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ABSTRACT Tactile rendering is a promising technology that is necessary to integrate into virtual reality,
augmented reality, mixed reality, and evenmetaverse environments. One of the key technologies for realizing
tactile rendering is a reproduction or a display of tactile sensation. This study developed a model that
generates an appropriate input signal to an ultrasonic tactile display using a conditional generative adversarial
network. Sensory evaluation scores and vibration data acquired by a tactile sensor were used as training data
for the conditional generative adversarial network-based models. In this study, different cluster analysis
conditions were used to create the input information for the models. Each model generated the input signals
for an ultrasonic tactile display, and the accuracy of the models was evaluated through sensory evaluation
experiments. The results showed that model accuracy improved with moderate cluster classification and that
the reproducibility of tactile sensation created with the models developed in this study was improved when
compared with the reproducibility of tactile sensation created without the models.

INDEX TERMS Tactile display, machine learning, GAN, haptics, sensory reproduction.

I. INTRODUCTION
In recent years, technologies to reproduce highly real-
istic tactile sensations have been in demand in various
fields such as virtual/augmented/mixed reality environments,
e-commerce, entertainment, and teleoperated robot applica-
tions [1], [2]. Many researchers have been actively devel-
oping tactile reproduction or rendering technology for
decades [3], [4], [5], [6], [7]. To reproduce tactile sensations,
technologies to quantify the tactile sensation of an object
and to display tactile sensations using a tactile display are
necessary. To quantify tactile sensation, it has been sug-
gested that focusing on vibration information at the time of
object touch is an effective approach given the human tactile
perception mechanism [8], [9], [10], [11]. Tactile displays
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using ultrasonic transducers have also been suggested [12],
[13], [14] because of their compact structure and the poten-
tial for flexible predictability in vibration stimulation using
amplitude modulation techniques [15]. Hence, it is important
to focus on vibration as a sensing method for the quantifi-
cation of tactile sensation, and an ultrasonic transducer is
an effective way to apply vibration stimuli. However, it is
inappropriate to input the sensed vibration directly to the
ultrasonic transducer in order to reproduce tactile sensa-
tions. This is because the relationship between the quanti-
fied vibration information obtained by a tactile sensor and
the corresponding input to an ultrasonic tactile display is
not clear. Therefore, haptic rendering via tactile sensation,
that is, the conversion from sensed vibration to tactile sen-
sation and from tactile sensation to input to an ultrasonic
tactile display, is needed. For this tactile rendering, previous
studies have addressed the conversion from sensed vibration
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to tactile sensation [8], [9], [10], [11]. This study consid-
ers the conversion from tactile sensation to display input,
and focuses on conditional generative adversarial networks
(CGANs) [16], [17], which are a type of generative adver-
sarial network (GAN) [18], [19], as the conversion method.
In fact, several studies applying GAN to tactile technology
have been conducted in recent years [20], [21], [22], [23].
These studies indicate the effectiveness of using GANs to
generate input signals for tactile displays. Although the use
of human tactile sensation is unique in this study, its aim is
still to generate input signals for an ultrasonic tactile display.
Therefore, this study uses a GAN, specifically a CGAN,
as the tactile rendering method. Using a CGAN instead of
just a GAN enables us to generate signals that take human
tactile sensations into account.

FIGURE 1. Concept of CGAN-based tactile stimulus generation model
construction composed of Stages A and B for training and generating,
respectively. (a) Tactile information of the metal samples is collected
through sensory evaluation, (b) vibration data are measured by a tactile
sensor by tracing it over the metal samples, and (c) tactile information
when touching a tactile display generating (d) arbitrary signals is
obtained by sensory evaluation. In Stage A, the CGAN-based tactile
stimulus generation model is constructed using the datasets obtained
through (a)–(d). In Stage B, (e) signals suitable for input to the tactile
display are generated by the developed model.

II. CONCEPT OF CGAN-BASED TACTILE STIMULUS
GENERATION MODEL
The concept of the CGAN-based tactile stimulus genera-
tion model is shown in Fig. 1. The model consists of two
stages: training using the datasets (Stage A) and generating
the input signals for an ultrasonic tactile display using the
trained generator (Stage B). Metal plates are employed as test
samples in this study. First, tactile information is quantified
by a sensory evaluation with subjects by the semantic dif-
ferential (SD) method (Fig. 1(a)). Simultaneously, vibration
data are measured by a tactile sensor while it is tracing over
a sample (Fig. 1(b)). In addition, as shown in Fig. 1(c),

a sensory evaluation is conducted with arbitrary vibration
stimuli (Fig. 1(d)) generated by the ultrasonic tactile display.
By doing so, the relationship between the vibration stimuli
generated by the ultrasonic tactile display and tactile evalua-
tion score is obtained. The information obtained in the steps
shown in Fig. 1(a)-(d) is used to create a dataset to construct
a CGAN-based tactile stimulus generation model.

In the training part (Stage A), by alternately updating
the parameters of the generator and the discriminator, the
generator is eventually able to generate data corresponding to
the conditional labels. In this study, sensory evaluation values
were used for the conditional labels so that input signals to the
ultrasonic tactile display can be generated based on human
tactile information. Thus, by alternately training the generator
and the discriminator, the generator learns what kind of input
signals to generate for the tactile display in order to obtain the
sensory evaluation values of the metal plate samples on the
tactile display. The generated data approach the input signals
that enable the tactile display to obtain sensory evaluation
values similar to the values obtained when the samples are
touched. Finally, in the generating part (Stage B), the con-
structed CGAN-based tactile stimulus generation model con-
verts the quantified information into signals suitable for input
to the ultrasonic transducer of the tactile display (Fig. 1(e)).

FIGURE 2. Twelve metal samples.

III. PREPARATION OF THE DATASETS
A. TACTILE EVALUATION OF METAL PLATE SAMPLES
A total of 32 people (10 females and 22 males) aged
22.5±0.9 years (range: 21-24 years) participated in the
sensory evaluation experiment for the tactile sensations of
12 metal samples. The experiment protocol was approved in
advance by the Bioethics Board of the Faculty of Science and
Technology, Keio University. The participants were provided
a thorough explanation of the evaluation methods and then
signed an informed consent form before participating in the
study. The metal samples are shown in Fig. 2. The subjects
were asked to touch the samples one by one with visual infor-
mation blocked, and then to score ten Japanese evaluation
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TABLE 1. Words used in the sensory evaluation experiments words in
brackets are in japanese.

words (shown in Table 1) on a 7-point unipolar scale ranging
from 1 (negative) to 7 (positive) using the SD method. Visual
information was blocked because human tactile evaluation is
influenced by visual perception [24], [25]. Because the order
of touch could influence the tactile evaluation, the evaluation
order of the samples was random. The sensory evaluation
experiment yielded 384 instances of 10-component one-
dimensional data corresponding to the 10 evaluation words.
The data are stored in IEEE DataPort (DOI: 10.21227/
5jwn-qx81).

FIGURE 3. Overall view of the vibration data collection system.

B. VIBRATIONS WHEN SAMPLES ARE TRACED BY A
TACTILE SENSOR
The vibration data collection system used in this study is
shown in Fig. 3. A tactile sensor equipped with strain gauges
inside it [10] is mounted on a friction tester (TL201s, Trinity-
Lab Inc., Japan). The tactile sensor consists of a two-layer
silicone rubber pad with different hardness, and two strain
gauges are attached to phosphor bronze plates in each layer.
Hence, there are a total of four strain gauges providing four
vibration data from a single measurement. The outputs from
the strain gauges are acquired by a PC. Aweight ensures there
is pressing force between the sensor and a sample while the
friction tester moves the sample horizontally at a constant
speed. The touch speed, measurement distance, vertical load,
and sampling frequency were 20 mm/s, 50 mm, 0.98 N,
and 10 kHz, respectively. Data were taken from the 2.5 s

of measurement time during which the vibration waveform
was stable for 2 s. Then, each vibration signal was standard-
ized so that it had a mean of 0 and variance of 1. Twenty-
one segments of 1-second data were cut from one length of
standardized data by sliding a window 0.05 seconds per seg-
ment. Hence, 84 data were obtained per sample measurement
because four types of vibration data were obtained in each
measurement. Measurements were taken ten times for each
of the 12 samples, and hence a total of 10,080 vibration data
were obtained. Finally, FFT processing was performed on the
vibration data obtained for each 1-s duration, which converted
those data into an amplitude spectrum of 1,000-component
one-dimensional data corresponding to frequencies ranging
from 1 to 1,000 Hz. The data are stored in IEEE DataPort
(DOI: 10.21227/5jwn-qx81).

FIGURE 4. Overall view of the tactile display system.

C. TACTILE EVALUATION OF A TACTILE DISPLAY
An overall view of the tactile display system used in this
study is shown in Fig. 4. In this study, a tactile display using
a Langevin-type ultrasonic transducer was used. The ultra-
sonic transducer has a horn attached to its top to amplify the
vibration amplitude. The tip of the horn is used as the touch
surface. The touch surface is 15 mm long and 30 mm wide.
In this study, tactile sensations were displayed by inputting
amplitude-modulated waves into the ultrasonic transducer.
The frequency of the carrier wave was fixed at the resonance
frequency (≈28.2 kHz) of the ultrasonic transducer. Various
tactile sensations were displayed by changing the signal wave
for amplitude modulated wave, which was generated using a
field programmable gate array (FPGA; Analog Discovery 2,
Digilent Inc., USA) for D/A conversion and controlled by PC
software. The input waveform for the ultrasonic transducer
was amplified by a gain factor of 10 using an amplifier
(HAS4051, NF Corporation, Japan), resulting in a maximum
voltage of 22 V being applied. To track the resonant state of
the ultrasonic transducer even when it was being touched by
a subject, the current flowing in the ultrasonic transducer was
measured by the FPGA using a current probe (AC Current
Probe CT2, Tektronix Inc., USA). The resonance tracking
was conducted by adjusting the driving frequency until the
admittance of the ultrasonic transducer was maximized.

Sensory evaluation experiments were conducted with
a total of 32 people (10 females and 22 males) aged
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22.5±0.9 years (range: 21-24 years) on the tactile display
when arbitrary signals were input to the tactile display.
The arbitrary signals are stored in IEEE DataPort (DOI:
10.21227/5jwn-qx81). The subjects were asked to touch the
top surface of the tactile display and score ten Japanese
evaluation words (shown in Table 1) on a 7-point unipo-
lar scale from 1 (negative) to 7 (positive) using the SD
method. Again, the order of signals input to the tactile display
was random. The protocol was approved in advance by the
Bioethics Board of the Faculty of Science and Technology,
Keio University. The participants were provided a thorough
explanation of the evaluation methods and then signed an
informed consent form before participating in the study.
The sensory evaluation experiment yielded 1248 instances
of 10 component one-dimensional data corresponding to the
10 evaluation words. The data are stored in IEEE DataPort
(DOI: 10.21227/5jwn-qx81).

IV. CGAN-BASED TACTILE STIMULUS
GENERATION MODEL
A. STRUCTURE OF CGAN-BASED MODEL
First, for the generator, the input data were the vibration data
after FFT processing, obtained as described in Section III-B,
which are 1,000 component one-dimensional data corre-
sponding to frequencies from 1 to 1,000 Hz. The conditional
labels for the input data were the sensory evaluation values
of the samples, obtained as described in Section III-A, which
are 10 component one-dimensional data corresponding to the
10 evaluation words. Each sensory evaluation value used as a
conditional label was normalized to a value between 0 and 1
(note that they were originally on a 7-point scale from 1 to 7).
The above input data and conditional labels were combined,
and one-dimensional data composed of 1,010 components
were used as the input for the generator. The output is an
amplitude spectrum of 1,000 component one-dimensional
data corresponding to frequencies from 1 to 1,000 Hz gener-
ated by the generator. Table 2 shows the internal structure of
the generator, where ‘‘Input’’ indicates the input layer, ‘‘Out-
put’’ indicates the output layer, and the layers between the
input and output layers are the intermediate layers. ‘‘Dense’’
represents a fully connected layer, and Leaky ReLU is a type
of activation function, expressed as

f (u) =

{
au (u < 0)
au (u ≥ 0) ,

(1)

where u is the input, f (u) is the output, and α is a con-
stant coefficient (α = 0.01 in this study). By employing
a gradient to the negative ranges, a Leaky ReLU makes it
possible to continue training neurons without stopping error
backpropagation in the u ≤ 0 range. Batch normaliza-
tion [26] is a method that prevents gradient loss and diver-
gence by standardizing the data distribution at each layer to
mean 0 and dispersion 1. It can be used to stabilize learn-
ing and increase learning speed. Finally, dropout [27] is a
method that prevents overlearning by inactivating neurons at

TABLE 2. Internal structure of the generator.

a certain rate. In this study, the percentage of inactivation was
set at 50%.

Next, for the discriminator, there are two types of input
information. One is the 1,010-component one-dimensional
data and combines the signals generated by the gener-
ator with the sensory evaluation values of the samples
obtained as described in Section III-A as conditional labels.
The other corresponds to the training data and consists of
1,010-component one-dimensional data that combines the
arbitrary input signals to the ultrasonic transducer of the
tactile display with the sensory evaluation values of the tactile
display as the condition labels, as described in Section III-C.
The output is a value between 0 and 1 and is the probability
that the discriminator identified the input data as training
data. Table 3 shows the internal structure of the discriminator.
Finally, ‘‘Sigmoid’’ indicates the sigmoid function, which
allows the output to be treated as a probability by adjusting
the output data to a value between 0 and 1.

TABLE 3. Internal structure of the discriminator.

B. CLUSTER ANALYSIS OF THE DATASETS
Using the results of sensory evaluation experiments on metal
plate samples, 12 different samples were classified before
training the CGAN. Five patterns of classification were pre-
pared, and the differences in model performance for each
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group were tested. Cluster analysis was used to classify the
samples. Cluster analysis is a type of multivariate analysis
that collects highly similar data from given datasets and
classifies them. As a result of the cluster analysis, five groups
were defined for the 12 metal plate samples: Group A with
no clustering, Group B with two clusters, Group C with three
clusters, Group D with four clusters, and Group E with all
12 samples classified into separate clusters.

TABLE 4. Hyperparameters.

C. MODEL TRAINING AND SIGNAL GENERATION
A separate CGAN was trained for each cluster in Groups
A to E. The hyperparameters of the training are listed in
Table 4. Adam was used for the optimization algorithm. The
loss function was binary cross entropy, expressed as

E(t, y) = −tlogy− (1 − t)log(1 − t), (2)

where y is the output value of the discriminator and t is the
correct answer label. The discriminator’s correct answer label
can be 0 or 1, depending on the type of data input to the
discriminator, but in either case, the loss can be accounted
for.

As shown in Fig. 1, the generator is extracted after training
for generating the desired input signals for the ultrasonic
transducer of the tactile display. As shown in Table 4, the
number of iterations was set in advance to 200,000, but the
performance of the model is not always the best at the end of
all iterations in CGAN training. For this reason, the number
of iterations processed before the generator was extracted
determined based on the loss function in training and the dis-
criminator’s correct response rate. Fig. 5 shows each example
of the loss function and the discriminator’s correct response
rate during training. First, regarding the loss functions, the
loss of the generator is relatively large and the loss of the
discriminator is relatively small because the generator cannot
generate data that incorporates the training data in the initial
stage of training and the discriminator can easily distinguish
between the generated and training data. As the training
progresses, the generator can generate data that takes the
training data into account, and the discriminator’s correct
response rate declines. The loss of the generator decreases
and the loss of the discriminator increases. However, if the
loss of the discriminator increases monotonically, it loses
its function as a discriminator. Therefore, the loss of the
generator must be small while the losses of both oscillate.
Second, the discriminator’s correct response rate shows the

FIGURE 5. Examples of (a) the loss function and (b) the discriminator’s
correct response rate during training. These indicators were used to select
the generator for data generation. The green line shows the number of
iterations at which the generator was selected in this example.

percentage of data the discriminator correctly discriminated
as generated data or training data in each iteration. In the early
stages of training, the correct response rate is close to 100%,
but as training progresses and the accuracy of the generator
improves, the correct response rate declines. When the cor-
rect response rate is approximately 50%, the discriminator is
unable to distinguish between the generated and training data.
On the basis of the loss and discriminator’s correct response
rate, the generator was selected at a point in the iterations
where the generator’s loss was the smallest non-zero value
and the discriminator’s correct response rate was between
40% and 60%. The green line in Fig. 5 shows the iteration
at which the generator was selected. If the above conditions
were not satisfied during training, we defined the training as a
failure. Groups A to E were used for training. Groups A to D
were used to train the model successfully, whereas Group E,
in which all 12metal plate samples were classified separately,
caused the training to fail.

For the models successfully trained using Groups A to D,
the selected generator was used to generate signals for input
to the ultrasonic transducer of the tactile display. Examples
of input vibration data for the generator and the signal output
from the generator are shown in Fig. 6. The output signals are
the input signals to the ultrasonic tactile display.

FIGURE 6. Each example of (a) input vibration data for the generator and
(b) the signal output from the generator. The output signal is the input
signal to the ultrasonic tactile display.

V. EVALUATION OF THE MODEL
A. EVALUATION EXPERIMENT
To evaluate the generated signals, sensory evaluation experi-
ments were conducted to evaluate the tactile sensation when
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the signals generated by themodels trained using Groups A to
Dwere input to the ultrasonic transducer of the tactile display.
No evaluation experiment was conducted with the Group E
model because the training was not successful. In contrast,
sensory evaluation experiments were also conducted for the
tactile sensation when the vibration information acquired
from the tactile sensor was directly input to the ultrasonic
transducer. Twenty adult subjects (7 females and 13 males)
aged 22.4±1.0 years (range: 21-25 years) were asked to eval-
uate the 10 evaluation words shown in Table 1 on a 7-point
unipolar scale ranging from 1 (negative) to 7 (positive) using
the SD method. Because the order of touch influences the
tactile evaluation, the order of the signal input was random.
The protocol was approved in advance by the Bioethics Board
of the Faculty of Science and Technology, Keio University.
The participants were provided a thorough explanation of
the evaluation methods and then signed an informed consent
form before participating in the study.

After the experiment, to confirm the change in tactile
reproducibility with respect to the models, we calculated the
mean absolute error between the tactile evaluation points with
the generated signals and those obtained from the sensory
evaluation of the samples. The results for each mean absolute
error are shown in Fig. 7. The first column in Fig. 7 shows
the mean absolute error between the tactile evaluation points
when the vibration information acquired by the tactile sensor
was directly input to the ultrasonic transducer of the tactile
display and the tactile evaluation points of the samples.

FIGURE 7. Mean absolute error from the tactile evaluation points of the
metal plate samples. Statistical analysis showed that models trained
using Groups B, C, and D had significantly smaller errors than the sensor
data when the model was not used (n = 2,400, mean ±SE, ∗: p <0.01).

The remaining columns in Fig. 7 correspond to the mean
absolute errors between the tactile evaluation points when
the signals generated by the models trained by Groups A
to D were input to the ultrasonic transducer of the tactile
display and the tactile evaluation points of the samples.
Smaller errors indicate that the tactile evaluation is closer
to the actual tactile sensation of the samples. To verify the
statistical differences, Student’s t-tests were conducted on the
errors for each column. As a result, no significant difference

in error reduction was observed for the model preprocessed
using cluster analysis. However, the models trained using
Groups B, C, and D, in which the samples were classified
by cluster analysis, showed significantly reduced errors at
the 1% level of significance. Therefore, for the Groups B, C,
and D models, their use improved the reproducibility of
tactile sensation, suggesting the effectiveness of the model
constructed in this study. The model trained using Group
A, which did not use cluster analysis, showed no significant
difference in error when compared with themodel that did not
use the CGAN-based model, suggesting that cluster classifi-
cation improved the performance of the CGAN-based tactile
stimulus generation model.

VI. DISCUSSION
Cluster classification improved the performance of the
model. It allows the models to generate signals that take
into account the characteristics of each cluster, which is
thought to improve the reproducibility of tactile sensations.
First, for Group A, for which model training and signal
generation were conducted without cluster analysis, a single
model generated signals corresponding to the 12 samples.
The signals were generated with small errors for all metal
plate samples, and similar signals were output for all 12 types
of samples. In contrast, for Groups B to D, which were
used for training and generating signals after cluster analy-
sis, models were constructed for each cluster and generated
signals with smaller errors for each cluster. Thus, the use of
cluster classification improved the performance of the model.
However, we do not infer that a more detailed classification
by cluster analysis leads to a smaller error. This is because
there is no significant difference in the errors for Groups B, C,
and D, which are classified into two, three, and four clusters,
respectively. Furthermore, Group E, in which all samples
were used to train a separate model, failed at the training
stage. The reason for the lack of performance improvement
with increasingly detailed classification is thought to be the
reduction in the training datasets due to classification. The
above suggests the use of cluster classification before training
the model is effective, but it is necessary to keep the classifi-
cation moderate.

VII. CONCLUSION
In this study, based on the tactile sensor and human tactile
evaluation, we constructed CGAN-based tactile stimulus gen-
eration models to generate input signals for the ultrasonic
transducer of the tactile display. First, to generate datasets for
training, we conducted experiments to measure the vibration
data of metal plate samples when they were touched by the
tactile sensor. Sensory evaluations of the tactile sensation of
the tactile display using an ultrasonic transducer and themetal
plate samples were also conducted. Next, cluster analysis
was performed based on the results of sensory evaluation
experiments on metal plate samples, defining five groups
with different degrees of classification. CGAN training was
performed for each of the five defined groups to generate
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the input signals for the ultrasonic transducer of the tactile
display, using the loss function of the training and the discrim-
inator’s correct response rate as indicators. Note that, with
the finely classified clusters, i.e., each sample is used to train
a separate model, the training did not succeed and signals
could not be generated. Finally, an experiment was conducted
to evaluate the signals generated by each model. The results
showed that the reproducibility of tactile sensation generated
with the CGAN-based tactile stimulus generation models
with cluster classification was improvedwhen compared with
the reproducibility of tactile sensation generated without the
model.
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