario with pre-
defined security policies and graph validation.

1) PRE-DEFINED SECURITY POLICIES
In order to inspect security metadata, appropriate security
policies are critical. However, various challenges lie in devel-
oping proper security policies for IoT environments. First,
there is usually no end-to-end security relation in IoT sce-
narios. Thus, straightforward solutions, such as end-to-end
encryption, cannot be applied. Second, since different IoT
scenarios vary greatly, there is no unified security standard
that suits all cases equally [48]. Therefore, we have to cre-
ate security policies by a comprehensive consideration of
deployed protocols, security settings, hardware, and software
information within an IoT environment. System transparency
can be better projected by inspecting such evidence stored in
each security metadata node and locating specific insecure
parts.
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For the designed IoT scenario, we specify requirements for
each activity with information related to hardware, software,
service providers, protocols, time slots, and security mecha-
nisms (see Table 1). The corresponding security metadata is
examined to demonstrate an activity’s security state or secu-
rity awareness. If all required security controls are operational
and no malicious activity has interfered with them, the same
information should be displayed in the associated security
metadata node. Differences, on the other hand, indicate the
presence of rule violations or risks.

2) GRAPH VALIDATION
The content displayed in a security-aware provenance graph
can be validated after explicit policies for security controls
are defined. However, numerous data sources exist in an IoT
scenario and transmit data periodically. During the interim
between each validation, a number of graphs with potentially
a large amount of data in each graph can be formed. Manual
validation is error-prone and time-consuming under these
circumstances. Therefore, we design a method for end-users
to readily acquire validation findings.

a: GRAPH IDENTIFIER
To provide rapid graph validation while taking into account
the intricate interactions between IoT sensors, provenance
graphs, and time, we first create a unique identity for each
graph. For the designed scenario, we set a graph identifier
combined by PatientId, DeviceId, and the time when pro-
cessed data is generated at cloud. Therefore, provenance
graphs can be classified and identified by information inside
identifiers such as PatientId or DeviceId. It is worth men-
tioning that the construction of graph identifiers can vary for
different IoT scenarios. Real-life scenarios may require more
information about devices and time to differentiate graphs.

b: VALIDATION SCHEME
As illustrated in Fig. 6, a graph database is deployed to
store security-aware provenance graphs, where each graph
maintains a unique identifier. The validation method contains
a graph identifier search function, validation function, and
security policies (Full details are outlined in Algorithm 1).
It also returns high-level validation results that are easy to
understand. The auditor is authorized to update the content of
security policies or adjust the number of policies if necessary.
Beyond that, he can access the graph database to drill down
on the details and conduct audit tasks directly.

V. IMPLEMENTATION
This section illustrates the system setup and six experiments
we conducted to demonstrate how the security-aware prove-
nance graph improves system transparency.

A. SYSTEM SETUP
The implementation method is illustrated in Figure 7.
Initially, each IoT device Dj needs to establish public key
infrastructure (PKI) and register in its IoT gateway Gi. After

FIGURE 6. A scheme to achieve validation of security-aware provenance
graphs.

Algorithm 1 Validation of Security-Aware Provenance
Graphs

function SrchGids(deviceId) Step 1 search graph identi-
fies that contain
specific deviceId
Step 2 return a list contains identifiers found in
step1
end function

function SectyMetadataVal(identifier)
Step 1 find the graph via its identifier then validate

each
security metadata node according to pre-defined security
policies
Step 2 return specific processed data and activities with
inconsistent records
end function

Input: DeviceId Dx
Output: a list Li of unreliable data

(Li,Lp)← (empty list, empty list)
Lp← SrchGids(Dx)
I ← LENGTH(Lp)
for k ← 1 to I do

Li.insert(SectyMetadataVal(Lp[k]))
end for
if LENGTH(Li) == 0 then

return No unreliable record
else

return Li
end if

that,Dj packets raw data and securitymetadata, and sends raw
data packets alongwith digital signature toGi.Gi verifies data
packets and aggregates raw data from data sources.We set the
gateway to transmit aggregated data packets to the cloud C as
long as it receives ten raw data packets from a device. Apart
from health data, aggregated data packets also comprise
security metadata of Dj and Gi. Once the cloud C receives
packets and successfully decrypts them via pre-shared keys
negotiated with Gi, it processes data by visualization tech-
niques. Next, the cloud names data charts using the time
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TABLE 1. Pre-defined policies as a standardization.

they are generated and stores charts according to DeviceID.
Meanwhile, C produces security-aware provenance graphs.
Finally, the doctor Dr sends retrieve requests to the cloud,
and the cloud can justify the data retriever’s identity. This
action is also recorded in the corresponding provenance
graph.

We assume the CSP (cloud service provider) is trusted
and does not deliberately violate this IoT system’s data trust-
worthiness. While this is a rather strong assumption, it is
obviously needed in this scenario.Weakening this assumption
would require some end-to-end security relationship between
the sensors or gateway and the doctor. However, identifying
this requirement emphasizes the fact that a malicious cloud
provider may simply modify the data and computation at
will in many applications. It should be noted that the trust-
worthiness of the cloud provider does not imply that all
required security controls are always in place. Thus, it is still
necessary to report active security controls as metadata in the
provenance graph.

Based on the implementation method for the IoT-Health
scenario showed in Fig. 7, we use the Alibaba ECS vir-
tual machine, a ubuntu-bionic-18.04-amd64-server with 4GB
memory and two virtual cores CPU, as the cloud server.
We use Neo4j, which is a highly-scalable and user-friendly
graph database to store provenance graphs. The Neo4j
retrieves data using various query statements and provides a
dedicated user interface for people to access actual graphs.
We use two smartwatches, two smart IoT getaways, and
a doctor’s device to project the overall scenario in Neo4j.
We use the Flask module in python and design python pro-
grams to project the scenario. The Flask module is used
because it supports RESTful API’s quick building and is a
viable choice for resource-constrained sensor networks [49].
Besides, we deploy a real SSL certificate for the cloud API
using Let’s encrypt [50]. All the communications with the
cloud run on HTTPS.

FIGURE 7. Implementation model.

B. EXPERIMENTS
According to the threat model presented in section III-B1,
we simulate various security vulnerabilities within this IoT
system. We design and simulate attacks to misuse some
vulnerabilities and observe whether the scheme is capable
enough to detect and locate weak security settings or suspi-
cious changes. We conduct experiments simulating six cases
in the following.

Case 1. This case simulates the node cloning attack and
fault packets injection attack. An adversary places amalicious
node in the system. It fetches information from Tom’s smart-
watch and copies everything but the secret key of that device.
In particular, if the secret key is not used to authenticate the
data or the authentication is not validated by the gateway,
any data (trusted or untrusted) sent from that node can pass
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through the IoT gateway. In addition, without sufficient cryp-
tographic protection, the adversary may directly forge or alter
packets of Tom’s smartwatch and send to the IoT gateway.

Case 2. This case simulates the DoS attack. In this case,
we assume an adversary’s goal is to exhaust Tom’s smart-
watch, leading it to go into sleepmode and then generate other
possible malicious actions. The attacker sends large volumes
of data floods over a period of time to accomplish this attack.

Case 3. An unauthorized access attack is simulated in this
case. We assume the victim of this attack is the data gener-
ated by Jim’s smartwatch. An adversary may exploit attack
vectors on the cloud API and force unauthorized access to
the ‘data retrieve function.’ The software version running on
the cloud server is an example of relevant security metadata
for this case. This is because older versions may have known
vulnerabilities with the access control configuration enforced
and used by the API, such as requiring multi-factor authenti-
cation. Further, log data can reveal attempts for unauthorized
access, and large numbers can point to current threats and
increased risks.

Case 4. This case simulates another unauthorized access
attack on IoT gateway. An adversary may exploit open ports
to gain unauthorized access to the IoT gateway. We assume
this attack happens when Jim’s smartwatch sends data to the
cloud, and the gateway can detect the intrusion and give alerts.
The changing state of the IoT gateway indicates potential
leakage of device management information, which further
manipulates the system’s privacy.

Case 5. This case simulates a misconfiguration on the
cloud server-side, such as not running a web application
firewall (WAF). This lack of expected security controls can
degrade the trust level. It is worth mentioning that this does
not contradict the assumption of a trusted cloud server, as a
misconfiguration does not imply any malicious activity from
the service provider’s side.

Case 6. This case simulates an increased risk of attacks on
the health application, e.g., by malicious code injection. The
application is running with higher privileges than is required,
which increases the risk. Thus, an injected malicious code in
a web application can gain more permissions while the doctor
is operating/using the application. This malicious code may
monitor the doctor’s actions, modify the processed data he
retrieves or impersonate users.

C. RESULTS AND DETECTION PRINCIPLES
We develop security-aware provenance graphs based on the
structure created in IV-A and verify whether the information
recorded in security metadata nodes is in consonance with
pre-defined security policies presented in IV-B1 after con-
ducting designed attacks. Fig. 8 - 13 reveal the results of
six experiments (diagrammatic sketch). Each figure shows
information obtained by the doctor and the auditor, respec-
tively. The doctor retrieves the processed data and gets any
problematic data name (if any) along with the specific dubi-
ous activity of it by evoking the validation function. If any
erroneous activity is identified, the doctor may consult the

auditor. The auditor then accesses the actual security-aware
provenance graph of that problematic file via the Neo4j UI
and checks the detailed security metadata of the activity.
Thus, the output provides better transparency by showing
active security controls, protocols used, or system configu-
rations. We further discuss the detection principles to show
how end-users can discover increased risks by validating the
security-aware provenance graph for the six cases.

Case 1. The IoT gateway verifies the signature of every
piece of data sent by smartwatches. Hence, any untrusted
data by a fraudulent node can be identified as it fails the
signature verification in the gateway. Suppose malicious data
is accepted without passing the validation of the signature.
In that case, information about verification failure is recorded
in the security metadata node that links to the third activity
(the attack happens when data propagates to the cloud via
the gateway) which violates pre-defined security policies.
An example of identifying failed signature verification for
this case is added in Figure 8.
Case 2. An example of detecting DoS with higher power

consumption for this case is added in Figure 9. The DoS
attack dramatically increases a smartwatch’s average power
consumption, which exceeds the specified value. The abnor-
mal power consumption data is recorded in the security meta-
data node that links to the second activity (the attack happens
while the sensor is capturing raw data). The validation func-
tion gives an alert about the detected anomaly.

Case 3. An example of identifying unauthorized access
for this case is added in Figure 10. Records pointing unau-
thorized access of the same data are stored in each security
metadata node. These nodes connect with the fifth activity
(it is recorded when adversaries pretend to be the doctor try
to retrieve data from the cloud) and reveal possible attacks
aimed at the cloud data interface.

Case 4. An example of intrusion detection for this case is
added in Figure 11. Intrusion causes the IoT gateway to alert,
and this message is recorded in the security metadata node
that connects with the third activity (the attack happens when
data propagates to the cloud via the gateway). It violates the
security policy and the doctor is informed about the security
issue.

Case 5. An example of identifying missing WAF for this
case is added in Figure 12. The corresponding security meta-
data node records the missing information about the WAF,
which is detected during the fifth activity (it is recorded
when the doctor retrieves data from the cloud through the
web application). As a result, the validation function gen-
erates notifications to users to pay attention to potential
risks.

Case 6. An example of permission violation for this case
is added in Figure 13. According to pre-defined policies,
this web application should run with the least privilege to
perform all required operations. The evidence that it gains
higher permissions is recorded in the security metadata node
which links to the fifth activity (it is recorded when the doctor
retrieves data from the cloud through the web application).
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FIGURE 8. Experimental result of Case 1.

FIGURE 9. Experimental result of Case 2.

Consequently, the doctor is notified of the possibility of
increased risks.

VI. EVALUATION
Within the IoT scenario, security-aware provenance graphs
make the IoT system transparent to end-users. We evaluate
the approach from two aspects: a) in obtaining transparency
and b) in describing performance analysis.

A. TRANSPARENCY
According to the results, we divide security-related prob-
lems of six cases into four types: authentication, integrity,
availability, and underlying threats. They all contribute to
achieving comprehensive transparency, as illustrated below.

a: AUTHENTICATION
End-users in the presented IoT scenario can ensure that med-
ical data or retrieve requests are sent by the correct entities,

FIGURE 10. Experimental result of Case 3.

FIGURE 11. Experimental result of Case 4.

ensuring system authentication. For the node cloning attack
in case 1, the identity of different IoT devices can be rec-
ognized by verifying the signatures of those devices. This
security evidence is preserved in the security metadata node
of activity 3. Hence, it helps end-users to identify (be aware
of) which device is forged. Similarly, for an unauthorized
access attack in case 3, the cloud server verifies the data
retriever’s identity. End-users can determine whether data is
being received illegally by outsiders by retrieving information
saved in the security metadata nodes of activity 5. For an
unauthorized access attack in case 4, users other than the
authorized technician intruding into the IoT gateway trigger
alerts. Hence, a warning message is shown in the security
metadata nodes of activity 3.

b: INTEGRITY
When the medical data is finally presented on the end-user’s
screen, integrity should confirm that it accurately represents
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FIGURE 12. Experimental result of Case 5.

FIGURE 13. Experimental result of Case 6.

the data first captured (the raw data). For example, in case 1,
signature verification detects any false data injection in activ-
ity 3. Therefore, if the medical data is altered, this security
proof precludes the doctor from trusting the data he sees.

c: AVAILABILITY
When any adversary launches attacks to manipulate the
availability of the network, our operation scheme can make
this action transparent to end-users. In case 2, if any IoT
device suffers from a DoS attack, abnormal changes in power
consumption are recorded in the security-aware provenance
graph. It represents the occurrence of the attack in activity 2
during device operation.

d: UNDERLYING THREATS
Sometimes no substantial attack occurs, or the attack may not
cause real damage, but potential threats exist in the system.
In case 5, security evidence about incorrect configurations of

WAF reveals that this system leaves space for possible attacks
in the application layer (activity 5). Additionally, the adver-
sary may launch attacks from end-user’s computer instead of
IoT gadgets. In case 6, the attacker may steal medical data
from doctor’s computer directly. However, illegal features of
the device software (triggered by the attack) are recorded on
particular security metadata nodes of activity 5.

B. PERFORMANCE ANALYSIS
Data propagation in the hypothetical scenario is a continuous
process.Multiple graphs are needed to portray the overall sce-
nario. Also, large-scale IoT applications might process data
from a very high number of devices. This triggers a significant
concern about handling a large number of graphs and raises
issues for performance analysis. It questions the applicability
of security-aware provenance graphs for big-data IoT appli-
cations. However, many applications, such as the scenario
depicted in this paper, require data related to individual peo-
ple or specific objects. In these cases, the complexity mainly
depends on the size of individual provenance graphs. Hence,
the following paragraphs discuss the estimation of the size of
security-aware provenance graphs.

1) UPPER BOUND OF THE SIZE OF THE GRAPH
The overhead generated by creating, communicating and pro-
cessing provenance graphs mainly depends on the growth of
the number of nodes in a graph and the need to spawn new
graphs for additional devices. The size of the graph depends
on the agents, activities, entities, security metadata involved
in the provenance graph, and relationships between them.
Hence, the growth of provenance graphs at each layer is
estimated by nodes and edges we add at each layer of data
propagation. It is to be noted that in our envisaged use cases,
provenance graphs are built for individual patients and are not
intended to be scaled to big data applications. Therefore, it is
linear to the size of the graph.

This estimation relies on various parameters on which the
size of the graph grows. For example, effort of different
policies, and validation among them. Therefore, the growth
of the number of nodes in a provenance graph can vary for
specific IoT applications.

Considering a patient’s m devices (sensors/actors) collect
k measurements within time t, NPG is the number of nodes
in a provenance graph and N is the number of patients.
We calculate the upper bound for the system’s number of
nodes in a provenance graph as follows.

In the sensing layer, size of the graph (NPG) withm devices
of k measurements is represented as O(k × m). As it propa-
gates to next layers, the growth of the graph adds step-wise
information, not inheriting connections with all other nodes.
Therefore, the graph at different layers add the step-wise
value with a constant number of new edges and does not grow
exponentially. Thus, the size of the graph for one patient after
data propagation to application layer would be O(k × m).

For the overall system with N patients, separate graphs are
generated for each patient. Therefore, the upper bound for the
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FIGURE 14. Comparison of CPU overhead.

FIGURE 15. Validation time.

total number of nodes and edges to be stored, transmitted and
processed is O(k ×m×N ), which represents a linear growth.

2) CPU OVERHEAD
To measure the CPU overhead caused by graphs,
we use a testing tool named Sysbench to acquire CPU
performance [51].

First, we identified the CPU performance of ECS (used
in section V) when it was running but not generating and
storing graphs. Afterward, we configured the program in ECS
to generate provenance graphs at different frequencies and
recorded CPU performance (the number of activities in a
graph is 4). Finally, we varied the number of activities in a
graph (graph size) and calculated the CPU overhead. During
the test, we turned off unnecessary functions to ensure extra
CPU overhead is from generating and storing provenance
graphs.

Fig. 14a illustrates that higher frequency of graph pro-
cessing adds CPU overhead dramatically. It indicates more
IoT sensors in real-life scenarios significantly burden the
CPU and consume higher CPU power. Processing 200 graphs
within 10 minutes caused highest CPU overhead in the
test, which was 1.34%. However, the required computational
power was in the expected range. We notice from Fig. 14b
that CPU overhead grows slightly with the increment of graph
size and higher graph processing frequency results higher rate
of growth in CPU overhead. The performance is adequate
for handling large-sized graphs with more content. It would
be more adaptive in complex IoT environments that produce
larger graphs.

3) VALIDATION TIME
Validation time is another feature closely linked with perfor-
mance. We recorded validation time of 100 graphs. We varied

the number of security policies used by validation function
to adjust the required number of operations for validating
each graph. Based on the information in Fig. 15, with the
increase of required operations for each graph, time consump-
tion of validating a 100 graphs rises modestly. For example,
validation time increases by only 17.4% as the number of
operations for each graph varies from 20 to 25. Considering
system transparency is vital in certain IoT scenarios, this level
of time consumption is within an acceptable range.

Apart from effecting validation time, the number of secu-
rity policies that the validation function uses also indicates
the transparency it offers. In practice, it is undesirable to use
insufficient or redundant security policies. While redundancy
can improve system transparency, if it simply indicates an
overlap in what is validated, it does not promote transparency
and causes longer validation times. Conversely, insufficient
policies reduce the transparency level and increase risk.
To sum up, security policies should be updated (when nec-
essary) to keep a balance between system transparency and
validation time.

In this paper, we developed and evaluated a first proof-of-
concept implementation of the framework of security-aware
provenance from an end-user perspective. The validation
process covers multiple graphs representing different data
sources or objects in an IoT environment. The evalua-
tion shows that it is, in principle, practical to specify
security policies that enable automatic validation and pro-
vide detailed results to the end-user. The end-user sees
an abstract result of the validation, and if there is any
doubt, he can interactively explore the details of the
stored provenance graphs. Meanwhile, graph establishment
is synchronized with data transmission and the steps in the
process. Graphs can be automatically spawned for new data
sources.

Mapping graphs to instances in the application is based
on identifiers for each graph, including information about
the registered data generator (IoT device), the registered user
(i.e., patient), and when aggregated data is processed at the
cloud. Thus, the validation function can distinguish multiple
security-aware provenance graphs for different patients, IoT
devices and separate transmissions in accordance with iden-
tifiers. Accurate mapping and automatic validation of graphs
are critical to scaling to more significant numbers of devices
and users.

With this regard, it is worth mentioning that the proposed
security-aware provenance graph implementation is designed
for IoT-health applications, where a particular patient data is
a concern, and we focus on a particular number of devices.
In practice, IoT applications with similar setups need to audit
a particular number of devices with specific instance(s) for
identifying transparency or risk estimation. Hence, in the end,
it generates a linear growth in graphs in terms of handling the
devices. Many practical IoT applications fall into this class
of processes with linear growth of graph numbers depending
on sensors and data flows. For all these applications, the
suggested approach of security-aware provenance graphs can
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therefore be assumed to be feasible and scalable to a higher
number of users providing the following properties.
• Data sources need to be authentic.
• Changes to data of a single sensor or a small set of
sensors can cause substantial damage.

• The relation between sensors and humans or objects is
essential.

• Risk mitigation cannot easily rely on redundancy
achieved by a large number of sensors or by statistical
corrections to the data.

VII. IMPLICATIONS AND LIMITATIONS
The proposed scheme can be applied in many smart environ-
ments. For example, services in smart homes in monitoring
water meters in an apartment building. While it can increase
trust into the metering for the end user, it can also be con-
venient for the apartment administrator to conduct forensic
tasks if any part of the smart water meters in an apartment is
manipulated by an adversary or in an unusual condition. For
a large-scale smart city project, the implementation would
need to be optimized with more elastic provenance graph
management and more robust data processing ability. How-
ever, the current implementation demonstrates its capability
of supporting these kinds of applications.

The current version of security-aware provenance graphs
is not directly suitable for big data IoT applications where
thousands of nodes collect data in a data lake and then
used by various applications. However, even in such a sce-
nario, it would be possible to add similarly enhanced prove-
nance information to every single piece of data in the data
lake. Therefore, we expect that it is possible to transfer the
approach to these large-scale scenarios. Secondly, the auto-
mated validation function is deployed in the cloud, and we
assume the cloud is trusted in this scenario. One potential risk
is that if the cloud encounters internal problems or there is
an insider attack on the cloud provider’s side, the validation
function may become unavailable, or the results can be mis-
leading. Finally, it is probably challenging to develop generic
policy templates. Each adaptive IoT scenario has different
requirements and requires dedicated security policies, which
raises this scheme’s deployment cost. However, these costs
might still be smaller than the costs of successful attacks.

VIII. CONCLUSION AND FUTURE WORK
The challenge of how to maintain system transparency in
IoT scenarios is gradually emerging. Data provenance graphs
with security metadata are considered a potential solution
for this kind of issue. This paper presents the trustworthi-
ness in IoT data propagation by comprehensive transparency.
To acquire security-aware features, we first describe a hypo-
thetical IoT-health scenario and generate a relevant prove-
nance graph that includes security metadata as well as its
relationships on standard provenance graphs. The experimen-
tal results confirm that the upgraded provenance graph can
help end-users make appropriate decisions by monitoring and
locating the problematic parts. Simultaneously, it can provide

precise security proof while also providing professionals with
new insight into potential threats and points to active attacks.

In the future, we plan to explore and incorporate the
security awareness feature of provenance graphs into intelli-
gent automated visualization. During the experiment process,
we become aware that provenance graphs are flexible enough
to serve additional purposes. For instance, entity nodes of
provenance graphs represent real data in an IoT system.
Therefore, the provenance graph can serve two functions
simultaneously. One is for security evaluation. Another one is
to act as a platform to present data to the end-user, especially
when the data needs to be processed into graphs. Hence,
apart from security-aware ability, what else functions can we
develop to serve IoT systems, even advanced data-driven AI
applications, can be additional research questions.

Moreover, validation of the security metadata used at each
step of data propagation is essential and needs additional
research. In practical, the security metadata used at each
activity of provenance graphs need to be validated step-by-
step during the process. Methods on efficient handling of this
step-wise validation and final evaluation to be addressed by
end-users based on an accessible visualization of the graph
are open research issues.
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