
Received 17 April 2023, accepted 18 May 2023, date of publication 29 May 2023, date of current version 7 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3280801

Flip-Flop P Systems With Proteins on Membranes
in a Time-Free Manner
XIAOMING WAN1, YI LIU2, AND YUEGUO LUO 3
1College of Electronics and IoT Engineering, Chongqing Industry Polytechnic College, Chongqing 401120, China
2College of Rail Transit and Aviation Services, Chongqing Industry Polytechnic College, Chongqing 401120, China
3College of Big Data and Intelligent Engineering, Yangtze Normal University, Chongqing 408100, China

Corresponding author: Yueguo Luo (ygluo@yznu.edu.cn)

This work was supported by the Science and Technology Research Program of Chongqing Municipal Education Commission under
Grant KJZD-K202003201.

ABSTRACT Flip-flop P systems with proteins are a bio-inspired variant of cell-like P systems in membrane
computing, where proteins can control the execution of rules. In this work, firstly, in order to simulate the
fact that the execution time of biochemical reactions is uncertain, considering time-freeness, we therefore
construct a novel variant, namely timed flip-flop P systems with proteins, where the protein on each
membrane only has two types of working states, and such a system runs under the time-freeness mode;
secondly, we study the computation power of this variant, and it is shown that a system with only one
membrane and a maximum rule length of 4 is Turing universal; moreover, based on the variant, a solution
to the SAT problem is obtained by the constructed system in polynomial time. Our work indicates that
the constructed variant with time-freeness can still solve the SAT problem in feasible time. Because time-
freeness of rules is employed, the variant may be more suitable for particular applications.

INDEX TERMS P system, protein, university, SAT , time-freeness.

I. INTRODUCTION
Membrane computing, which is inspired from processing of
energy and information in biological cells, was conceived by
G. Păun in 1998. The models based on membrane computing
are called P systems, and the official article emerged in
2000 [1]. Living cells are of small sizes and strong self-
repair abilities. In theory, a computing device based on
biological reality also has many desirable characteristics,
such as small size, excellent reliability, strong fault tolerance,
and outstanding parallel computing capability. Computing
based on biological reality can provide new tools for
manipulating information and simulating biological systems,
which leads many scholars to explore this field. By applying
DNA molecules and some biochemical reaction operations,
Professor Adleman successfully solved the Hamiltonian path
problem with 7 vertices in a tube [2]. Recently, inspired by
spiking neural systems, Kaushik Roy and other scientists
published important research results in Nature [3], proposing

The associate editor coordinating the review of this manuscript and

approving it for publication was Rajeswari Sundararajan .

a new type of neural computing system from the perspective
of biological computing, and studied the algorithm design
and hardware realization of the system. Currently, membrane
computing is attracting widespread attention from scholars in
various fields, including computer scientists, biologists, and
mathematicians. Currently, a variety of membrane systems
are Turing universal [4], [5], [6], [7], [8], [9]. Relative to
computational efficiency, various variants are applied to solve
NP-hard problems, such as the SAT problem [10], [11],
vertex cover problem [12] and the 3-coloring problem [13],
[14]. In addition, arithmetic operations [15], [16] and logical
expressions [17] have been solved theoretically. Inspired
by biochemical reactions, a number of variants have been
proposed [18], [19], [20], [21]. Moreover, optimization
problems [22], [23], fault diagnosis [24] and artificial
intelligence [25] can also be deployed by P systems.
Additionally, one can refer to recently published books on
real-life applications [26], [27]. More recent research results
and information of this area can be viewed on the website
http://ppage.psystems.eu/, and one can refer to recent review
articles (e.g., [28]).

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 54859

https://orcid.org/0000-0002-7387-5778
https://orcid.org/0000-0003-1817-9646

X. Wan et al.: Flip-Flop P Systems With Proteins on Membranes in a Time-Free Manner

It is known that biochemical reactions may be controlled
by proteins on membranes and therefore A. Păun proposed a
novel variant, namely P systems with proteins on membranes
(PPM systems, for short) [29]; where, proteins are placed
on membranes, and objects may exist in corresponding
membranes. Notably, proteins can be applied to govern
substance evolution, which coincides with the biological fact
from the biological point of view. In addition, importantly,
PPM systems use only one copy of protein and object
when a rule is applied. Although the variant has been
proposed several years ago, the existing research results of
PPM systems are still relatively limited. In [30], the system
constructed with one membrane was proved computationally
universal. Additionally, when division rule is applied, such
P systems can solve the SAT problem [31], [32]. In [33],
proteins were introduced into active membranes, where
rules are guided by proteins and polarizations. However,
relative to these results, the application of rules being
used must stop running in a unit time. Nevertheless,
biological system is highly robust. Hence, it is necessary
to build membrane systems with fault tolerance. Namely,
the constructed P systems can work independently from
execution time of rules. As far as time-free is concerned,
the approach was proposed in [34]. Recently, relative to NP-
complete problems, some results have been obtained with
time-freeness [35], [36].

In [37], time-freeness was introduced into PPM systems;
nevertheless, the protein on a membrane may have a variety
of working states; that is, there is no restriction on the
number of proteins. With further study of PPM, there
may be a variety of proteins on a membrane; however, for
each protein, the working states of each protein are finite.
A noteworthy feature of such system is the structure of cell-
like P systems [1]. Based on the biological reality, some
scholars have proposed flip-flop P systems with proteins on
membranes (FPPM, for short), where there are only two
working states for each protein, e.g., from p to p′ or back.
Therefore, its working mode is similar to a trigger. In [38]
and [39], its computational universality was studied; however,
under time-freeness, the research on computational property
ofFPPM has not been involved; hence, in our work, wewill
introduce time-freeness into FPPM, namely, timed flip-
flop P systems with proteins on membranes (T FPPM sys-
tems, for short), thereby constructing a robust computational
system that would not be influenced by the execution time of
rules.

The main contributions of this article are the following
aspects.

(i) A novel variant (T FPPM systems) is established,
where the computing result is irrelevant to the execution time
of each rule. Hence, this variant indicates the robustness of
biochemical reactions.

(ii) The university is explored for generating numbers.
We obtain the result that only one membrane and a maximum
rule length of 4 is Turing universal even running with time-
freeness and limited rule types.

(iii) The SAT problem is considered to explore its com-
putational efficiency. In our research, owing to membrane
division, we obtained the uniform solution of anNP-complete
problem.

(iv) The variant can better reflect the uncontrollability
of rules execution time, thus a more robust system is
constructed; therefore, in the sense that this variant may be
more suitable for particular applications.

This paper will be written as the following structure.
First, we introduce some foundations related to this article.
In section III, the variant T FPPM is established. Next, the
computational power of the variant is explored to generate
numbers. In section V, T FPPM is employed to solve
the SAT ; particularly, the efficiency and feasibility of
T FPPM are demonstrated by one example in section VI.
In the end, some conclusions are presented.

II. FOUNDATIONS
A. FORMAL LANGUAGE THEORY
An alphabet O is an infinite non-empty set in which the
elements are symbols.O∗ denotes the set of strings composed
by symbols in O or the empty string λ (without a symbol
in it), and O+ denotes the set of strings composed by the
symbol in O but without λ, namely, O+

= O∗
− λ. O∗

and O+ can contain an infinite variety of sets composed by
symbols from O. Given a string w (w ∈ O∗), the length of
w, which is the quantity of symbols in this string, denoted by
|w|. Note that if a symbol in a string appears multiple times,
the repeated symbols needs to be counted in the length of the
string. For example, relative to a string ambnc, its length is
m + n + 1. For an empty string, obviously, |λ| = 0. Two
strings can be concatenated, and the result is a sequence of
strings composed by the two strings; for example, if strings w
and u are concatenated, the string wu would be the result of
concatenation.

A multiset from an alphabet O is represented by (O, f).
If O = {u1, . . . , um}, 1 ≤ i ≤ m, f (ui) is the
multiplicity of object ui; namely, f (ui) is the quantity of ui.
If O = {u1, . . . , um}, the multiset (O, f) is represented by
uf (u1)1 uf (u2)2) . . . uf (um)m .

B. REGISTER MACHINES
Definition 1: A register machine is a five tuple, namely
M = (m,H , l0, lh, I), where, m is registers, H denotes a
labels set, l0 (resp., lh) ∈ H denotes the initial instruction
(resp., halting instruction), I represents instructions of three
categories:

• li : (ADD(r), lj, lk) (register machine r can be added
with 1, and lj or lk can be performed);

• li : (SUB(r), lj, lk) (the register would be subtracted by
1 if its value is non-zero, and lj can be used; if not, lk can
be used);

• lh : HALT .
Initially, a system runs the instruction with label l0, and

all register machines are empty. Subsequently, instructions
are activated automatically and continuously until lh is used,

54860 VOLUME 11, 2023

X. Wan et al.: Flip-Flop P Systems With Proteins on Membranes in a Time-Free Manner

and then the system stops running. Like this, a number is
generated in register 1; notably, NRE represents that a system
can generate all set of Turing computable numbers.

C. TIMED P SYSTEMS
Relative to membrane computing, in the past each rule
of most variants is assumed to have an identical unit;
namely, all rules are assumed to have a unit time from
the beginning to the end of rules execution. However,
relative to time-freeness, the execution time of an arbitrary
rule is uncertain, thereby reflecting uncontrollable time in
biochemical reactions, which allows the system to break the
time limitation and thus has better robustness. When such
a system is running, a global clock is assumed to contain
a sequence of equal time segments from time 0. When
there exists an executable rule, this moment corresponds to
a RS-step, and we call this moment step 1. However, it is
important that the execution time is not determinable. In a
T FPPM, e denotes that T FPPM systems run with the
working mode of time-freeness; e(R) → N denotes that
the execution time is mapped to a natural number. When
a rule R is executed at time t , this moment corresponds
to a RS-step, and rule R stops operation at time t + e(R),
where objects in the rule would be executed by other rules at
time t + e(R) + 1.

III. T FPPM SYSTEMS
In this section, based on the robustness of biochemical
reactions, we introduce time-freeness into FPPM, thus
construct a new variant, namely timed flip-flop P systems
with proteins, where the computing result is irrelevant to the
execution time of each rule; additionally, proteins on each
membrane only has two types of working states.
Definition 1: A T FPPM system (degree m ≥ 1) is the

following tuple:

5 = (O,P, µ,E, α1/β1, . . . , αm/βm,R, e, iout),

where
• O is an alphabet of objects;
• P represents non-empty alphabets of proteins
(O ∩ P = ∅). The protein on a membrane only has two
working states.

• E represents an infinite number of objects in the
environment;

• µ represents nested membrane structure with m nodes;
• αi ⊆ O(1 ≤ i ≤ m), are multisets located in
membrane i;

• βi ⊆ P(1 ≤ i ≤ m), are objects of proteins located on
membrane i;

• e denotes that T FPPM systems run with the working
mode of time-freeness;

• iout is the output region (iout ∈ {0, 1, . . . ,m});
• R represents rules associated with a membrane label,
where a protein p on a membrane h is denoted by [p|]h.
(i) evolution rules:

(a) [p|u]h → [p′
|v]h, u, v ∈ O, p, p′

∈ P,

h ∈ {1, . . . ,m}.

When an object occurs in a membrane, it is evolved
to another object. Applied such a rule, the protein may
change or not change.
(b) u[p|]h → v[p′

|]h, u, v ∈ O, p, p′
∈ P,

h ∈ {1, . . . ,m}.

When an object occurs outside a membrane, it evolved
to another object. Applied such a rule, the protein may
change or not change.
(c) [p|u]h → v[p′

|]h, u, v ∈ O, p, p′
∈ P,

h ∈ {1, . . . ,m}.

When an object occurs in a membrane, it is evolved
to another object and comes out from that membrane.
Applied such a rule, the protein may change or not
change.
(d) u[p|]h → [p′

|v]h, u, v ∈ O, p, p′
∈ P,

h ∈ {1, . . . ,m}.

When an object occurs outside a membrane, it enters the
membrane and can be evolved to another object. Applied
such a rule, the protein may change or not change.
(e) u[p|v]h → w[p′

|z]h, u, v,w, z ∈ O, p, p′
∈ P,

h ∈ {1, . . . ,m}.

When an object occurs outside a membrane and one
object occurs inside this membrane, the outside object
enters the membrane, while the inside object comes to
the outside region. Applied such a rule, each object in
the rule may be evolved to another object, and protein
may change or not change.
(ii) division rules:
(f) [p|u]h → [p′

|v]h[p′
|w]h, u, v,w ∈ O, p, p′

∈ P,

h ∈ {1, . . . ,m}.

The initial membrane may be an elementary membrane
or non-elementarymembrane.When applied such a rule,
the protein on the initial membrane may be changed;
simultaneously, v and w appear in the new membranes.

Initially, the system is denoted by

(α1/β1, . . . , αm/βm, µ),

that is, α1, . . . , αm (resp., β1, . . . , βm) are placed in
(resp., on) the corresponding membranes. At each step,
the configuration is described by µ and correspond-
ing objects including proteins. For each evolution rule,
we define its rule length with the quantity of objects
located in each region associated with this rule. with non-
deterministic maximally parallel strategy [1], the transitions
can be obtained. Finally, when no rules are available
and no rules are being executed, the system reaches
completion.
When a T FPPM is running, the computing result is

irrelevant to the execution time of rules. For example, a
T FPPM has the structure µ = [[]2]1; a multiset of objects
ab exists in membrane 2, and protein D (resp., E) exists on
membrane 1 (resp., membrane 2); in addition, there are three
rules associated with the membranes:

R1 ≡ [E|a]2 → u[E|]2.

VOLUME 11, 2023 54861

X. Wan et al.: Flip-Flop P Systems With Proteins on Membranes in a Time-Free Manner

R2 ≡ [E|b]2 → u[E|]2.
R3 ≡ [D|u]1 → w[D′

|]1.

A T FPPM and FPPM may run differently. In Fig-
ure 1, an example will illustrate the difference between these
two approaches. First, we consider the execution ofFPPM.
Initially, rules R1 and R2 are activated simultaneously, and
two copies of object u will generated in membrane 1. Next
step, rule R3 is available. Owing to maximal parallelism,
rule R3 can be executed multiple times, therefore two copies
of object w come to the environment as the computing
result.

Next, we consider the strategy of time-freeness to run
a T FPPM. Initially, rules R1 and R2 are activated
simultaneously; however, these rules may have different
execution time, namely, e(R1) ̸= e(R2). Hence, two copies
of object u will be produced successively. When one copy of
object u is produced, rule R3 is available, and object w comes
to the environment, replacing the proteinE by E ′. In this case,
because R3 has already changed the protein on membrane 1,
the rule will no longer be used. Hence, ruleR3 can be executed
once, therefore an object w will be transferred to outside of
the skin membrane.

Therefore, the computing process including computing
result of a T FPPM and FPPM may be different.
Definition 2: a recognizer T FPPM system is defined as

follows:

5 = (O,P, 6,µ,E, α1/β1, . . . , αm/βm,R, e, iin, iout),

where
• 6 is an input alphabet from set O;
• YES, NO ∈ O;
• e means that the system runs with time-freeness;
• iin (resp., iout) represents the input (resp., output) region;
• The working alphabet is composed of object YES and
NO;

• Computations associated with the T FPPM system
will halt;

• When T FPPM system reaches completion, the region
iout would generate YES or NO.

The other parameters are defined as in Definition 1.
At the initial configuration, the input multiset iin appears in a
membrane. A recognizer T FPPM system uses maximum
parallelism as the strategy for applying rules. Furthermore,
rules are applied non-deterministically. Finally, a recognizer
T FPPM reaches the halting computation with certainty
and produces related objects, which are stored in iout .
It must be emphasized that e denotes time-freeness, meaning
that operation time associated to rules from start to finish
cannot be determined. When the system reaches completion,
a result would appear in the region iout . If YES (resp.,
NO) appears, we call it an accepting (resp., rejecting)
computation.
Definition 3: X = (IX , θX) denotes a decision problem,

where IX is instances, and θX represents a predicate of the
instances. The problem can be solved in polynomial time,
if the following holds:

(i) 5 is polynomially uniform by Turing machines;
(ii) Relative to a IX , there is a pair (cod, s) of polynomial-

time computable functions such that:
• Suppose u corresponds to an instance, u ∈ IX , s(u) is a
natural number; additionally, cod(u) represents an input
multiset of T FPPM system.

• Relative to (X , cod, s), such a system is complete with
time-freeness. Suppose u ∈ IX relative to a problemwith
time-freeness, computations of5(s(u), e) with cod(u) is
an accepting one.

• Relative to (X , cod, s), such a system is soundwith time-
freeness. With regard to u ∈ IX , T FPPM system has
an accepting computation, θX (u) = 1;

• Relative to (X , cod, s), such a system is polynomially
bounded with time-freeness. Notably, the computing
result is therefore irrelevant to the execution time of
rules, and we have the polynomial function p(n) such
that for each u ∈ IX ; hence, T FPPM system must
stop computation after p(|u|) RS-steps (p is a polynomial
function).

Definition 4: The maximum rule length of a T FPPM
system is equivalent to that of evolution rules in the
system.PMC f

T FPPM(k) indicates that a family of recognizer
T FPPM systems can obtain a uniform solution to the class
of decision problems in polynomial time, where, k represents
the maximum length in the T FPPM, f represents the time-
free mode.
Definition 5: NOPfm(rulek) is the set of natural numbers

generated by T FPPM systems, where m is the number of
membranes and f represents the time-free mode; moreover,
rule indicates rule types, e.g., types from (a) to (f). and k is
the maximal length of the corresponding rules.

IV. UNIVERSITY OF T FPPM SYSTEMS
M = (m,H , l0, lh, I) denotes the register machine with m
registers. When a register is used to the device of generate
numbers, ADD instruction would not be used on register 1,
and the register 1 stores the generated numbers. Once the
system reaches completion, all registers except register 1 are
empty.

For details of automata theory, one can refer to [40].
Theorem 1: NOPf1((c)2, (d)2, (e)4) = NRE .
Proof: A T FPPM system is designed as follows.

5 = (O,P, 6,µ, ∅,w1/z1,R, e, iout),

where
• O = {l, l ′, l ′′, l ′′′, l iv, lv|l ∈ H} ∪ {ar |1 ≤ r ≤ m};
• P = {p, p′

};
• E = {l ′′|l ∈ H} ∪ {ar |1 ≤ r ≤ m};
• w1 = {l0};
• µ = []1;
• iout = 1.
Object ar will locate in membrane 1, which number can

be viewed as the value of register r ; when object lh exists
in this membrane, the system reaches completion, and the

54862 VOLUME 11, 2023

X. Wan et al.: Flip-Flop P Systems With Proteins on Membranes in a Time-Free Manner

FIGURE 1. The computing results of a T FPPM and FPPM.

value is the computation result. li : (ADD(r),lj, lk) (resp.,
li : (SUB(r), lj, lk)) corresponds to the ADD instruction
(resp., SUB instruction).

A. RULES OF ADD INSTRUCTION

R1 ≡ ar [p|li]1 → l ′i [p|ar]1.

R2 ≡ l ′i [p|]1 → [p|lj]1.

R3 ≡ l ′i [p|]1 → [p|lk]1.

The ADD instruction works as follows. At a certain RS-step,
the system starts to apply rule R1; thus, the outside object
ar enters membrane 1, and the inside object li comes to
the outside region to start simulating ADD instruction. This
computing process will generate the object ar in membrane
1. Next, R2 or R3 can be applied non-deterministically, and lj
or lk would appear in the membrane.

B. RULES OF SUB INSTRUCTION

R4 ≡ l ′′i [p|li]1 → l ′′′i [p
′
|l ′i]1.

R5 ≡ l ′′′i [p
′
|ar]1 → ar [p|l ′′′i]1.

R6 ≡ [p′
|l ′i]1 → l ivi [p|]1.

R7 ≡ l ′′′i [p|]1 → [p′
|lvi]1.

R8 ≡ l ivi [p|l
′′′
i]1 → l ′′i [p|lj]1.

R9 ≡ l ivi [p
′
|lvi]1 → l ′′i [p|lk]1.

At a certain RS-step, the system starts to execute rule R4,
thus the state of p is changed to p′, and l ′i including l

′′′ appear
in corresponding regions. Next, two cases would occur in
membrane 1.

(i) Object ar exists in the membrane. At the second
RS-step,R5 andR6 can be applied simultaneously. Because of
the protein p′ and object l ′′′i , object ar leaves membrane 1 by
applying rule R5; simultaneously, rule R6 is available, and l ′i
comes to the environment and is changed to l ivi . Notably, the
execution of R5 and R6 may stop at the different time because
of time-freeness; however, note that when l ′′′i and l ivi appear
in the corresponding regions, the next rule R8 would be used;
hence, only both R5 and R6 reach completion, rule R8 can
be used, thus object lj appears in the region, and protein p

replaces p′. Hence, it takes 3 RS-steps. In this case, applied
rules and corresponding objects including proteins are shown
in Table 1. Overall, rules are activated successively as follows.

R4 → {R5,R6} → R8

(ii) Object ar does not exist in the membrane. Next, only
R6 can be applied, thus l ′i comes to the environment and is
changed to l ivi . Subsequently, R7 can be applied, the protein p

′

will replace p; simultaneously, l ′′′i comes to membrane 1 and
is changed to l ivi . Finally, because of the protein p

′ and objects
l ivi including lvi , rule R9 is available, thus object lk appears
in the membrane, and protein p generates for the purpose
of simulating the next instruction. Therefore, the procedure
above can correctly simulate instruction lk . Evidently, it takes
4 RS-steps. In this case, applied rules and corresponding
objects including proteins are shown in Table 2. Overall, rules
are activated successively as follows.

R4 → R6 → R7 → R9

As we have mentioned, the constructed system can work
independently from execution time of rules. Finally, object
lh would be generated in membrane 1, which indicates the
system reaches completion.

V. A UNIFORM SOLUTION TO THE SAT PROBLEM
BASED ON T FPPM SYSTEMS
A. CONSTRUCTING T FPPM SYSTEMS TO SOLVE THE
SAT
Theorem 2: (SAT ∈ PMC f

T FPPM(4)):
Proof: A SAT with n Boolean variables and m clauses is

the following formula:

Cj = y1,j ∨ · · · ∨ ypj,j,

where yi,j ∈ {xl, ¬xl |1 ≤ l ≤ n}, 1 ≤ i ≤ pj, 1 ≤ j ≤ m; ¬xl
is the negation of a propositional variable xl .

we encode a formula γ by cod(γ) as follows:

cod(γ) = B1,1 · · ·Bn,1B1,2 · · ·Bn,2 · · ·B1,m · · ·Bn,m,

VOLUME 11, 2023 54863

X. Wan et al.: Flip-Flop P Systems With Proteins on Membranes in a Time-Free Manner

TABLE 1. computations if object ar exists in cell 1.

TABLE 2. computations if object ar do not exist in cell 1.

where, Bi,j is denoted by the following multisets:

Bi,j =


Di,j : xi is in Cj;
Ei,j : ¬xi is in Cj;
Fi,j : neither xi nor ¬xi is in Cj.

A recognizer 5T FPPM(m,n) system is defined as follows:

5T FPPM(m,n) = (O,P, 6,µ, ∅,w1/z1, . . . ,w4/z4,R, e,

iin, iout),

where
• O = 6 ∪ {ai|1 ≤ i ≤ n+ 1}

∪ {ti,j, fi,j, bi|1 ≤ i ≤ n, 1 ≤ j ≤ m+ 1}
∪ {rj|1 ≤ j ≤ m}

∪ {sj|2 ≤ j ≤ m+ 1}
∪ {c,YES,NO};

• P = {g, g′, p, p′, q, s, s′};
• 6 = {Di,j,Ei,j,Fi,j|1 ≤ i ≤ n, 1 ≤ j ≤ m};
• µ = [[[]3]2[]4]1;
• w1 = {NO},w2 = {a1},w3 = w4 = ∅;
• z1 = g, z2 = p, z3 = q, z4 = s;
• iin = 3, iout = 0 (the environment);
• R is the following set of rules:

1) GENERATION PHASE

R1,i ≡ [p|ai]2 → [p|ti,1]2[p|fi,1]2, i ∈ {1, . . . , n}.

R2,i,j ≡ ti,j[q|Di,j]3 → ti,j+1[q|rj]3,

ti,j[q|Ei,j]3 → ti,j+1[q|c]3,

ti,j[q|Fi,j]3 → ti,j+1[q|c]3,

i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}

R3,i,j ≡ fi,j[q|Ei,j]3 → ti,j+1[q|rj]3,

fi,j[q|Di,j]3 → ti,j+1[q|c]3,

fi,j[q|Fi,j]3 → ti,j+1[q|c]3,

i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}

R4,i ≡ [p|ti,m+1]2 → ti,m+1[p′
|]2, i ∈ {1, . . . , n}.

R5,i ≡ ti,m+1[pi|fi,m+1]2 → bi[p′
i|c]2, i ∈ {1, . . . , n}.

R6,i ≡ bi[s|]4 → [s′|bi]4, i ∈ {1, . . . , n}.

R7,i ≡ [s′|bi]4 → [s′|ai+1]4[s′|ai+1]4, i ∈ {1, . . . , n}.

R8,i ≡ [s′|ai]4 → ai[s|]4, i ∈ {2, . . . , n+ 1}.

R9,i ≡ ai+1[p′
|]2 → [p|ai+1]2, i ∈ {1, . . . , n}.

Initially, the system runs with applying rule R1,1 and R12
simultaneously. By applying division rule R1,1, object t1,1
(true of variable x1) and f1,1 (false of variable x1) appear
in the generated membranes. After rule R1,1 is executed,
by applying rule R2,1,j (resp., R3,1,j), object D1,j (resp.,
E1,j) evolves to object rj under the influence of object t1,1
(resp., f1,1). T FPPM systems apply ruleR2,1,j (resp.,R3,1,j)
with iterative process. By applying rule R2,1,j (resp., R3,1,j),
the second subscript of object t1,j (resp., f1,j) in membrane
2 would add 1. Thus, when these rules finish, the subscript
is m+ 1.
After rule R2,1,j is executed, object t1,m+1 is generated, and

rule R4,1 is applied, thus object t1,m+1 will appear outside
of membrane 2. Simultaneously, the state of protein in that
membrane can be changed from p to p′. Next step, if object
f1,m+1 appears in the membrane, it indicates that all the rules
in R3,1,j have been executed. At that time, object t1,m+1
enters membrane 2 and evolves to object c by using R5,1.
Simultaneously, object f1,m+1 can be generated outside of
membrane 2 and changed to object b1. Next step, object
b1 enters membrane 4 by applying the next rule, changing
the state of protein s to s′. If object b1 appears in the
membrane 4, rule R7,1 starts to be applied. Next step, object
a2 comes to the corresponding membrane, and the protein
s is generated by applying rule R8,1. Finally, each copy of
object a2 enters each membrane with label 2 by applying
rule R9,1. With applying the rule, the computing process of
x1 completes.

The subsequent process works similarly with x1.
T FPPM systems continue to run for variables x2. For the i-
th iteration of variable xi, rule R5,i start to apply until objects
t1,m+1 and f1,m+1 appear in the corresponding membranes.
Therefore, rule R5,i has a synchronization function.

54864 VOLUME 11, 2023

X. Wan et al.: Flip-Flop P Systems With Proteins on Membranes in a Time-Free Manner

FIGURE 2. The membrane structure when generation phase halts.

It must be emphasized that T FPPM systems work in the
time-free way. Furthermore, for each protein in the system,
there exist only two types of working states. On the whole,
after 2mn+6n RS-steps, the computing process of this phase
completes, 2n copies of membrane 2 and membrane 4 are
generated in membrane 1 (see Figure 2).

2) CHECKING PHASE

R10 ≡ an+1[q|r1]3 → s2[q|c]3.

R11,j ≡ sj[q|rj]3 → sj+1[q|c]3, j ∈ {2, . . . ,m}.

When object an+1 appears on an arbitrary membrane 2, it is
obvious that the generation phase has finished. Because of
maximal parallelism, object an+1 of each membrane 2 will
appear at the same time. If an+1 in a membrane 2 and r1 in
a membrane 3, object s2 can be generated in the membranes
2 with applying rule R10.
If object si (2 ≤ i ≤ m) occurs, rule R11,j would be

executed. When sm occurs, rule R11,m is executed. Therefore,
sm+1 may appear in the end.

3) OUTPUT PHASE

R12 ≡ [g|NO]1 → NO[g′
|]1.

R13 ≡ [p|sm+1]2 → YES[p′
|]2.

R14 ≡ [g′
|YES]1 → YES[g|]1.

R15 ≡ NO[g|]1 → [g′
|NO]1.

Under the influence of the protein g and object NO, R12
would be activated. At this moment, there exist two cases.
(i) affirmative answer: sm+1 appears on an arbitrary

membrane 2, and object sm+1 is changed to YES and comes
out from its own membrane by employing R13. Next step,
object YES come to the output region and the protein on the
membrane 1 is changed to g. After the rules from R12 to R14
have been executed, under the influence of protein g, object
NO comes to membrane 1. Therefore, it is a affirmative
answer because YES exists in iout when the system reaches
completion at the final configuration.
(ii) negative answer: In this case, the system cannot apply

the rules from R13 to R15. Therefore, it is a affirmative
answer because NO exists in iout when the system reaches
completion at the final configuration.

FIGURE 3. The initial configuration.

FIGURE 4. The configuration corresponding to the computation of x1.

B. SOME FORMAL DETAILS
The computing resources of 5T FPPM(m,n) are listed as
follows.

• size of the set O: 5mn+ 4n+ 2m+ 4 ∈ O(mn);
• size of the set P: 7 ∈ O(n);
• initial number of membranes: 4 ∈ O(1);
• initial number of objects: 2 ∈ O(1);
• initial number of proteins on membranes: n+ 3 ∈ O(n);
• the total number of rules: 2mn+ 7n+ m+ 4 ∈ O(mn);
• the maximal length of rules: 4 ∈ O(1).

VI. AN INSTANCE OF 5T FPPM(M,N)
In this section, we use 5T FPPM(m,n) to solve an instance,
which is expressed as follows:

γ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

The instance γ is encoded by the multiset:

6 = D1,1D2,1E3,1E1,2F2,2D3,2E1,3D2,3D3,3

Figure 3 shows the initial structure of 5T FPPM(m,n).
At step 1, the system runs with applying rule R1,1 and
R12 simultaneously, and membrane 2 is divided into two
membranes by applying division rule R1,1, so t1,1 and
f1,1 can be generated in the new membrane respectively.
Then, by applying rule R2,1,j (resp., R3,1,j), rj or e1 can be
generated. The rule R2,1,j (resp., R3,1,j) is used, thus t1,4
(resp., f1,4) will appear. Rule R4,1 is activated when rule
R2,1,j completes. Similarly, rule R5,1 starts to be applied
only when the application of R2,1,j and R4,1 has finished.
At that moment, t1,4 and f1,4 appear in the corresponding
membrane respectively. Finally, object b1 can be generated in
membrane 1. When b1 appears, rule R7,1 is applied. Finally,

VOLUME 11, 2023 54865

X. Wan et al.: Flip-Flop P Systems With Proteins on Membranes in a Time-Free Manner

FIGURE 5. The configuration corresponding to the computation of x2.

FIGURE 6. The configuration corresponding to the computation of x3.

FIGURE 7. The configuration if checking phase finishes.

FIGURE 8. The final configuration.

54866 VOLUME 11, 2023

X. Wan et al.: Flip-Flop P Systems With Proteins on Membranes in a Time-Free Manner

when the application of R8,1 and R9,1 halts, object a2 locates
in membrane 2, and the computing process of x1 halts (see
Figure 4). Because time-freeness is the strategy for applying
rules, we could not decide whether rule R12 halts or not; here,
we assume that the rule has been executed.

Once the computation of x1 finishes, by using rule R1,2,
four membranes 2 are generated. 5T FPPM(m,n) continues
to assign values to variables x2. similarly, Figure 5 (resp.,
Figure 6) is the configuration corresponding to the computing
process of x2 (resp., x3).

If object a4 appears on a membrane labeled 2, it is obvious
that the generation phase has finished. When object a4 and
r1 appear in membranes 2, object s2 can be generated by
applying rule R10. Next, when si occurs, the system starts to
apply rule R11,j. In the end, s4 is generated (see Figure 7).
When 5T FPPM(m,n) reaches completion, the instance has
satisfiable solution because YES exists in the output region
(see Figure 8).

VII. CONCLUSION
In this work, the variant T FPPM has been established, and
we have obtained the result that only one membrane and a
maximum rule length of 4 is Turing universal. Therefore,
the model can be deployed in the time-free mode to
actualize applications, thereby building robust computational
system that would not be influenced by rule execution time.
Additionally, we obtained a uniform solution of an NP-
complete problem in polynomial time. It is shown that
T FPPM has strong computational efficiency even when
it runs with time-freeness. In [37], the SAT problem was
solved by PPM systems with time-freeness; however, the
protein on a membrane may has a variety of working states,
which differs from our work; that is, our model has only two
working states for each protein.

In Section IV, we have employed the rule types (c), (d) and
(e). In order to optimize the result, readers can attempt to
apply other rules to achieve Turing universality, e.g., types
from (a) to (d), which have a shorter rule length.

In our work, when rules are applied, the time-free mode
is adopted as the strategy. One can apply flat maximal
parallelism [41], minimal parallelism [42], rule synchroniza-
tion [43] and local synchronization [44] to apply rules.

REFERENCES
[1] G. Paŭn, ‘‘Computing with membranes,’’ J. Comput. Syst. Sci., vol. 61,

no. 1, pp. 108–143, Aug. 2000.
[2] L. M. Adleman, ‘‘Molecular computation of solutions to combinatorial

problems,’’ Science, vol. 266, no. 5187, pp. 1021–1024, Nov. 1994.
[3] K. Roy, A. Jaiswal, and P. Panda, ‘‘Towards spike-based machine

intelligence with neuromorphic computing,’’ Nature, vol. 575, no. 7784,
pp. 607–617, Nov. 2019.

[4] R. Freund, G. Păun, and M. J. Pérez-Jiménez, ‘‘Tissue P systems with
channel states,’’ Theor. Comput. Sci., vol. 330, no. 1, pp. 101–116,
Jan. 2005.

[5] X. Song, L. Valencia-Cabrera, H. Peng, and J. Wang, ‘‘Spiking neural P
systems with autapses,’’ Inf. Sci., vol. 570, pp. 383–402, Sep. 2021.

[6] T. Wu, Q. Lyu, and L. Pan, ‘‘Evolution-communication spiking neural P
systems,’’ Int. J. Neural Syst., vol. 31, no. 2, Feb. 2021, Art. no. 2050064.

[7] T. Wu, L. Zhang, Q. Lyu, and Y. Jin, ‘‘Asynchronous spiking neural P
systems with local synchronization of rules,’’ Inf. Sci., vol. 588, pp. 1–12,
Apr. 2022.

[8] B. Song, X. Zeng, M. Jiang, and M. J. Pérez-Jiménez, ‘‘Monodirectional
tissue P systems with promoters,’’ IEEE Trans. Cybern., vol. 51, no. 1,
pp. 438–450, Jan. 2021.

[9] B. Song, X. Zeng, and A. Rodríguez-Patón, ‘‘Monodirectional tissue P
systems with channel states,’’ Inf. Sci., vol. 546, pp. 206–219, Feb. 2021.

[10] Y. Luo, H. Tan, Y. Zhang, and Y. Jiang, ‘‘The computational power of timed
P systemswith activemembranes using promoters,’’Math. Struct. Comput.
Sci., vol. 29, no. 5, pp. 663–680, May 2019.

[11] P. Guo, J. Zhu, H. Chen, and R. Yang, ‘‘A linear-time solution for all-SAT
problem based on P system,’’Chin. J. Electron., vol. 27, no. 2, pp. 367–373,
Mar. 2018.

[12] P. Guo, C. Quan, and H. Chen, ‘‘MEAMVC: A membrane evolutionary
algorithm for solving minimum vertex cover problem,’’ IEEE Access,
vol. 7, pp. 60774–60784, 2019.

[13] Y. Luo, Y. Zhao, and C. Chen, ‘‘Homeostasis tissue-like P systems,’’ IEEE
Trans. Nanobiosci., vol. 20, no. 1, pp. 126–136, Jan. 2021.

[14] D. Díaz-Pernil, H. A. Christinal, and M. A. Gutiérrez-Naranjo, ‘‘Solving
the 3-COL problem by using tissue P systems without environment and
proteins on cells,’’ Inf. Sci., vols. 430–431, pp. 240–246, Mar. 2018.

[15] P. Guo, H. Z. Chen, and H. Zheng, ‘‘Arithmetic expression evaluations with
membranes,’’ Chin. J. Electron., vol. 23, no. 1, pp. 55–60, 2014.

[16] X. Zeng, T. Song, X. Zhang, and L. Pan, ‘‘Performing four basic arithmetic
operations with spiking neural P systems,’’ IEEE Trans. Nanobiosci.,
vol. 11, no. 4, pp. 366–374, Dec. 2012.

[17] P. Guo, J. Ji, H. Chen, and R. Liu, ‘‘Evaluating logical expressions by
membrane systems,’’ Chin. J. Electron., vol. 23, no. 2, pp. 278–283, 2014.

[18] Y. Luo, P. Guo, Y. Jiang, and Y. Zhang, ‘‘Timed homeostasis tissue-like
P systems with evolutional symport/antiport rules,’’ IEEE Access, vol. 8,
pp. 131414–131424, 2020.

[19] Z. Gazdag and G. Kolonits, ‘‘A new method to simulate restricted variants
of polarizationless P systems with active membranes,’’ J. Membrane
Comput., vol. 1, no. 4, pp. 251–261, Dec. 2019.

[20] H. Peng and J. Wang, ‘‘Coupled neural P systems,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 6, pp. 1672–1682, Jun. 2019.

[21] L. Pan and B. Song, ‘‘P systems with rule production and removal,’’
Fundamenta Informaticae, vol. 171, nos. 1–4, pp. 313–329, Oct. 2019.

[22] G. Singh and K. Deep, ‘‘Effectiveness of new multiple-PSO based
membrane optimization algorithms on CEC 2014 benchmarks and Iris
classification,’’ Natural Comput., vol. 16, no. 3, pp. 473–496, Sep. 2017.

[23] G. Zhang, H. Rong, F. Neri, and M. J. Pérez-Jiménez, ‘‘An optimiza-
tion spiking neural P system for approximately solving combinatorial
optimization problems,’’ Int. J. Neural Syst., vol. 24, no. 5, Aug. 2014,
Art. no. 1440006.

[24] J. Wang, H. Peng, W. Yu, J. Ming, M. J. Pérez-Jiménez, C. Tao, and
X. Huang, ‘‘Interval-valued fuzzy spiking neural P systems for fault
diagnosis of power transmission networks,’’ Eng. Appl. Artif. Intell.,
vol. 82, pp. 102–109, Jun. 2019.

[25] J. Hu, H. Peng, J. Wang, and W. Yu, ‘‘kNN-P: A kNN classifier optimized
by p systems,’’ Theor. Comput. Sci., vol. 817, pp. 55–65, May 2020.

[26] G. Zhang, M. J. Pérez-Jiménez, and M. Gheorghe, Real-Life Applications
With Membrane Computing. Berlin, Germany: Springer, 2017.

[27] G. Zhang, M. J. Pérez-Jiménez, A. Riscos-Núñez, S. Verlan, S. Konur,
T. Hinze, and M. Gheorghe, Membrane Computing Models: Implementa-
tions. Berlin, Germany: Springer, 2021.

[28] B. Song, K. Li, D. Orellana-Martín, M. J. Pérez-Jiménez, and
I. Pérez-Hurtado, ‘‘A survey of nature-inspired computing: Membrane
computing,’’ ACM Comput. Surv., vol. 54, no. 1, pp. 1–31, 2021.

[29] A. Păun and B. Păun, ‘‘P systems with proteins on membranes,’’ Int. J.
Found. Comput. Sci., vol. 72, no. 4, pp. 467–483, 2006.

[30] A. Păun, M. Paun, A. Rodríguez-Patón, and Manuela Sidoroff, ‘‘P systems
with proteins on membranes: A survey,’’ Int. J. Found. Comput. Sci.,
vol. 22, no. 1, pp. 39–53, 2011.

[31] A. Păun and B. Popa, ‘‘P systems with proteins on membranes and
membrane division,’’ in Developments in Language Theory (Lecture
Notes in Computer Science). Berlin, Germany: Springer-Verlag, 2006,
pp. 292–303.

[32] P. Sosík, A. Păun, and A. Rodríguez-Patón, ‘‘P systems with proteins
on membranes characterize PSPACE,’’ Theor. Comput. Sci., vol. 488,
pp. 78–95, Jun. 2013.

VOLUME 11, 2023 54867

X. Wan et al.: Flip-Flop P Systems With Proteins on Membranes in a Time-Free Manner

[33] C. Hu, Y. Li, and B. Song, ‘‘P systems with proteins on active membranes,’’
Mathematics, vol. 10, no. 21, pp. 1–10, 2022.

[34] M. Cavaliere and D. Sburlan, ‘‘Time–independent P systems,’’ in
Membrane Computing (Lecture Notes in Computer Science). Berlin,
Germany: Springer-Verlag, 2005, pp. 239–258.

[35] Y. Luo, Z. Xiong, and G. Zhang, ‘‘Time-free solution to SAT problem by
tissue P systems,’’Math. Problems Eng., vol. 2017, pp. 1–8, Jan. 2017.

[36] Y. Zhao, X. Liu, M. Sun, J. Qu, and Y. Zheng, ‘‘Time-free cell-P
systemswithmultiple promoters/inhibitors,’’ Theor. Comput. Sci., vol. 843,
pp. 73–83, Dec. 2020.

[37] B. Song, M. J. Pérez-Jiménez, and L. Pan, ‘‘An efficient time-free solution
to SAT problem by P systems with proteins on membranes,’’ J. Comput.
Syst. Sci., vol. 82, no. 6, pp. 1090–1099, Sep. 2016.

[38] S. Krishna, ‘‘On the computational power of flip-flop proteins on
membranes,’’ in Proc. Conf. Comput. Eur., Comput. Log. Real World.
Bombay, India: Springer-Verlag, 2007, pp. 695–704.

[39] A. Păun and A. Rodríguez-Patón, ‘‘On flip-flop membrane systems with
proteins,’’ in Proc. Int. Conf. Membrane Comput. Thessaloniki, Greece:
Springer-Verlag, 2007, pp. 414–427.

[40] M. Minsky, Computation: Finite and Infinite Machines. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1967.

[41] L. Pan, G. Păun, and B. Song, ‘‘Flat maximal parallelism in P systems with
promoters,’’ Theor. Comput. Sci., vol. 623, pp. 83–91, Apr. 2016.

[42] G. Ciobanu, L. Pan, G. Păun, and M. J. Pérez-Jiménez, ‘‘P systems with
minimal parallelism,’’ Theor. Comput. Sci., vol. 378, no. 1, pp. 117–130,
Jun. 2007.

[43] B. Song and L. Pan, ‘‘Rule synchronization for tissue P systems,’’ Inf.
Comput., vol. 281, Dec. 2021, Art. no. 104685.

[44] L. Pan, A. Alhazov, H. Su, and B. Song, ‘‘Local synchronization on
asynchronous tissue P systems with symport/antiport rules,’’ IEEE Trans.
Nanobiosci., vol. 19, no. 2, pp. 315–320, Apr. 2020.

XIAOMING WAN was born in Chongqing, China,
in 1975. He received the master’s degree in
computer application from Chongqing University,
China, in 2009. He is currently with the College
of Electronics and IoT Engineering, Chongqing
Industry Polytechnic College, Chongqing. His
research interests include biological computing
and intelligent information processing.

YI LIU was born in Chongqing, China, in 1977.
He is currently a Professor with the College of Rail
Transit andAviation Services, Chongqing Industry
Polytechnic College, Chongqing. His research
interests include big data, network security, and
intelligent information processing.

YUEGUO LUO was born in Gulin, Sichuan,
China, in 1979. He received the Ph.D. degree
from Chongqing University, China, in 2017. Since
2004, he has been a Teacher with Yangtze Normal
University, Fuling, Chongqing. He is currently
an Associate Professor. His research interests
include membrane computing and computational
intelligence.

54868 VOLUME 11, 2023

