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ABSTRACT Cloud computing has gained immense popularity in the logistics industry. This innovative
technology optimizes computing operations by eliminating the requirement for physical equipment for
calculations. Instead, specialized companies provide cloud-based computing services, relying heavily on
computers and servers that consume substantial amounts of energy. Hence, ensuring the availability of
affordable and dependable electricity is paramount for the efficient design and management of these logistics
services. Cloud centers, which are power-intensive, face the challenge of reducing their energy consumption
due to escalating power costs. To address this issue, efficient data placement and nodemanagement strategies
are commonly employed in logistics operations. An AlexNet model has been designed to optimize storage
relocation and predict power prices. The outcome of this initiative has resulted in a considerable reduction
in energy consumption at data centres. The model uses Dwarf Mongoose Optimization Algorithm (DMOA)
to produce an optimal solution for the AlexNet and increase its performance with a real-world dataset from
IESO inOntario, Canada. 75%of the available data was used for training to assure themodel’s precision, with
the remaining 25% allocated to testing purposes. The model forecasts power prices with an MAE of 2.22%
and an MSE of 6.33%, resulting in an average reduction of 22.21% in electricity expenses. Our proposed
method has an accuracy of 97% compared to 11 benchmark algorithms, including CNN, DenseNet, and
SVM having an accuracy of 89%, 88%, and 82%, respectively.

INDEX TERMS Cloud systems, deep learning, energy efficiency, energy consumption, machine learning,
Meta heuristic algorithm, price forecasting, logistics.

I. INTRODUCTION
Cloud computing is gaining popularity as a storage platform,
allowing organizations to reduce hardware and procurement
expenses. The exponential growth in data consumption neces-
sitates more data centre requirements, which consume signif-
icant electricity. Data centres are responsible for 2% of the
total energy consumption worldwide. Furthermore, estimates
indicate that this percentage is expected to grow by 12%
annually. Cooling accounts for 39% of total electricity use,
operating IT infrastructure accounts for 45%, and lighting
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accounts for 13%. In 2008, this level of consumption resulted
in a 30 billion dollar loss to the business community [1].

In the logistics context, the adoption of distributed com-
puting with virtualization has the potential to significantly
enhance productivity, although its usage is still limited. In the
realm of server utilization, Ericsson’s insightful research
reveals that non-virtualized servers often operate at a mere
fraction of their potential, harnessing only 5-14% of their
maximum capacity. In stark contrast, virtualized servers shine
by unlocking their potential and reaching impressive utiliza-
tion rates of up to 29% [2]. To fortify reliability, data center
operators strategically disperse their facilities across diverse
locations, embracing replication techniques as an assurance
of seamless operations. While this approach meets latency
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requirements, it can lead to unforeseen expenses due to
fluctuating power costs in different regions. Energy markets
exhibit high volatility, with prices surging by a factor of
10 within a mere 60 minutes. Therefore, conducting research
on leveraging the volatility of deregulated energy markets
becomes crucial in order to predict value spikes and optimize
power usage, thereby minimizing energy expenditures in the
logistics industry [3]. Businesses like Netflix rely on Content
Delivery Networks (CDNs) to provide their content, and
locating data centres closer to clients can improve service
quality and reduce energy costs. This method involves mov-
ing capacity from centrally controlled data centres to hubs on
the system’s outskirts [4].

In recent decades, there has been a growing urgency to
prioritize sustainable practices and adopt energy-efficient
measures to protect the environment. As a result, researchers
have employed a range of traditional and innovative tech-
niques to tackle these issues. For instance, [5] has demon-
strated that power costs can be reduced in various locations.
It is widely accepted among researchers that studying the
cost of server installation in multiple locations is critical
because the costs can vary significantly. Additionally, [6]
investigates node scheduling optimization to lower power
costs, while [7] improves data transmission route selection.
These studies provide recommendations to address specific
aspects of the problem instead of offering a single, compre-
hensive solution. Moreover, researchers have directed their
attention towards assessing the influence of machine learning
on energy forecasting and model planning, with a particular
focus on the worldwide electricity market. The two primary
machine learning techniques are predicting power prices and
optimizing energy systems. Common methods include Ran-
dom Forest (RF) [8], Naive Bayes, Decision Tree [9], [10],
and other deep neural networking methodologies [11], [12].

Most prior research on energy price predictions is in its
infancy and lacks accuracy or the ability to present real-
time data. Our proposed technique evaluates the effectiveness
of power price forecasting in Ontario, Canada [13], using
the Data Center to reduce energy usage while maintaining
confidence and saving high costs. Our forecast model evalu-
ates the impact of various risk factors on data storage price
growth and actual energy consumption. Using data from
IESO, we assessed the model to predict energy price markets
for 14 years. In our study, we developed a novel approach that
resulted in a remarkable reduction of up to 24.21% in energy
costs for data storage compared to the conventional SVM
and RF methods. However, we acknowledge the need for
further research and experimentation to validate its potential
for delivering acceptable future performance and reliable esti-
mates. Our proposed method offers the added advantage of
generating predictions in real-time and offline with minimal
effort. This feature makes it a highly convenient and versatile
tool for predicting energy consumption in data storage facil-
ities. This feature significantly enhances the practicality and
usefulness of our approach, making it a viable alternative for
optimizing energy consumption in data storage facilities.

In the logistics landscape, the growing demands of big data
and cloud computing call for the establishment of expansive
cloud data centers. Yet, the colossal energy consumption of
these facilities presents a pressing challenge to their sustain-
ability and efficiency. In response, researchers are fervently
investigating diverse methodologies to curtail energy usage in
cloud data centers, all while upholding optimal performance
and reliability. In the ensuing section, we delve into pioneer-
ing tactics and approaches that spearhead this field, exploring
noteworthy research on the reduction of energy consumption
in cloud data centers.

Researchers have turned to virtual machine consolidation
in their pursuit for energy-efficient data centres. This tech-
nology tries to save energy use by combining underutilised
virtual machines onto fewer servers. This approach has been
a subject of intense scrutiny in recent times, with numerous
algorithms proposed to achieve optimal VM consolidation.
However, the effectiveness of this approach hinges on the
workload’s inherent characteristics, and it may falter when
workloads are highly erratic and unpredictable, thereby lim-
iting its potential benefits.

In the realm of data centers, Dynamic Voltage and Fre-
quency Scaling (DVFS) acts like an intuitive personal assis-
tant, adapting to your work style and conserving energy.
This advanced technology efficiently adjusts the frequency
and voltage of processors in real-time according to workload
demands. By preventing over-exertion, DVFS serves as a
valuable energy-saving tool for data centers. This innova-
tive method, meanwhile, also has certain difficulties that
need to be resolved. To ensure maximum efficiency, DVFS
must accurately interpret each individual workload, which
can be hindered by the intricate, non-linear relationships
between frequency, voltage, and workload characteristics.
If not applied properly, DVFS may lead to performance
degradation or instability, much like an ill-designed work
schedule may cause exhaustion or injury.

The pursuit of energy-efficient task scheduling requires
a delicate balance between minimizing energy consumption
and meeting the resource demands of high-intensity appli-
cations. Energy-aware task scheduling achieves this balance
by intelligently scheduling tasks to optimize resource utiliza-
tion, while ensuring application-level constraints are satis-
fied. However, the effectiveness of this technique depends
on the specific workload characteristics and optimization
objectives at hand. Numerous algorithms, such as genetic
algorithms, ant colony optimization, and particle swarm opti-
mization, have been proposed to achieve energy-aware task
scheduling. Nevertheless, these algorithms may introduce
significant overhead or result in suboptimal solutions. Energy
effectiveness and performance must be perfectly balanced,
which calls for meticulous planning and close attention to
detail. When executed correctly, energy-aware task schedul-
ing can lead to substantial energy savings and enhanced
system performance.

In order to increase energy efficiency in the constantly
changing environment of cloud data centres, researchers have
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resorted to machine learning-based solutions. The crux of
these techniques lies in the use of machine learning models
to predict workload demand and resource usage patterns, and
subsequently, make dynamic resource allocation decisions
that minimize energy consumption while maintaining per-
formance and reliability. One such technique is multi-task
learning, which is proving to be an increasingly powerful tool
in this space. By leveraging the interdependencies between
electricity price forecasting and resource management tasks,
multi-task learning is helping to achieve improved accuracy
and efficiency in both domains, driving energy savings and
better system performance.

Basically, researchers have investigated various techniques
to reduce energy consumption in cloud data centers, such
as VM consolidation, DVFS, energy-aware task scheduling,
and machine learning-based techniques. Multi-task learning
is a promising approach that can lead to better results than
single-task learning or other approaches by exploiting the
interdependencies between electricity price forecasting and
resource management tasks.s

The ever-increasing demand for cloud computing services
to manage and process large volumes of data has com-
pelled cloud providers to constantly seek innovative tech-
niques to reduce the energy consumption required to store this
data [14]. Additionally, cloud providers face the challenge
of maintaining government expectations and earning profits
through Service Level Agreements (SLAs) while ensuring
energy effectiveness [15], [16], [17]. The fluctuating nature
of deregulated energy prices has created a strong incentive
to explore whether these variations can be leveraged to min-
imize energy costs while preserving optimal performance
[18], [19], [20]. This study investigates whether machine
learning techniques can effectively capitalize on significant
energy price spikes and reduce operational expenses associ-
ated with data centres. The above-mentioned is addressed in
this article with the following contributions:

• An optimization method DMOA has been used to sig-
nificantly reduce energy consumption in data centres.

• A newmodel called AlexNet-DMOA has been proposed
to optimize storage location and predict power prices
more accurately.

• The model has been trained with 75% of available data
to ensure high precision, while the remaining 25% has
been used for testing purposes.

• The AlexNet-DMOAmodel forecasts power prices with
an MAE of 2.22% and an MSE of 6.33%, resulting in an
average reduction of 22.21% in electricity expenses.

• The proposed algorithm outperforms 11 benchmark
algorithms applied in the latest literature in terms of
performance metrics, accuracy, time complexity, data
processing, and model overfitting issues.

II. RELATED WORK
The increasing emphasis on sustainability within the logistics
industry has raised concerns regarding energy consumption

and its environmental impact. This paper provides a concise
overview of previous methodologies employed to forecast
power usage in logistics operations. It also highlights the
limitations of existing research, prompting the exploration of
more robust and effective approaches. To address these chal-
lenges, researchers have utilized a Multi-Layer Neural Net-
work (MLNN)model, as demonstrated in [21], [22], and [23],
to estimate power load and overall electricity consumption in
logistics operations. By leveraging the Ensemble technique,
which combines multiple machine learning models to reduce
errors and eliminate noise, significant improvements have
been achieved in the accuracy of energy consumption pre-
dictions. These advancements hold promising implications
for optimizing energy usage and sustainability in the logistics
sector. This combination of techniques allows for a more pre-
cise estimation of energy usage. It will enable cloud providers
to make better-informed decisions about power usage and
resource allocation. Ultimately, this leads to improved energy
efficiency and cost savings for cloud data centres. While their
approach showed competitive accuracy, it lacked resilience
due to longer processing times and high loss rates during live
testing.

Similarly, in [24], the author proposed a hybrid method
called EPNet for energy price prediction, using LSTM and
CNN models that produced MSE and MAE of 7.74 and 16.8,
respectively. Despite the favourable results, these models had
high error rates and required significant computational power
for real-time predictions. Moreover, the model’s performance
was impacted by the heavy normalization of the dataset, and it
failed to reproduce the same results when applied to real-time
data. In [25], the author proposed a model similar to those
above, combining support vector regression with other opti-
mization methods. The model yielded a 6.82 MAE, but only
for one-day-ahead forecasts, rendering the results unreliable.
Moreover, the model’s results are inconsistent and subject
to change, making it unsuitable for real-time application.
Additionally, the models incur high computational costs.

In [26] and [27], researchers conducted a comparative
study of DL-based methods for predicting electricity con-
sumption and green energy. They evaluated the performance
of 23 benchmark methods, including CNN, GRU-DNN, and
LSTM-DNN. They proposed aDL-based algorithm for power
price prediction, demonstrating results comparable to prior
studies. Nonetheless, the proposed model incurs high com-
putational costs and generates inaccurate predictions when
used in real-time applications, resulting in a significant test-
ing loss. The comparison was based on a single, thoroughly
normalized dataset.

In [28], the author proposed a hybrid approach for power
price prediction that integrated both SVM and Kernel Prin-
cipal Component Analysis (KPCA). The proposed technique
delivered promising results, with a low error rate of 5.7 per-
cent for one threshold value and a higher but still reasonable
error rate of 47.9 percent for another. This hybrid method
presented in [29] can reduce energy consumption and costs
in data centres by allowing for a more accurate and efficient
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prediction of power prices. This study highlights the signifi-
cance of integrating advanced machine-learning techniques
in the energy sector, emphasizing the need for ongoing
research. However, the model incurs significant computa-
tional overhead when applied to a large dataset of various fuel
cost prices.

In the logistics domain, the proposed method differs from
other models as it takes into account the static nature and
regional dependencies of energy prices, considering varia-
tions across seasons and locations. Researchers in previous
studies, as seen in references [30] and [31], demonstrated suc-
cessful outcomes by adopting location-specific data collec-
tion and a combination of Autoencodermodels andNN-based
models. Additionally, advanced deep learning techniques,
highlighted in [32], were employed to enhance the accu-
racy of energy cost forecasts in the European market. These
researchers utilized sophisticated feature selection methods,
resulting in promising results using a simplified model. Nev-
ertheless, the MAE andMSE values were relatively high, and
themethodology did not tackle the problem comprehensively.
The model presented in [33] employed multivariate tech-
niques to estimate energy costs hourly and used dimension
reduction to address over-fitting concerns. The author of [34]
introduced a DNN-based model that combined LSTM and
LSTM-based models to predict power prices and load, but
the outcomes were inadequate in predicting power prices.
Most of the current research has been centred around apply-
ing established deep-learning techniques. Nevertheless, these
methods can be computationally demanding and may yield
unforeseeable results, mainly when dealing with large-scale
datasets [35]. Alternatively, [36] took a different approach
by emphasizing feature selection, which led to an MAE of
3.18. However, using a sizable dataset, their model was only
appropriate for offline prediction.

The article [37] delved into the combination of power cost
estimation and energy demand prediction, utilizing the Arti-
ficial Bee Colony and SVM algorithms with Least Square.
On the other hand, [38] proposed an ANN-based approach,
and [39] put forward a hybrid methodology employing a
model based on a biweight kernel with dynamical system
reconstruction to forecast electricity prices using datasets
from the ISO of New York, the US, and the SouthWales mar-
kets. However, these models are computationally expensive,
generate inaccurate predictions resulting in significant losses,
and are inefficient for real-time use.

Energy price prediction has been an essential topic of dis-
cussion for many years, with a wealth of literature available to
estimate power consumption in DCs and reduce it. However,
existing techniques have limitations in providing efficient
results for the global market with low MSE and MAE. Most
of them are computationally expensive and unsuitable for
real-time usage.

Countless studies have delved into the search for more
energy-efficient cloud data centers. They have explored sev-
eral strategies to lessen energy consumption while main-
taining system performance and reliability. A strategy that

aims to minimize energy consumption by matching the work-
load demand with processor performance is dynamic voltage
and frequency scaling (DVFS). However, researchers have
noted the challenges posed by the non-linear relationship
between frequency, voltage, and workload characteristics [].
Similarly, the consolidation of underutilized virtual machines
(VMs) onto fewer servers has been investigated as a method
for diminishing energy consumption. However, its effective-
ness is limited when workloads are highly dynamic and
unpredictable [39].

The attention of researchers has been drawn towards the
potential of machine learning-based methods for reducing
energy consumption in cloud data centers. For instance,
multi-task learning has been investigated as a powerful
machine learning technique for both electricity price forecast-
ing and resource management tasks in cloud-based Industrial
IoT systems, leading to improved accuracy and efficiency.
In order to enhance feature representations and increase per-
formance, the research suggests a semi-supervised feature
analysis method for multi-task learning. The suggested issue
of projecting power prices and resource management can be
enhanced by taking use of the relationship between the two
jobs [42].

Other researchers have proposed using machine learning
models to predict workload demand and resource usage pat-
terns, which are then used to dynamically adjust resource
allocation to minimize energy consumption while maintain-
ing performance and reliability. In order to translate across
languages, this paper suggests an unsupervised multi-modal
machine translation strategy that pivots on movies. The pro-
posed approach’s multi-task learning component views the
tasks of resource management and energy price forecasting
as separate languages that require translation. Videos can
serve as a springboard for innovative ideas on how to best
take advantage of the relationship between the two jobs and
produce superior outcomes [43].

III. THEORETICAL AND METHODOLOGICAL ASPECTS
A. CLOUD COMPUTING
The IT industry has undergone a significant transformation
due to adopt cloud computing. With the advent of this novel
approach, users can now access a communal repository of
computing resources that can be promptly allocated and
de-allocated with little need for management or intervention
from service providers. This alternative paradigm, which
diverges from the conventional method of relying on local
servers, allows users to obtain immediate access to a plethora
of configurable resources, such as services, applications, net-
works and storage, without necessitating the use of dedi-
cated local hardware [43]. This can lead to cost savings,
increased scalability, and greater flexibility in IT resource
allocation. As a result, server costs can be reduced by paying
for resources on demand rather than making capital expen-
ditures. Meeting the needs of modern data-driven industries
requires data centre companies to continuously improve their
processing, software, and data handling capabilities. Business
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FIGURE 1. Virtualization architecture [45].

users can pay for their services, allowing them to concentrate
on their core activities while freeing up time to focus on
other important business objectives. The amalgamation of
these building blocks can deliver better efficiency, decreased
overall expenditure, and enhanced returns [43], [44].

Infrastructure-as-a-Service (IaaS) is a category of cloud
computing services that operates on a usage-based billing
model. This billing method charges customers based on
their usage of computing resources. Cloud platforms can be
divided into open, closed, and blended types [44]. Cloud
providers such as VMware Cloud, Nutanix, and Red Hat
OpenShift are examples of blended data centres combining
public and private cloud services. Private and public cloud
platforms are integrated with hybrid data centres to allow for
the flow of information between private and public clouds.

B. CONCEPT OF VIRTUALIZATION
Regarding server management, virtualization architecture is
a crucial aspect. This design permits multiple operating sys-
tems to operate concurrently on a single server. Data centres
can optimize their resources by creating multiple virtual envi-
ronments on a single machine, including physical servers and
energy consumption allocation [45]. The image in Figure 1
illustrates the virtualization design concept.

The impact of virtualization on cloud computing archi-
tecture can be observed in Figure 1. Single hardware can
be allocated with multiple virtualization layers, resulting in
more scalability than a single computer and simpler work-
flows in the corporate sector. Virtualization enables efficient
utilization of IT resources in data centres, regardless of the
operating system or the number of applications. Unlike con-
ventional architecture, which is restricted to a single oper-
ating system and a few applications, modern architecture is
more flexible and adaptable to various operating systems and
applications [45].

C. CONTENT DISTRIBUTED DELIVERY NETWORK
The primary components of Content Delivery Networks
(CDNs) are distributed edge servers in different regions.
These servers are designed to store vast amounts of data with
minimal latency and high reliability. CDN services account
for over half of all internet traffic, and the number of CDN
providers is rapidly increasing. CDNs are utilized by services
such as Netflix, Amazon, Facebook, and Dropbox. Distribut-
ing data across a geographic region is a technique used to

minimize the distance between servers and users [10], [46].
This technique can significantly reduce latency, improving
the system’s overall performance. Netflix implements this
approach by distributing data across multiple locations to
ensure users receive data from the closest server. Addition-
ally, Netflix uses intelligent algorithms to anticipate when
the desired file will be accessible on the selected server.
This enables local servers to manage bandwidth expenses
and adapt to the vast geographic scope of data transmission.
Furthermore, transferring the requested data to the network’s
edge helps avoid exceeding data limits in the hubs. Through
this technique, Netflix increased its throughput from 7 Gbps
in 2013 to more than 90 Gbps in 2019 [47].

D. INTELLIGENT SYSTEMS AND COGNITIVE COMPUTING
In computer-based machine learning (ML), algorithms are
used to sift through data to identify patterns and to pre-
dict information that was not previously known. It enhances
resource efficiency by utilizing processed data. A machine
learning algorithm constructs logic and adapts its perfor-
mance using data without explicit programming. Machine
learning issues can be categorized into two groups: the dataset
includes labelled data. One is used to train models for pre-
dicting future outcomes; the other includes unlabeled data
to discover patterns and insights within the data itself [48].
On the other hand, unsupervised learning utilizes input data
that has not been classified to detect patterns and extract
meaning from them.

Machine learning and deep learning capabilities may be
intelligently applied in cloud computing. It has the potential
to predict energy expenditures and improve energy man-
agement accurately. It can also forecast future power costs,
significantly impacting the power market. This study aims
to develop a method for energy cost prediction by assessing
the performance of three main ML classifiers: Support Vec-
tor Regression (SVR), Random Forest, XGBoost and 3 DL
classifiers CNN [49], DenseNet and proposed ensembler.

E. MOTIVATION AND JUSTIFICATION FOR IMPLEMENTING
MULTI-TASK LEARNING IN LOGISTICS
In the realm of logistics, particularly in cloud-based industrial
IoT systems, the seamless integration of resource manage-
ment and electricity price forecasting is paramount. These
two interdependent tasks go hand in hand, offering valuable
synergies when approached collectively. Accurate electricity
price prediction serves as the nurturing sun and rain, fostering
effective resource management. As a result, this optimiza-
tion process enhances the allocation of computing, storage,
and network resources, leading to decreased energy con-
sumption and costs, all while effectively meeting the indus-
try’s demands. Conversely, resource management decisions
can influence electricity prices by modulating system work-
load and energy usage. To leverage the inherent interdepen-
dence of these interconnected activities, a single model can
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be trained to perform multiple related tasks simultaneously
using a multi-task learning technique [50].

Multi-task learning provides several advantages over
single-task learning approaches for electricity price forecast-
ing and resource management in cloud-based industrial IoT
systems. Firstly, it can improve the performance of both tasks
by exploiting their interdependencies. By jointly learning
the two tasks, the model can better capture the underlying
relationships and dependencies between them, leading to
enhanced accuracy and efficiency. Secondly, multi-task learn-
ing can enhance the model’s generalization and robustness by
learning shared representations and features across multiple
tasks. Multi-task learning is a potent approach that enables
the complexities and uncertainties of real-world events to be
successfully negotiated by models [51]. By learning common
representations, useful information and patterns can be trans-
mitted between tasks, resulting in improved performance and
quicker convergence. Additionally, the capacity to coopera-
tively learn tasks can greatly reduce the model’s computa-
tional complexity and training time. This is especially helpful
for industrial IoT systems that use the cloud, as the data
there is frequently large and multidimensional. The ability
of the model to expedite convergence and lower the danger
of overfitting by sharing parameters makes it a useful strat-
egy for tackling the difficult problem of energy price pre-
dictions and resource management. Overall, the best results
can be obtained in this complex environment of cloud-based
industrial IoT systems by utilizing multi-task learning as a
strong method.possibility of reducing computational com-
plexity and training time.

IV. PROPOSED METHODOLOGY
The article is structured into four distinct phases. Initially,
data is gathered and scrutinized from a variety of sources.
Secondly, the data is comprehensively analyzed to identify
and comprehend various data characteristics. Thirdly, the data
is prepared for energy price prediction using a tailored model
that incorporates multiple machine learning classifiers, and
this process will aid the final phase. The dataset employed in
our approach is sourced from IESO Canada [52].

A. FORECASTING MODEL
We utilized machine learning and deep learning techniques to
implement four distinct algorithms to enhance the accuracy of
power cost forecasting. These algorithms include SVM, RF,
XGBoost, and AlexNet with Dwarf Mongoose Optimization
Algorithm (DMOA). To ensure a fair comparison between
these techniques, all classifiers were trained and tested on
the same data, using the train-test split method with a test
size of 0.3. To avoid overfitting and underfitting, we used
K-cross validation with K=3. We experimented by utiliz-
ing an XGBoost model with defaulting values on varying
amounts of data to ascertain the optimal amount of data
required. The error metrics were used to evaluate the per-
formance of the models. MAE and RMSE were employed
to measure the range of errors in different estimations, with

the RMSE always being greater than or equal to the MAE.
Lower values of both MAE and RMSE indicate better perfor-
mance [11] as described in Equations 1 to 4.

MAPE =
1
n

n∑
i=1

|
Actuali − Predi

Actuali
| (1)

RMSE =

√√√√1
n

n∑
i=1

[ Actual i − Pred i]2 (2)

To assess the precision of predicted values, we can compute
MSE and MAE using the given dataset x1, x2, . . . , xn, and
predicted values y1, y2, . . . , yn. Where the actual value is
denoted by x, and the predicted value is denoted by y, the
formulas presented below can be utilized to compute theMSE
and MAE [15]:

MAE =
1
n

n∑
i=1

| Actuali − Predi | (3)

MSE =
1
n

n∑
i=1

| Actuali − Predi |
2 (4)

TP =
TP

TP+ FP
(5)

FN =
FN

FN + TP
(6)

Equation 5 assumes that when a positive instance (Class 1)
in the dataset is correctly classified as positive by the model,
Equation 6 assumes that when a negative instance (Class 1) is
incorrectly classified as positive by the model. Our research
using AlexNet-DMOA determined that the optimal depth
was 4, and the number of estimators was 30. The true positive
probability was 0.41, while the false negative probability was
0.58, indicating a significant variance between genuine and
forecast values.

B. DWARF MONGOOSE OPTIMIZATION ALGORITHM
The social behaviour of wild dwarf mongooses served as
the basis for developing the Dwarf Mongoose Optimisation
Algorithm (DMOA), a relatively recent optimization algo-
rithm. DMOA is a population-based algorithm that mimics
the cooperative behaviour of dwarf mongooses to search for
the global optimum solution in a multi-dimensional search
space. In the context of electricity price forecasting and
resourcemanagement, DMOA is used to simultaneously opti-
mize the parameters of the forecasting and resource manage-
ment models. The multi-task learning approach can improve
the accuracy of price forecasting and resource management
efficiency by exploiting the correlations between the two
tasks [54].

The algorithm of DMOA can be described as follows:
The equations used in DMOA are as follows: The velocity

of each dwarf mongoose, represented by v(i,j,k), is deter-
mined by a formula that considers various factors. These
factors include the inertia weight w, acceleration constants
c1 and c2, the unique best solution of the dwarf mongoose
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Algorithm 1 DMOA Algorithm
1: Initialize the population of dwarf mongooses with ran-

dom solutions.
2: Evaluate the fitness of each dwarf mongoose solution

using the objective function.
3: Update the personal best solution for each dwarf mon-

goose based on its current fitness.
4: Update the global best solution for the entire population

based on the best fitness value.
5: Update the position and velocity of each dwarf mongoose

using the personal and global best solutions.
6: Apply constraints to the new solutions, if necessary.
7: Evaluate the fitness of the new solutions.
8: Repeat steps 3-7 until the termination condition is met.

pbest(i,j,k), and the global best solution for the task repre-
sented by gbest(j,k). The speed of a particular dwarf mon-
goose can be determined using the Equation 7 [54]:

v(a, b, c) − w ∗ v(a, b, c) + c1 ∗ rand() ∗ ( pbest (a, b, c)

− x(a, b, c)) + c2 ∗ rand() ∗ (gbest(b, c) − x(a, b, c))

(7)

Here, a represents the index of the mongoose, b represents
the parameter for the price forecasting task, and c represents
the parameter for the resourcemanagement task. The constant
w represents the inertia weight, c1 and c2 are acceleration
coefficients, pbest is the best position found by themongoose,
x is the current position of the mongoose, and gbest is the best
position found so far by the mongoose swarm [55]

The inertia weight w, acceleration constants c1 and c2, and
random number generator rand() are used in the calculation.
The personal best solution of the dwarf mongoose pbest(i,j,k)
and the global best solution gbest(j,k) are also taken into
account in the formula. The inertia weight, acceleration con-
stants c1 and c2, random number generator rand(), personal
best solution pbest(i,j,k), and global best solution gbest(j,k)
are also involved in this calculation.

Fitness of the i-th dwarf mongoose: The fitness of the i-th
dwarf mongoose may be expressed by the objective function
F’s function f(i), which is defined. The objective function
F plays a crucial role in determining the fitness of the i-th
dwarf mongoose. It takes in the parameters for both the price
forecasting and resource management tasks and produces a
fitness value. The objective function F plays a crucial role in
determining the fitness of the i-th dwarf mongoose. It takes
in the parameters for both the price forecasting and resource
management tasks and produces a fitness value. The func-
tion G is defined with parameters x(1,a), x(2,a), . . . , x(n,a),
x(1,b), x(2,b), . . . , x(n,m), where a represents the number of
parameters required for the task of price forecasting, and b
represents the number of parameters required for resource
management. The values of x are used to compute the output
of function G. By comparing the parameters to the objective
function; we can determine the fitness value denoted by f(i)

for the i-th dwarf mongoose. By contrasting the parameter
u with the goal function F, the fitness of the i-th dwarf
mongoose is determined.

C. AlexNet ENSEMBLE WITH DMOA
Integrating the AlexNet ensemble with DMOA presents a
promising technique for precisely and effectively predicting
electricity prices and resource management [56]. Fusing deep
learning and optimization methods in the AlexNet ensem-
ble with DMOA enhances electricity price prediction and
resource management accuracy. The DMOA optimization
algorithm is a novel approach inspired by the collaborative
behaviour of dwarf mongooses during their food search. The
algorithm’s exploration, exploitation, and search phases work
together to find and refine candidate solutions towards the
global optimum. The algorithm further improves the model’s
accuracy by focusing on the best solutions in the search
phase. The AlexNet ensemble with DMOA strategy trains
multiple instances of the AlexNet architecture with diverse
initializations. It combines their results to create an ensemble,
which leads to increased accuracy and resilience of themodel.

The formula given below may be used to express the
ensemble technique used in this approach:

z = 1/n ∗ sumjn(gj(a)) (8)

a indicates the input parameter, g_j stands for the jth model,
n is the number of models utilized in the ensemble, and z
denotes the predicted result.

The AlexNet ensemble with the DMOA approach has
shown promising results in electricity price forecasting and
resource management in cloud-based industrial IoT systems.
It has the potential to change the field of energy management
by increasing resource utilization and decreasing costs using
precise and effective forecasting models. The steps for the
AlexNet ensemble with DMOA is as follows:

• Collect the historical electricity price data and cor-
responding environmental data such as temperature,
humidity, and wind speed.

• Preprocess the data by scaling, normalizing, and split-
ting it into training and testing datasets.

• Trainmultiple AlexNet models on the training data, each
with a different set of hyperparameters.

• Evaluate the performance of each AlexNet model on the
testing data and select the top-performing models based
on a chosen evaluation metric.

• Ensemble the selected AlexNet models by taking the
average prediction of their outputs.

• Apply the Dwarf Mongoose Optimization Algorithm
(DMOA) to optimize the ensemble weights for the best
prediction accuracy.

• Deploy the optimized AlexNet ensemble model in the
cloud-based Industrial IoT system for real-time electric-
ity price forecasting.

• Monitor the performance of the deployed model and
retrain or re-optimize the model as necessary.
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Here are the detailed steps with equations for the AlexNet
ensemble with the DMOA algorithm:

Algorithm 2 Hyrbid AlexNet-DMOA Algorithm
1: Input data: a_i - The essential component that breathes

life into the AlexNet model.
2: Predicted output: b_i - The result of the AlexNet model’s

calculations, a product of its determined computations.
3: AlexNet model: f(a_i, w_k) - The algorithm’s core,

a sophisticated machine that uses deep learning to
improve its performance, with w_k as its ever-evolving
parameter set.

4: Cost function: C(b_i, f(a_i, w_k)) - The gauge of the
model’s accuracy, measuring the gap between predicted
and actual outputs, guiding the optimization of the algo-
rithm.

5: Optimization method: Technique that fine-tunes the
AlexNet model, such as Adam.

6: Ensemble prediction: y_ens = (1/N) * sum_i f(a_i, w_k)
- The final output of the ensemble of N selected AlexNet
models, a culmination of their collective abilities, where
each model contributes an equal share to the ultimate
prediction.

7: Ensemble weights: w_ens = [w_1, w_2, . . . , w_N] - The
balancing act of the ensemble’s abilities, the assigned
weights of each AlexNet model that are optimized using
the ingenious DMOA technique.

8: Optimization objective function: J(w_ens) = C(b_i,
sum_k w_k * f(a_i, w_k)). The DMOA algorithm’s guid-
ing concept is a complex function that evaluates the
ensemble’s performance and the effect of the weights on
the result.

9: Optimization algorithm: DMOA: Inspired by the agile
and collaborative behaviour of the dwarf mongooses, this
algorithm drives the optimization of the weights assigned
to each AlexNet model in the ensemble, unlocking their
full potential and unleashing their power upon the world.

To improve the precision of energy price predictions and
resource management in cloud-based Industrial IoT sys-
tems, the AlexNet ensemble with the DMOA algorithm com-
bines the strength of deep learning models with optimization
approaches.

D. DATACENTER SIDE OPTIMIZATION
The study examined the cost benefits of discharging capacity
to nodes in a single data centre system with varying node
distances. Hourly monitoring of electricity costs was con-
ducted to investigate the efficiency of downloading data to
nodes. Results indicated that downloading data to nodes was
consistently cheaper than other methods. The model will be
updated regularly to incorporate new data, such as message
traffic from popular social media platforms like Facebook,
WhatsApp, and Telegram that reach over a billion users [54].
If a value spike occurs, it may indicate the transfer of data.

FIGURE 2. Data centers interconnected on cloud.

TABLE 1. Notations used.

The study involved utilizing a mobile phone as a node to store
information without charging the node or connecting it to an
energy supplier. The node’s energy was based on the owner’s
usage for loading the node.

A graphical depiction of the system configuration is shown
in Figure 2, wherein a solitary data centre acts as a server
that offers cloud computing services to M nodes that are
linked to it. A lighting symbol indicating the power source
depicts the electrical power that drives the server. The arrows
originating from the data centre and pointing towards the des-
tination nodes in the network diagram denote the offloading
capacity [16], [54]. The cooling and power cost in a data
centre generally exceeds the price of the IT apparatus. The
author concluded that many cloud computing companies use
expensive methods when setting up their businesses.

The notations used in the article are shown in Table 1. P0
refers to a set of equations that can describe the problem at
hand. The specific equations within this set can vary depend-
ing on the values of xa and xb, as illustrated below in Equation
9 and 10 [21]:

minw =

TN∑
a=1

xa · X +

TM∑
b=1

xb · cb

subject to xa ≤ xi, ∀a = 1, . . . ,T N

xb ≤ ji, ∀b = 1, . . . ,T M
TN∑
a=1

xa +

TM∑
b=1

xb =

TN∑
a=1

xi (9)
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xa, xb ≥ 0, ∈ Z+, ∀a = 1, . . . ,T N ,

∀b = 1, . . . ,T M (10)

The optimization model utilizes P0, a collection of formu-
las that represents the problem. When considering the given
scenario, xa is an integer value representing server a’s data
storage capacity, and xb is a decimal value that signifies the
offloading data volume to node B. The cost of electricity
is denoted as X, while the cost of data storage at node j is
indicated by cb. The symbols designate the limits of server I
and node b ai and bj. The value spike threshold is represented
by cb, which determines when to store the data set in the
data centre instead of on edge. The objective function f(c,d)
minimizes the cost estimate to obtain the optimum results of
the variables (d) and (d). The node owner’s energy cost is
assumed to be zero.

The forecast prices impact the storage cost, which can be
minimized by achieving the goal w. Equations 9 and 10 are
constraints to enable the dynamic data assignment to server
capacity and each node [25]. Equation 10 further ensures
the distribution of assigned data across multiple nodes and
servers in data centres. Furthermore, xa and yb can only
assume integer values and forbidden storage.

The procedure of P0 is delineated in this part of the
manuscript, which encompasses an algorithmic structure pro-
vided underneath:

• The techniques outlined herein can be utilized to antici-
pate electricity prices.

• It is feasible to estimate the cost by considering the
output produced by the P0 function and the prevailing
electricity prices.

The precision of price prediction plays a crucial role in
determining the actual cost, thereby influencing the effective-
ness of the optimization approach. Therefore, the expected
price may serve as the basis for the power pricing model,
enabling the cost to be estimated at the correct price. This
method may then record the hourly cost [27].

cost =

TN∑
a=1

xa · η · E · 10−6 (11)

In the Equation 11, E represents a server’s energy per hour
per p2 server space, and electricity is the adjusted price. The
conversion of E to CAD/Wh is carried out to ensure that it
can be compared to the hourly energy price in CAD/MWh.

V. SIMULATION AND RESULTS
A. EXPERIMENT SETUP
In this section, we describe the detailed experimental setup
employed for evaluating the effectiveness of multi-task learn-
ing for electricity price forecasting and resource management
in cloud-based Industrial IoT systems, utilizing Python pro-
gramming language and the Google Colab platform.
Dataset Preparation: The dataset used in the experiments

consisted of historical electricity price data and correspond-
ing resource usage data from a cloud-based Industrial IoT

system. The dataset was preprocessed, which involved data
cleaning, normalization, and feature engineering. Feature sets
or lags were created to capture the temporal dependencies and
patterns in the data.
Data Split: The dataset was split into training and testing

sets to evaluate the multi-task learning model’s performance.
The standard 80/20 split ratio was used, where 80% of the
data was allocated to the training set, and the remaining 20%
was assigned to the testing set. This split ensured sufficient
data for training the model while leaving a separate portion
for evaluating its performance on unseen data.
Model Architecture: A multi-task learning model was

designed using Python and TensorFlow frameworks. The
model consisted of interconnected neural network layers,
with shared layers for capturing standard features across elec-
tricity price forecasting and resource management tasks and
task-specific layers for capturing the unique characteristics
of each task. The architecture and layer configurations were
determined based on prior knowledge and experimentation.
Hyperparameter Tuning: Hyperparameter tuning is a cru-

cial step to optimize the performance of the multi-task learn-
ingmodel. This study’s hyperparameters were tuned using the
Dwarf Mongoose Optimization Algorithm (DMOA). DMOA
is a nature-inspired optimization algorithm that mimics the
foraging behaviour of dwarf mongooses. It is particularly
suited for solving complex optimization problems by explor-
ing the hyperparameter space efficiently.

The hyperparameters tuned using DMOA included:
Learning Rate: The learning rate determines the step size

during the gradient descent optimization. Different learning
rates were tested to find an optimal value that balances the
convergence speed and accuracy of the model.
Batch Size: How many training samples are handled in

each iteration depends on the batch size. Various batch sizes
were tested to find the optimal balance between computa-
tional efficiency and model generalization.

Regularization Techniques Regularisation Methods: To
avoid overfitting and increase the model’s capacity for gener-
alization, regularisation methods like L1 or L2 regularisation
were used. The regularization parameters were tuned to find
the optimal trade-off between bias and variance.

The network design underwent thorough optimization,
considering layer count, neuron quantity, and activation func-
tions. DMOA was crucial in exploring various architectural
configurations to identify the most suitable task method.
DMOA helped explore different architectural configurations
to find the most suitable one for the given tasks.

Repeated Experiments: In the quest for unwavering relia-
bility and unshakable robustness, the experiments underwent
a meticulous ritual of repetition of about 10 times. Each
iteration unveiled a new ensemble of randomized parameter
initialization and a spirited shuffle of the dataset. This sym-
phony of randomness ensured that no stone was left unturned,
capturing the innate variability inherent in the results. The
study unravelled a tapestry of statistical significance with
each repeated experiment, weaving together the threads of
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TABLE 2. Optimized values of the parameters.

certainty and unveiling tall and firm conclusions. The opti-
mized parameters are described in Table 2.

The network design went through a meticulous optimiza-
tion process, exploring various architectural configurations
using DMOA. The final configuration for the network design
included 5 layers, with 100 neurons in each layer and ReLU
activation functions.

To ensure the reliability and robustness of the findings,
the experiments underwent a meticulous ritual of repetition.
They were performed not once, not twice, but a resounding
ten times. Each iteration introduced different random initial-
izations for the model’s parameters and a random shuffling
of the dataset. This comprehensive approach allowed for a
thorough exploration of the variability present in the results,
ultimately leading to the emergence of statistically significant
conclusions.

B. COMPUTED RESULTS
A three-stage analysis was conducted to forecast daily prices,
which involved investigating the data, predicting the price,
and optimizing the process. To carry out this analysis, a sim-
ulation of the data was conducted using historical data
from 2007 to 2022, which was consolidated into a single CSV
file. The data was displayed as a time series in Figure 3 to
provide an overview of the complete dataset. Key statistics of
the dataset, such as the minimum value (−127.69), maximum
value (1781.03), mean value (23.21), and standard deviation
value (33.44), were calculated to gain further insights into
the data. Figure 3 portrays the pricing trends over a limited
period. In actuality, this information is utilized for predicting
future prices. After analyzing the entire dataset, it becomes
clear that the prices exhibit significant fluctuations and spo-
radic spikes. The volatility of prices is highlighted by the
mean being equal to the standard deviation, as indicated by
the primary statistics. Moreover, the highest recorded cost
exceeds 1550 CAD, and Figure 3 further illustrates multiple
instances of significant price levels. Although the highest
price is a single data point, it provides valuable insights into
the extreme price movements observed in the dataset.

The lags in Figure 4 refer to the time delay between price
and date variables. Specifically, the kth lag represents the time
difference between the price at a given date and the price k
days earlier or later. By examining different lags, we can gain
insights into how the price changes over time and identify
patterns or trends in the data. In addition to the kth lags, the
list of Hour_0 to Hour_23 represents the different hours of the
day. This set of variables can be used to examine how price
varies over a day. By examining the price at different hours of

FIGURE 3. Time series data 2006 to 2022.

the day, we can identify patterns and trends in how the price
changes over time.

Overall, the lags and hourly variables provide a way to
analyze the relationship between price and date over different
time scales. By examining the data at different lags and hours
of the day, we can gain insights into how different factors
may influence the price and how it changes over time. This
information can help predict future market trends and make
informed investment decisions.

By examining Figure 3, it becomes evident that the price
of electricity exhibits fluctuations around the mean value
and occasionally experiences sharp spikes. This observation
suggests that there may be potential opportunities for offload-
ing data storage during periods of lower electricity prices.
Therefore, Figure 5 provides a more detailed analysis of the
behaviour of the electricity price and emphasizes the need
to optimize storage offloading to reduce operational costs.
Figure 6 displays the autocorrelation functions to demon-
strate how previous data impacts current prices.

Figure 6 illustrates that the data exhibits seasonality, indi-
cating recurring patterns. Consequently, these time lags may
provide valuable information to the model. Additionally, it is
noticeable that the correlation weakens as the data ages.

Figure 7 depicts a heatmap illustrating the selected vari-
ables’ correlation. The intensity of the colours represents
the degree of correlation, with brighter colours indicating a
stronger correlation between the variables. Figure 7 enables
us to pinpoint the variables most closely related to each other
and can serve as the foundation for the method. Specifically,
It is observed that the contiguous intervals, predictions, and
prices from the preceding 24 hours display a strong correla-
tion with each other compared to other variables. The only
hour seems to be a relevant predictor for the model regarding
the date-related features.

As expected, the correlation decreases as the lag value
increases from 1 to 5 since older data should have a decreas-
ing influence on present values. There is a notable difference
when comparing this to the data characteristics. As with
the lag variables, we observe a decrease in the correlation
strength as we move from a granular to a broad level (i.e.,
from an hourly to a yearly timeframe), implying that the year
in which a data point is recorded has a lower impact than the
hour of the day. Given that only the Hour variable is deemed
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FIGURE 4. Feature Set lags and their values.

FIGURE 5. Forecasted prices for the period August to October.

FIGURE 6. Seasonal data patterns.

FIGURE 7. Autocorrelation of data.

informative in predicting prices, we will exclude the other
data attributes from the model.

C. FORECASTING OF PRICE
The study combined XGBoost with three different power
price forecasting techniques: Support Vector Regression
(SVR), AlexNet, and RandomForest with XGBoost. Figure 8
presents the results of the AlexNet-DMOA model with opti-
mized parameters, with varying amounts of data, and its
corresponding MAE and MSE.

FIGURE 8. RMSE and MAE of AlexNet-DMOA.

TABLE 3. Feature set/lags.

As depicted in Figure 8, the Mean Squared Error (MSE)
significantly increases with a larger dataset, whereas the
Mean Absolute Error (MAE) decreases. Therefore, we lever-
age smaller datasets while using the MSE as it increases sig-
nificantly compared to theMAE. As the model size increases,
the MSE also increases substantially.

The model was constructed iteratively, beginning with
the most significant feature identified. Table 3 summarizes
the various feature sets used in the study [25], [27], while the
tables in the following section present the outcomes of the
selection feature process.

R represents the feature, and Spn represents the lag for
the respective feature in Table 3. Negative lag refers to the
time duration by which the next work can commence before
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FIGURE 9. Comparison of error Metrics values for the Ensemble model VS
Existing schemes.

the end of the preceding work. This technique is applied to
allow overlapping tasks that would otherwise be sequential or
combine tasks that would otherwise be incompatible. Adding
a feature to a model does not always guarantee performance
improvement. For example, when one additional feature is
added from feature set A to feature set B in AlexNet, the
MSE improves, as shown in Table 4. As the number of extra
features is added, theMSE also increases. However, theMAE
decreases gradually as more features are added. This is true
for both AlexNet and XGBoost. The best solution for feature
set H includes both delays and hours as features.

When introducing features, AlexNet-DMOA behaves dif-
ferently from Random Forest and XGBoost. Adding more
features does not always increase accuracy; it may even
decrease accuracy. In most cases, the minimum number of
features provides the optimal result, except for the difference
between feature sets G and H.

DMOA features were used to optimize the AlexNet-
DMOA model. One was selected for future fine-tuning by
modifying the layer count, several neurons, the learning rate,
and other parameters. The image in the reference tab com-
pares our proposed model and existing techniques, revealing
that our model exhibits higher levels of inaccuracy. Patterns
in the data may suggest that the proposed model struggles
to capture specific patterns or factors that influence pricing,
indicating potential areas for improvement.

The proposed model outperforms existing techniques in
terms of MAE, RMSE, MAPE, and MSE, as shown in
Figure 9. Furthermore, the model is less execution time and is
efficient for real-time implementation. The model’s accuracy
in predicting price spikes is also demonstrated by the values
of MAE, MSE, and probabilities P(f/n) = 0.67 and P(t/p) =

0.22. However, it is essential to note that these techniques
cannot be cross-validated.

Table 4 presents the results of an evaluation of the proposed
hybrid method AlexNet-DMOA and compares its perfor-
mance with other existing classifiers. The assessment was
conducted using error metrics to measure the accuracy of the
classifiers in correctly classifying the data.

According to Table 5, the proposed method, AlexNet-
DMOA, achieved the lowest error rate of 3% compared to
the other existing classifiers, indicating that it has the highest

FIGURE 10. Actual and forecasted value of the proposed tuned model.

accuracy among all the classifiers evaluated. This means that
the proposed method outperformed the other models in cor-
rectly identifying the data classes. Therefore, it can be con-
cluded that the proposed method, AlexNet-DMOA, is a better
classifier than the other existing models evaluated in this
study, as it has demonstrated superior classification accuracy.
This result highlights the potential of the proposed method to
be used in practical applications of price forecasting in cloud
computing.

The graphical representation in Figure 10 succinctly
illustrates the simulation outcomes by exhibiting the time
sequence for the test set and the estimated pricing. The blue
curve precisely portrays the actual cost, whereas the orange
curve depicts an estimation that closely corresponds with the
actual cost. The recommended model outperforms the power
price prediction model, delivering precise predictions with
minimal computational complexity.

It is evident that the orange line has a positive impact on
the blue line, and the significance of MAE is clear from the
graph, making it a valuable metric for evaluating the model’s
performance. The graph provides sufficient information to
determine that the orange line appropriately matches the
peaks and lags behind them. It is worth noting that the orange
line’s extreme values appear perfect and not excessive.

Our recommended model outperforms in terms of accu-
rately predicting the price with low computational complex-
ity, providing reliable results for power price forecasting.

D. OPTIMIZATION OF DATACETERS
Our cost-saving optimization model yielded a significant
result of CAD 1805.66, representing a cost savings of 25.31%
with the implementation of random capability in servers
and nodes. We randomly generated storage sizes for servers
and nodes using a normal distribution. Specifically, we set
the number of servers as TN=4 and the node capacity
as TN(1000,20) xi. We employed a One-and-Off strategy
for shutting down servers while downloading to create an
energy-efficient and zero-usage system. We used standard
servers for more balanced energy usage when activated,
with [46] defined as 240 W/h for all active servers. In addi-
tion, we used TM = 900 ji TN (4.1) GB capacity nodes,
assuming that node storage capacity maximizes energy effi-
ciency to be discharged and prevents energy plant and free
storage and node cost. In our analysis, the costs associated

VOLUME 11, 2023 54291



A. A. Almazroi, N. Ayub: Multi-Task Learning for Electricity Price Forecasting and Resource Management

TABLE 4. Forecast error results of all models w.r.t feature set/lag.

TABLE 5. Error metric results of proposed method vs existing models.

with the execution and transfer of data between different
components were not considered. It is crucial to consider
these costs to obtain a complete understanding of the overall
cost savings achieved through storage offloading.

Furthermore, it is essential to mention that the savings
achieved through storage offloading heavily depend on vari-
ous factors, such as the number of projected spikes in demand
and the variance and average storage cost. These factors
must be carefully analyzed and accounted for in any stor-
age offloading strategy to maximize potential cost savings.
Increased prices for both standard and medium costs can
provide many opportunities to save prices more efficiently.
Our experimental findings showed that even when price lim-
itations, such as communication costs, are considered for
a test set, the results were better than expected, leading to
higher pricing and cost savings. Our model resulted in a cost
reduction of up to 24.21% for Ontario over two weeks, with
only four servers for a single data centre of just 900 GB for
each server.

If applied to larger data centres, such as 4,000 servers,
cost reductions could reach CAD 48.3 million each year.

However, it is essential to note that actual energy usage
may be altered by factors and restrictions not considered
in our model. Nonetheless, our model provides a valuable
framework for cost-saving optimization in data centres. The
dataset was limited to 4 servers due to computer limitations.
Still, our testing findings indicate that increasing server size
in a big data centre significantly impacts computation time
over several hours. Therefore, rescaling nodes and servers
was not deployed, as it would not have influenced the out-
come. To effectively decrease the power consumption of
data storage, all servers and nodes must have similar power
consumption when data is downloaded from the data centre.
The cost estimates, and savings are not affected by decreasing
the number of nodes while keeping their capacity high. For
example, the cost saving (CAD) value for TN = 2 and xi
TN(900,10) is 1,000 CAD with Ji TN(2,1), resulting in a
24.21% cost saving.

Table 5 presents the outcomes of our use case analysis,
which investigates the impact of different prices on specific
nodes to demonstrate the effectiveness of offloading storage
to those nodes. The research also distinguishes between phys-
ical nodes and data centre connection points. In addition,
Table 6 examines three alternative storage node prices by
varying the standard deviation values using different distri-
butions and optimizing the model accordingly.

Furthermore, we propose that even though the new node
requires additional memory, its added functionality can offset
the costs. By utilizing our reliable testing model, our research
indicates that the additional features in the storage area can
effectively allocate server resources to the nodes.

Our findings suggest significant cost savings can be
achieved as the standard deviation (std) increases. This is not
unexpected since the new efficiency level leads to reduced
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TABLE 6. Different node cost optimized results.

costs. For instance, when the standard deviation increased
from 0.1 to 0.4, nearly half of the resources saved were
eliminated. Although a few spikes may exceed the edge point,
most drop below the edge point after reducing the discharge
boundary. Moreover, most of the remaining spikes are well
above the critical level and therefore have minimal impact on
growth.

The proposed technique holds immense potential in the
logistics industry, extending its benefits to multiple indus-
trial Internet of Things (IoT) systems. This advancement
can bring significant advantages to sectors such as man-
ufacturing, transportation, and energy. The accurate fore-
casting of electricity prices becomes paramount for these
industries, empowering them to optimize operations, allo-
cate resources efficiently, and make well-informed decisions
regarding energy consumption.

By utilizing the proposed AlexNet-DMOA model, these
sectors can find a ray of hope. This model showcases both
resilience and accuracy, offering real-time forecasts that
seamlessly integrate into their cloud-based systems. Fur-
thermore, the model’s remarkable scalability empowers it
to seamlessly manage vast volumes of data, presenting a
pivotal advantage for the logistics industry where numerous
industrial IoT systems generate substantial data streams. This
ensures that the model can effectively cater to the require-
ments of these sectors.

The proposed technique’s effectiveness in real-time elec-
tricity price forecasting presents a shining opportunity to
bring about substantial benefits to various industrial sectors,
predominantly for cloud-based resource management sys-
tems. By offering more precise and dependable forecasts, the
proposed model can empower these industries to optimize
their operations, cut down costs, and enhance their bottom
line, propelling them towards a promising and flourishing
future.

VI. CONCLUSION
This article introduces a machine learning-based energy
price forecasting model specifically designed for the logis-
tics industry in Ontario, Canada. The research explores the
potential of leveraging the upward trend in power costs to
effectively reduce energy consumption in cloud data centers
by intelligently offloading data to alternative storage desti-
nations. The study focuses on predicting Ontario’s energy
proceeds, specifically the daily spot price of electricity
from 2007 to 2022. The volatile nature of power prices
poses challenges for the Ontario electricity market, necessi-
tating strategies to manage price spikes and volatility. In our
cost savings model, we evaluate the performance of various
default scenarios, demonstrating the efficiency of our model

in achieving cost reductions of approximately 60%. Our price
predictions exhibit remarkable accuracy, as evidenced by the
MAE of 3.77 and MSE of 4.88. By implementing improved
data storage models in data centers, we successfully achieve
energy cost savings of up to 27.63%. Notably, these results
showcase significant cost savings on a small test platform,
indicating the potential for substantial savings on larger-scale
deployments.

Future studies will further enhance our model by con-
sidering additional factors and limitations. Moreover, our
model can be applied to various real-world predictive sce-
narios, incorporating diverse types of data and examining
different geographical areas. For instance, energy and load
predictions can be incorporated as additional data types.
Our model demonstrates the capacity of machine learning
to accurately forecast data center energy consumption, mit-
igating the risks associated with data storage costs. The
AlexNet-DMOA model exhibits substantial energy savings
and outperforms other existing methods in terms of precision.
In the realm of logistics, researchers can delve into alternative
classifiers, such as deep neural networks, and leverage clus-
tering techniques to gain valuable insights into identifying
and rectifying potential errors or anomalies. This exploration
holds significant promise for enhancing the overall effective-
ness of logistics models, enabling more accurate predictions
and optimized decision-making processes. The integration of
advanced techniques and methodologies empowers logistics
practitioners to unlock valuable insights, resulting in height-
ened operational efficiency, reduced costs, and elevated levels
of customer satisfaction.
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