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ABSTRACT Fog-enhanced Internet of Things (IoT) has been widely deployed in the field of collaboration
and sharing. However, participants expressed concern about the fairness of cost-sharing and privacy of data
because of complicated collaborative sharing and untrusted fog nodes in network. In this paper, a novel
privacy-preserving collaborative sharing protocol is proposed in fog-enhanced IoT. This protocol, based on
the Paillier cryptosystems, can guarantee that only the coarse aggregate of users’ requests are used to achieve
fair cost-sharing without any communication between users. In addition, with the proposed protocol, the data
stored in the device can be accurately transmitted to the user in accordance with each user’s request without
prying into the user’s personal schedule. To demonstrate the security of our protocol, the thorough security
analysis is performed. A significant number of experiments and comparison with existing schemes indicates
that the suggested protocol is feasible.

INDEX TERMS Fog-enhanced Internet of Things, privacy-preserving, sharing economy, collaborative
sharing, homomorphic encryption.

I. INTRODUCTION
Iot has been widely used in a variety of collaboration sharing
fields [1], [2], such as smart city [3], knowledge manage-
ment [4], smart contract [5]. During the collaborative process,
participants are worried about the fairness of cost sharing
throughout the partnership because it necessitates sharing a
facility by several. A typical model can solve this problem of
fairness called sharing economy, which enables users to share
resources [6] and split costs in order to minimize user costs
and optimize the utilization of IoT resources. In the sharing
economy based on the IoT, there are a lot of users and con-
nected devices, therefore network performance requirements
are very strict. Fog computing emerges as a practical option
for ensuring adequate computing power and low latency [7].
Fog servers are deployed to build the fog-enhanced IoT net-
work [8] and used to aggregate and distribute the collected
data in order to realize the sharing economy model in the IoT.

Despite fog computing can improve the performance of the
sharing economy model in the IoT, the issue of privacy needs
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to be considered because of the untrusted fog servers [9].
Since user requests and device data must be processed by the
fog servers, it is possible that the servers may purposefully
leak this private information, causing the loss of user data
and speculations about their activity [10]. To guarantee the
security of the entire sharing economy process, a privacy-
preserving protocol is required.

Recently, research on privacy protection in fog-enhanced
IoT has primarily concentrated on geographical range
query [11], [12], data aggregation schemes [13], [14], [15],
and smart medicine [16]. Fairness has not been taken into
account in these research due to limitations in process-
ing power or communication delay. Studies on the sharing
economy for fairness that use cloud computing are avail-
able [17], however because cloud servers are not as close
to users as fog servers, it has much higher communica-
tion costs. Some research about fairness concentrates on
resource distribution [7], [18], responsibility fairness [19],
and preventing bias [20], but it is also restricted by network
performance and ignores privacy concerns. Therefore, there is
a dearth of research that takes both security and fairness into
account.
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To address this problem, we propose an effective privacy-
preserving protocol for sharing economy in fog-enhanced
IoT. Only users, fog servers, and operators pose a threat to pri-
vacy in protocol. Users can resolve the issue of equitable cost-
sharing based on this protocol and receive the information
and services they are entitled to even if they only know their
request. The Paillier cryptosystem’s coarse-grained aggrega-
tion of privacy protection makes sure that fog servers and
operators can only access the total number of requests for
devices. Figure 1 displays the privacy-preserving sharing dia-
gram of capacitated facility. The protocol focuses on sharing
the data kept in the capacitated facility for the IoT device. For
fog servers, only which devices are requested and the total
number of requests can be known. For users, only the total
number of requests for the devices they request can be known.
To guarantee that the data can only be given to the users
that request it, the threshold of whether the device replies
is utilized to create a flag bit. Users can create their own
distinctive random number vector to contaminate the data in
response to threats from fog servers and operators in order to
achieve the goal of preventing data leakage. In addition, our
proposed protocol guarantees that computation expenses and
communication overheads are both feasible and efficient. The
purpose of this work is to solve the security problem when
users collaborate and share public device in the fog-enhanced
IoT. The novel protocol proposed can guarantee the safety of
the sharing economy model in the context of fog-enhanced
IoT. The three main contributions of this paper are as follows:
• It implements privacy-preserving fair cost-sharing. This
protocol makes sure that fog servers and operators won’t
learn the precise request schedule of users for device
sharing. Furthermore, the equitable sharing of sharing
expenses can be accomplished with only coarse-grained
request aggregation.

• Implemented capacitated facility privacy-preserving
sharing. Without exposing the user request schedule,
data stored in the capacity facilities can be securely and
accurately transmitted to users for collaborative sharing.

• Provides rigorous security analysis of the protocol. The
feasibility of the protocol is verified through experi-
ments and comparisons in terms of computational cost
and communication overhead.

The remainder of this paper is composed as follows.
In Section II, related work is discussed. In Section III,
it describes the model and design goals. In Section IV,
some preparations for the Paillier cryptosystem are described.
In Section V, the content and algorithm of the scheme are
described in detail. In Section VI, the security performance of
the scheme is analyzed. In Section VII, a performance evalu-
ation was conducted. Paper is summarized in Section VIII.

II. RELATED WORK
A. PRIVACY-PRESERVING SYSTEM
The research of differential privacy (DP) in recent years
mainly focuses on cyber physical systems [21], data statistics

and machine learning. Zheng and Cai [22] Data analysis in
industrial IoT is studied by using DP. Through perturbation
mechanism, data in the IoT can be shared by consumers
while protecting privacy of workers. Yang et al. [23] The
combination of additional secret sharing and local differen-
tial privacy technologies can protect the geographic location
of users when the user participates in crowdsourcing plat-
forms. Wei et al. [24] studied federated learning with DP
and expounded its efficiency and security. Liu et al. [25]
proposed an architecture that can adapt to various secure
multiparty machine learning tasks. Goyal and Saha [26] In
resource constrained IoT systems, leverage the concurrent-
transmission-based communication technology to efficiently
realize a secure multi-party computation based strategy. The
combination of homomorphic encryption (HE) and fog com-
puting has drawn substantial attention to design of its mecha-
nisms. Sendhil and Amuthan [27] discussed the advantages
of HE when using fog computing for privacy protection
aggregation, and discussed the application of HE in RSA,
Paillier and other public key cryptosystems, as well as the
requirements of fog computing for homomorphic encryption
technology and the basic idea of HE [28]. Mahdikhani et al.
[29] proposed an efficient privacy-preserving range query
scheme usingHE and reduced paths concept in fog-based IoT.

B. PRIVACY-PRESERVING TECHNIQUES IN FOG
There are studies on the total cost of users in community
power system [6], but only the minimum total cost is studied,
without discussing how to make participants share the cost
fairly. Liu et al. [30] proposed a smart grid model based
on fog computing, they proposed an efficient privacy pro-
tection scheme that supports aggregate communication and
functional query. Lyu et al. [31] A privacy security aggre-
gation scheme PPFA based on fog computing in smart grid
is proposed, and the feasibility of the scheme is proved
through data set testing in the real world. Li et al. [32] used
MPC technology to propose a federated learning architecture
for privacy-preserving under fog computing. Wei et al. [33]
uses fog computing to build a privacy-preserving protocol
for the vehicle group intelligent perception network, which
reduces the computing cost and communication cost while
ensuring security. Yekta and Lu [34], following the idea
of XNOR logic gate, proposed a privacy protection query
scheme for the fog-enhanced IoT, named XRQuery, which
implementsO(log n) between users and devices. Lu et al. [35]
uses Paillier encryption, Chinese Remainder Theorem, and
one way hash chain technologies to propose a lightweight
privacy-preserving aggregation scheme in the fog-enhanced
IoT.

Our proposed protocol, in contrast to the research men-
tioned above, focuses on achieving the privacy security of
the sharing economy in fog-enhanced IoT. Each user can
only access the data they specifically request, and device
request fees can be fairly shared without revealing user
privacy.
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FIGURE 1. Illustrations of (a) privacy-preserving capacitated facility sharing.

TABLE 1. Key symbols and notations in the proposed scheme.

III. MODELS AND DESIGN GOAL
In this section, the security model and system architecture are
given to further propose our design goals. The symbols used
in this paper are shown in Table 1.

A. SECURITY MODEL
Before introducing the system architecture, the following
four properties are considered in the scheme.

• Honest-but-curious Model: It assumes that all members
in the system architecture are in line with the honest and
curious model. They will not actively launch network
attacks against others in the architecture, such as DOS
attacks, but will only try to guess the privacy data of oth-
ers through the results or data generated in the process
of implementing the given privacy protection protocol.

• Without collusion: It assumes that each user and device
does not communicate with each other. Users are not
permitted to actively divulge their personal information
to third parties or work together to guess their personal
information.

• Privacy with operator/fog server: On the premise of
providing services for users, operators/fog server can
obtain as little private information as possible to ensure
that they cannot understand the specific information of
each user.

• Privacy with other users: For the purpose of using the
requested devices, each user only receives the coarse
aggregate rather than the fine aggregate in order to split
the expense equally and keep their personal information
private.

B. SYSTEM ARCHITECTURE
The architecture of the system is shown in Figure 1. The
system is divided into four parts: user layer, fog layer, devices
layer and operators.

• User Layer: Given the users vectorU = {u1, u2, · · · uk},
it represents a total of k users. Exist ui ∈ U , each ui
contains a request vector Vi = {vi1, vi2, · · · , viN } for
IoT devices where Vi ∈ ui.N is the number of IoT
devices and indicates the request of the i-th user to the
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FIGURE 2. Schematic diagram of system architecture.

IoT device. vin ∈ {0, 1}, 1 indicates that the user asks
for the device; otherwise. The request vector Vi is only
known by the user himself. Additionally, it is assumed
that once the user sends a request to the device, all data
in the device will be transmitted to the user.

• Device Layer: IoT device vector is given as I =
{I1, I2, · · · , IN },with N IoT devices in total. There is
Dn ∈ In, which represents the data stored in the i-th
IoT device and the upper limit of the size is φ, which
is 0 ≤ Dn ≤ φ. There is a vector Z1×N with the size of
1× N , which represents the summary of the number of
users who send requests to different IoT devices n. PI =
{pI1 , pI2 , · · · , pIN } exists, indicating the price required to
request each device. τ represents the minimum number
of requests responded by the IoT device. The pricing
and τ of each device are publicly known to users and
operators.

• Fog Server Layer:It consists of two fog servers FS1 and
FS2, which communicate with users and device layer
regularly. Because FS1 holds the private key SK , it is
the only member with decryption capability in the whole
system, mainly responsible for the transmission with the
user layer and sending information to the device layer.
FS2 is mainly responsible for receiving information
from user layer and device layer.

• Operator: It is deployed on the user layer, fog server
layer and IoT device layer. The operator assigns the
public key PK of Paillier algorithm to the participants
used, while the private key SK is only sent to FS1. The
operator is also responsible for accepting the fees paid by
users at the user layer. After the collection is successful,
the IoT device will provide services and data to users.

C. DESIGN GOAL
Our design goal is to solve the privacy security problem of the
sharing economy in fog-enhanced IoT. This novel protocol
also takes user privacy and security into account when prices
and data are shared. There are specifically two goals:
• Fair Cost-Sharing with Privacy-Preserving: In the pro-
posed protocol, users can accomplish fair cost-sharing
through a privacy-preserving protocol that only allows

them to know their own schedule, while servers or oper-
ators can only receive the overall number of facilities
used.

• Capacitated Facility Sharing with Privacy-Preserving:
The data on the device must be transferred through the
server in order to complete the entire sharing process.
Users can only comprehend the portions of the data
matrix that pertain to their own requests when it is ulti-
mately received, while servers and operators must deal
with data that has been polluted throughout the whole
transmission process.

IV. PRELIMINARIES
In this section, an overview of the Paillier Homomorphic
Cryptosystem and Asymmetric Encryption System is pre-
sented. More specific introduction can be found in text-
books [36].

A. ASYMMETRIC ENCRYPTION SYSTEM
Different from symmetric encryption, in the asymmetric
encryption system, encryption and decryption cannot be real-
ized by only one key but requires two keys: public key PK
and private key SK . The public key and private key appear
in pairs, marked as (PK , SK ). The plaintext to be transmit-
ted is encrypted into ciphertext by public key PK and then
transmitted to the receiver. To decrypt the ciphertext, the SK
corresponding to the public key is used for decryption. In this
paper, the encryption function is represented by E(•), and the
decryption function is represented byD(•). If the information
to be transmitted is x, formula (1) can been obtained.

EPK (x) = y

DSK (y) = x (1)

B. HOMOMORPHIC ENCRYPTION
Homomorphic encryption is a special encryption method that
can operate on encrypted data, such as addition or multiplica-
tion. This feature ensures that data can be processed without
data disclosure. After the receiver decrypts the result, the
result is the result of data processing. Homomorphic encryp-
tion can be divided into three types. Partially Homomorphic
Encryption (PHE): Only addition or multiplication is sup-
ported. Somewhat Homomorphic Encryption (SWHE): Both
addition and multiplication operations are supported, but the
number of operations is limited. Fully Homomorphic Encryp-
tion (FHE): Both addition and multiplication operations are
supported, and the number of operations is unlimited.

C. PAILLIER CRYPTOSYSTEM
Paillier Cryptosystem is selected in our protocol, which is a
typical asymmetric encryption system with homogeneity and
is commonly used in privacy protection systems. It consists
of the following three parts:
• Key generation algorithm KeyGen(ε): Randomly select
two large prime numbers p and q, satisfying gcd(pq,
(p − 1)(q − 1)) = 1. Note that the lengths of p and q
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are equal to |p| = |q| = κ , called security parameters.
Let n = pq and λ = lcm(p − 1, q − 1). Define
function L(x) = x−1

n and take integer g ∈ Z∗
n2
, let

µ =
(
L(gλ mod n2)

)−1
mod n. Finally, the public key

PK = (n, g) and private key SK = (λ, µ) can be obtained
from the KeyGen(ε) function.

• Encryption algorithm Encrypt():For plaintext m to be
encrypted, 0 < m < n is required. Select random
number r to satisfy 0 < r < n and r ∈ Z∗

n2
. Then the

ciphertext encrypted by public key PK can be expressed
c = E(m) = gmrn mod n2.

• Decryption algorithm Decrypt():For the input ciphertext
c, satisfy c ∈ Z∗

n2
. Then get m = D(c) = L(cλ mod n2) ·

µ mod n by using the private key decrypt.
It has the property of homomorphic addition and homomor-
phic multiplication, as shown in Formula (2) (3).

E (m1) · E (m2) = E (m1 + m2) (2)

E (m1)
m2 = E (m1 · m2) (3)

The property of non-unique correspondence between cipher-
text and plaintext is called self-blindness. It can be expressed
as

D(E(m)rn) = m mod n. (4)

V. OUR PROPOSED PROTOCOL
This section provides a detailed overview of the privacy-
preserving sharing economy protocol for fog-enhanced IoT.
It is mainly divided into two parts: (1) fair sharing of costs;
(2) data transmission of IoT devices.

A. FAIR SHARING OF COSTS
The protocol initially executes equitable cost sharing, and
Figure 2 details the procedure.

1) SYSTEM INITIALIZATION
The safety parameters ϕ are given first, and the operator
generates the public key and private key (PK , SK ) through the
KeyGen(ε) function. After that, the operator sends the public
key PK to all members of the system. They can use the public
key to encrypt their data. Only FS1 receives the private key
SK used for decryption.
In addition, random numbers δ, σ1×k and λ1×k for con-

taminated data are generated at the client. σ1×k and λ1×k
are the set vector of k random numbers independently
generated by users. Generate random number ε in FS2.
Threshold τ is generated by the device and publicized to
the user,and transmitted by the user to FS1. User vector
U = {u1, u2, · · · uk} and random number δ should first be
encrypted before being transmitted to FS2. The data con-
tained in FS2 contains encrypted user vectors, including
E(U ) = {E(u1),E(u2), · · · ,E(uk )} represents the encrypted
user vector set, E(ui) = {E(Vi)} represents the encrypted
i-th user feature set, E(Vi) = {E(vi1),E(vi2), · · · ,E(viN )}
represents the encrypted i-th user request set for the IoT

device, and the encrypted random number E(δ) is used for
the subsequent data transmission process to contaminate the
data. In Figure 2, this procedure is labeled as process 1⃝ and
algorithm 1 briefly describes the implementation process.

Algorithm 1 Initialization
Input: vi ∈ Ui
Output: E(vin),E(δ)
1: for all vi ∈ Ui do
2: E(vin)← Paillier .En(vin)
3: end for
4: E(δ)← Paillier .En(δ)
5: return E(vin),E(δ)

2) AGGREGATION OF All REQUESTS
In order to determine which IoT devices users have requested
overall, the request vector Vi = {vi1, vi2, · · · , viN } of the
set of IoT devices that each user ui in the user set U =

{u1, u2, · · · uk} requests must be added to obtain
i=k∑
i=1

Vi. In this

process, everything is privacy-preserving. The specific steps
are as follows:

The encrypted requests of all users are coarse-grained to
obtain Z1×N in FS2, as shown in (5).

| Z1×N = {z1, z2, · · · , zN }

=

{
k∏

i=1

E (vi1) ,

k∏
i=1

E (vi2) , · · · ,

k∏
i=1

E (viN )

}

=

{
E

(
k∑
i=1

vi1

)
,E

(
k∑
i=1

vi2

)
, · · · ,E

(
k∑
i=1

viN

)}
(5)

The aggregation of all users’ encryption requests for IoT

device n is zn = E(
k∑
i=1

vin). Transmitting Z1×N to FS1 to

decrypt can obtain

D (Z1×N ) = {D (z1) ,D (z2) , · · · ,D (zN )}

=

{
k∑

i=1

vi1,
k∑

i=1

vi2, · · · ,
k∑

i=1

viN

}
. (6)

It is necessary to judge whether the IoT device responds
to determine whether the user needs to pay. Use C =

{c1, c2, · · · , cN } to represent the response set of devices,
where

cn =


1

k∑
i=1

vin − τ > 0

0
k∑
i=1

vin − τ < 0

(7)

Coarse aggregate after response judgment can be expressed

as {c1
k∑
i=1

vi1, c2
k∑
i=1

vi2, · · · , cN
k∑
i=1

viN }, and send it to FS2.
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FIGURE 3. An illustration of fair sharing of costs, including system initialization, aggregation of all requests, coarse aggregate distribution
and cost-sharing and payment.

In Figure 2, this procedure is labeled as process 2⃝ and 2⃝.
Algorithm 2 briefly describes the implementation process.

Algorithm 2 Requested Device Aggregation
//In FS2
1: for i = 1 to k do
2: Z1×N (i) = E(vi1)
3: for n = 2 to N do
4: Z1×N (i)← Paillier .Add(E(vin),Z1×N (i))
5: end for
6: end for
7: return Z1×N

//In FS1
8: for i = 1 to N do
9: D(Z1×N (i))← Paillier .De(Z1×N (i))

10: end for
11: C(i)← D(Z (i))− τ ≥0?1 : 0
12: for i = 1 to N do
13: CD(i)← C(i) · Z1×N (i)
14: end for
15: return CD

3) COARSE AGGREGATE DISTRIBUTION
In the last process, the coarse aggregates of all the requested
IoT devices is obtained and stored in FS2. Next, need to
assign them to users according to whether they request or not,
to ensure that only when user i makes a request to device n,

can user obtain the coarse granularity aggregation cn
k∑
i=1

vin of

the device’s request, otherwise invalid data can be obtained.
The specific steps in this stage are as follows: First of all, the
encrypted user request a E(vin) is operated with the power of

cn
k∑
i=1

vin. Formula (8) can be obtained.


(E(v11))

C1
k∑
i=1

vi1
· · · (E(v1N ))

CN
k∑
i=1

viN

...
. . .

...

(E(vk1))
C1

k∑
i=1

vi1
· · · (E(vkN ))

CN
k∑
i=1

viN



=



E(c1v11
k∑
i=1

vi1) · · · E(cN v1N
k∑
i=1

viN )

...
. . .

...

E(c1vk1
k∑
i=1

vi1) · · · E(cN vkN
k∑
i=1

viN )


(8)

In order to prevent FS1 from directly obtaining the real

cnvin
k∑
i=1

vin after decryption, it needs to use the encrypted

random number E(δ) in FS2 to contaminate it. The process
is as follows:

E(c1v11
k∑
i=1

vi1)E(δ) · · · E(cN v1N
k∑
i=1

viN )E(δ)

...
. . .

...

E(c1vk1
k∑
i=1

vi1)E(δ) · · · E(cN vkN
k∑
i=1

viN )E(δ)
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Algorithm 3 Aggregate Assignment to Users
//In FS2
1: for i = 1 to k do
2: for n = 1 to N do
3: Z (i)← Paillier .Mul(E(vin),D(Z1×N (n))
4: Z (i)← Paillier .Add(Z (i),E(δ))
5: end for
6: end for

//In FS1
7: for i = 1 to k do
8: D(Z (i))← Paillier .De(Z (i))
9: end for

//In User layer
10: for i = 1 to k do
11: T (i)← D(Z (i))− δ

12: end for
13: for i = 1 to k do
14: for n = 1 to N do
15: if T (i, n) == 0 then
16: T ′(i, n) = 0
17: else
18: T ′(i, n) = 1

/
T (i, n)

19: end if
20: end for
21: end for

=



E(c1v11
k∑
i=1

vi1 + δ) · · · E(cN v1N
k∑
i=1

viN + δ)

...
. . .

...

E(c1vk1
k∑
i=1

vi1 + δ) · · · E(cN vkN
k∑
i=1

viN + δ)


(9)

FS1 decrypts it to obtain cnvin
k∑
i=1

vin + δ, and then returns

it to the user. Because the random number δ is generated
at the client, it is known to the user. Therefore, the user i
can obtain the coarse aggregate Ti = (Ti1,Ti2, · · · ,TiN ) =

{c1vi1
k∑
i=1

vi1, c2vi2
k∑
i=1

vi2, · · · , cN viN
k∑
i=1

viN } of the requested

device by subtracting the random number from the received
data. Therefore, user i can obtain the coarse aggregate of the
requested devices by subtracting the random number δ from
the received data. Since the request of user i for the device
n is vin ∈ {0, 1} and cn ∈ {0, 1}, the coarse aggregate Tin ∈

{0,
k∑
i=1

vin} obtained by it. If user i participates in the request

for device n, the total number of users
k∑
i=1

vin participating

in the request for device can be obtained. In Figure 2, this
procedure is labeled as process 4⃝ and 5⃝. Algorithm 3 briefly
describes the implementation process.

4) COST-SHARING AND PAYMENT
After the previous several stages, each user i gets a coarse-
grained aggregate Ti of the number of devices he/she requests.

For the convenience of calculation, it assumes that users’
expenses for requesting device are evenly distributed accord-
ing to the number of people. The price required for each
device has been announced to the user in advance, which is
PI =

{
pI1 , pI2 , · · · , pIN

}
. Take the reciprocal of each element

in the vector Ti to get the vector T ′i . Therefore, the final fee
payable by user i is

Pi =
N∑
n=1

PInT
′
in. (10)

So far, fair cost sharing for privacy protection has been
realized. In Figure 2, this procedure is labeled as process
6⃝. After the user submits the fee, the system starts the data
transmission part of the IoT device.

B. DATA TRANSMISSION OF IoT DEVICES
In this part, IoT device data must be securely transmitted to
the user making the request. Since this part is a complete
and continuous protocol with the part that fair sharing of
costs, the system initialization is not required at the begin-
ning, and the data stored in the above steps are still stored
in FS1 and FS2. The data stored and used at this stage
are the random numbers σ1×k , λ1×k in the user layer. τ ,

C and {
k∑
i=1

vi1,
k∑
i=1

vi2, · · · ,
k∑
i=1

viN } are in FS1. The random

number ε and E(Vi) = {E(vi1),E(vi2), . . . ,E(viN )} are in
FS2. Figure 3 shows the steps of data transmission process
in detail.

1) DEVICES RESPONSE
It is necessary to determine which IoT devices are required.
The random number σ1×k in the user is transmitted to FS1,
and the random number λ1×k is encrypted and then trans-
mitted to FS2. Set C is transmitted to the device layer and
allocated to the corresponding device data to obtaine C · I =
{c1D1, c2D2, · · · , cNDN }. Data Dn is stored in device n, so
the requested data can be expressed as cnDn, where

cnDn =

{
Dn cn = 1
0 cn = 0

(11)

Then the IoT device encrypts it with the public key
PK to obtain the effective data vector Q = {E(c1D1),
E(c2D2), · · · ,E(cNDN )} and transmits it to FS2. This step
sets the data that does not need to be transmitted to 0 to
avoid transmitting the data stored in the unresponsive device.
In Figure 3, this procedure is labeled as process 1⃝ and 2⃝.
Algorithm 4 briefly describes this process.

Algorithm 4 Response of IoT Devices
1: for i = 0 to N do
2: C(n) · D(n)
3: Q(n)← Paillier .En(C(n) · D(n))
4: end for
5: return Q
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FIGURE 4. An illustration of data transmission in IoT devices, including judge whether the devices in the IoT respond, encrypted data processing
in fog layer and data transmission to user layer.

2) ENCRYPTED DATA PROCESSING IN FOG LAYER
After receiving the data vector, FS2 must use random number
ε to contaminate the data to stop FS1 from immediately
decrypting the original data. So can obtain

Qcon = {E(c1D1)ε,E(c2D2)ε, · · · ,E(cNDN )ε}

= {E(εc1D1),E(εc2D2), · · · ,E(εcNDN )}. (12)

Qcon is transmitted to FS1 for decryption and obtain

D(Qcon) = {εc1D1, εc2D2, · · · , εcNDN }. (13)

Data security in FS1 is guaranteed by the random number ε.
Similarly, D(Qcon) must also be contaminated in FS1 before
being spread to FS2. So the following can be obtained as

σ T1×kD(Qcon) =


εσ1c1D1 · · · εσ1cNDN

...
. . .

...

εσkc1D1 · · · εσkcNDN

 (14)

σ T1×kD(Qcon) is transmitted to FS2 and allocated to the
specific user who sends the request. After FS2 receives
D(Qcon)σ , in order to save computing resources, first use ε−1

to eliminate a random number and obtain

ε−1σ T1×kD(Qcon) =


σ1c1D1 · · · σ1cNDN

...
. . .

...

σkc1D1 · · · σkcNDN

 . (15)

Then E(Vi) = {E(vi1),E(vi2), . . . ,E(viN )} stored in FS2 is
used to distribute the data of the IoT device to users. For user i,

according to the multiplicative homomorphism property, UD
i

can be obtained.

UD
i = {E(vi1)

σic1D1 ,E(vi2)σic2D2 , · · · ,E(viN )σicNDN }

= {E(vi1σic1D1),E(vi2σic2D2), · · · ,E(viNσicNDN )}

(16)

Because σi is a known random number by FS1, the data’s
privacy and security cannot be guaranteed. In order to protect
the privacy of data, it is necessary to use random number λi
to contaminate it.

Ui = UD
i E(λi)

= {E(vi1σic1D1), · · · ,E(viNσicNDN )}E(λi)

= {E(vi1σic1D1)E(λi), · · · ,E(viNσicNDN )E(λi)}

= {E(vi1σic1D1 + λi), · · · ,E(viNσicNDN + λi)}

(17)

Therefore, the user’s encrypted data matrix can be expressed
as

U = {U1 · · ·Uk}T

=


E(v11σ1c1D1 + λ1) · · · E(v1Nσ1cNDN + λ1)

...
. . .

...

E(vk1σkc1D1 + λk ) · · · E(vkNσkcNDN + λk )


(18)

95302 VOLUME 11, 2023



W. Bai, A. Huang: Privacy-Preserving Collaborative Sharing for Sharing Economy in Fog-Enhanced IoT

Finally,U is transferred to FS1. In Figure 3, this procedure
is labeled as process 3⃝, 4⃝ and 5⃝. Algorithm 5 briefly
describes the implementation process.

Algorithm 5 Encrypted Data Processing
//In FS2
1: for i = 0 to N do
2: Qcon(i)← Paillier .Mul(ε,Q(i))
3: end for

//In FS1
4: for i = 0 to N do
5: DQcon(i)← Paillier .De(Qcon(i))
6: DQcon(i)← Qcon(i) · σi
7: end for

//In FS2
8: for i = 0 to N do
9: DQcon(i)← DQcon(i)

/
ε

10: end for
11: for i = 0 to k do
12: for n = 0 to N do
13: UD(i, n)← Paillier .Mul(E(vin),DQcon(n))
14: UD(i, n)← Paillier .Add(UD(i, n),E(λi))
15: end for
16: end for

Algorithm 6 Users Get Data
//In FS1
1: for i = 0 to k do
2: for n = 0 to N do
3: R(i, n)← Paillier .De(UD(i, n))
4: R′(i, n)← (R(i, n)− λi)

/
σi

5: end for
6: end for

3) DATA DISTRIBUTION AND RESTORE
U is decrypted in FS1 after receiving it.

R = D(U ) = {R1, · · · ,Ri, · · · ,Rk}T

=


v11σ1c1D1 + λ1 · · · v1Nσ1cNDN + λ1

...
. . .

...

vk1σkc1D1 + λk · · · vkNσkcNDN + λk


(19)

For each element vinσicnDn + λi, exist vinσicnDn + λi ∈
{0, σiDn + λi} because of vin ∈ {0, 1} and cn ∈ {0, 1}. If and
only if user i makes a request to device n and this device
responds, user i can receive the contaminated data σiDn+λi.
The random number σi, λi is generated at the user layer and is
known to users. So after the user receives the data matrix and
finds the corresponding row position, the set of IoT device
data R′i can be obtained.

R′i = (Ri − λi)σi−1 = {vi1c1D1, vi2c2D2, · · · , viN cNDN }

(20)

where vincnDn ∈ {0,Dn}, Dn is taken when and only when
user i sends a request to device n and device n responds.
In Figure 3, this procedure is labeled as process 6⃝ and 7⃝.
The implementation process is described in algorithm 6.

VI. SECURITY ANALYSIS
Based on the security model in section III, this part thor-
oughly examines the security of the protocol.

A. SECURITY AT THE COST CALCULATION STAGE
The user first sends the encrypted information E(U ),E(δ)
to FS2 and sends the threshold τ to FS1. FS2 only holds
the public key PK and cannot decrypt it, so this pro-
cess is safe. Then obtain the aggregate set Z1×N =

E(
k∑
i=1

vi1),E(
k∑
i=1

vi2), · · · ,E(
k∑
i=1

viN )} of all users’ requests

for IoT devices by homomorphism property and transmit
it to the fog server FS1. After decryption, FS1 obtains

D(Z1×N ) = {

k∑
i=1

vi1,
k∑
i=1

vi2 · · · ,
k∑
i=1

viN } and sends it to

FS2.
k∑
i=1

vin indicates how many users have made requests

to use IoT device n. Thus, FS1 and FS2 only know
the total timetable of devices requests, but not the pre-
cise schedule of each user. It is also safe in this pro-
cess. Upon the completion of the encryption calculation,

the encryption vector {E(c1vi1
k∑
i=1

vi1 + δ),E(c2vi2
k∑
i=1

vi2 +

δ), · · · ,E(cN viN
k∑
i=1

viN + δ)} is obtained and sent to FS1

for decryption to produce {c1vi1
k∑
i=1

vi1 + δ, c2vi2
k∑
i=1

vi2 +

δ, · · · , cN viN
k∑
i=1

viN + δ}. For FS2, the encryption vector is

unknown. For FS1, element cnvin
k∑
i=1

vin + δ is contaminated

by random number δ and is unable to extract actual informa-
tion, resulting in privacy security. Then transmit it to the user

layer. The user i receives Pi =
N∑
n=1

PInT
′
in, indicating the fee

he/she must pay. For devices not requested by the user, there
is no fee.

B. SECURITY DURING DATA TRANSMISSION
Assess the device’s response. Just the devices’ response
can be obtained in step FS1, not the user’s precise
timetable. Devices process their data and produces Q =
{E(c1D1),E(c2D2), · · · ,E(cNDN )} depending on how it
responds. After receiving the encrypted data, FS2 pollutes
it with random numbers ε before sending it to FS1. Due to
the presence of unknown random numbers, FS1 is unable to
determine the genuine information for the decryptedD(Qcon),
assuring privacy security. Since that FS2 already knows
the random number ε, using σ T1×k to contaminate it before
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TABLE 2. The experiment parameter settings.

FIGURE 5. The running time required for the initialization process in the
scheme under different security parameter.

transmission to FS2 is required. Similarly, FS2 is unable to
collect accurate information of ε−1σ T1×kD(Qcon). The matrix
UD is obtained after data distribution, and each of its com-
ponent parts contains a random number λi. Following FS1’s
decryption, an unknown λi for FS1 is used to assure the
security of the matrix. Each user can only recover the data
they are supposed to receive after transmitting UD to the user
layer because they only have the independently generated
random numbers σi and λi in their possession. In addition,
users can only determine the location of the data that needs
to be decrypted by themselves, without knowing the location
of others. It ensures the security of its own data.

VII. PERFORMANCE EVALUATION
This section analyzes the performance of the proposed pro-
tocol in terms of communication and computing costs. Each
experiment was carried out 20 times, with the findings aver-
aged. Table 2 lists the precise parameter settings used in the
experiment.

A. COMPUTATIONAL COSTS
Figure 4 illustrates the changing trend in system ini-
tialization time when the security parameter is κ =

256, 512, 1024, 2048, 3072 for a scenario with 5 users and
100 devices. It is clear that as the safety parameter increases,
so does the time required for system initialization. The safety
parameter is set to κ = 2048 in following experiments.
For the five different algorithms requested device aggrega-

tion, aggregate assignment to users, response of IoT devices,
encrypted data processing and users get data, the computa-
tional cost is considered from three aspects. The effect of
the request proportion on the calculation cost is depicted in
Figure 5. As can be seen, the calculation cost is unaffected by
the request proportion. This makes sense given that the gadget
must take part in the calculation even if it is not requested.

FIGURE 6. The running time of the five processes under different
requested promotion of IoT devices, including requested device
aggregation, aggregate assignment to users, response of IoT devices,
encrypted data processing and users get data.

FIGURE 7. The running time of the five processes under different number
of users, including requested device aggregation, aggregate assignment
to users, response of IoT devices, encrypted data processing and users get
data.

Figure 6 displays the five algorithms’ execution times for
user counts k = 5, 10, 15, 20, 25. The number of users has
a positive correlation with the running times of algorithms
aggregate assignment to users, encrypted data processing and
users get data, whereas requested device aggregation and
response of IoT devices have no such correlation, because
devices are the focus of the latter two activities. Figure 7
demonstrates a positive association between the running
times of the five algorithms and the number of devices at the
device counts N = 100, 200, 300, 400, 500.

The cost estimates for the two stages fair sharing of costs
and data transmission of IoT devices in the protocol are
contrasted with the computational cost for the PPSA [14]
on the assumption of 5 users and 100 devices. Figure 8
demonstrates that the computation cost for stage fair sharing
and data transmission are both lower than the PPSA’s. It can
be confirmed that the computational cost of our protocol is
feasible.

B. COMMUNICATION OVERHEADS
First, analyze the communication overhead generated in the
phase of determining the amount that users need to pay, and
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FIGURE 8. The running time of the five processes under different number
of IoT devices, including requested device aggregation, aggregate
assignment to users, response of IoT devices, encrypted data processing
and users get data.

FIGURE 9. A comparison of the computational costs for stage fair sharing
of costs and data transmission of IoT devices with scheme PPSA.

TABLE 3. The communication overhead of determining the amount to be
paid by the user.

summarize them in Table 3. The user sends the encrypted
user vector E(U ) and the encrypted random number E(σ ) to
FS2,threshold τ to FS1. Each user vector U also includes
N device request vectors, so the communication overhead
generated by this process is k · N · L + L + 1, where L
represents the length of ciphertext after Paillier encryption, k
represents the number of users, and N represents the number
of devices. After the data is processed in FS2, Z1×N is sent to
FS1. The communication overhead incurred in this process is
N · L. Decrypt in FS1 and return it to FS2. The overhead of

this process is N . Next, E(cnvin
k∑
i=1

vin + δ) is obtained from

FS2 and transmitted to FS1, resulting in a communication
overhead of k · N · L. Finally, FS1 decrypts and transmits
the decrypted data to the user. The communication overhead
incurred by this process is k · N .

TABLE 4. The communication overheads of data transmission in IoT
devices.

Secondly, analyze the communication overhead generated
in the data transmission phase of the IoT device and sum-
marize them in Table 4. FS1 sends C to the IoT device end
and user layer sends random number σ1×k , λ1×k to FS1.
Therefore, the communication overhead is N + 2 · k . Then
the IoT device end sends the encrypted IoT device data Q
to FS2, resulting in communication overhead N · L. After
FS2 processes the data, Qcon sends it to FS1, resulting in a
communication overhead of N · L. Then FS1 decrypts it and
transmits it back to FS2 after processing. The communication
cost incurred in this process is 2 · k · N . After processing in
FS2, E(vinσicnDn + λi) is obtained and transmitted to FS1.
The transmission communication overhead is k ·N ·L. Finally,
after decryption by FS1, the obtained data is transmitted to
the user and the communication overhead k · N is generated.
Based on the above discussion, it can be concluded that the
communication overheads of our protocol is acceptable.

VIII. CONCLUSION
This paper presents the work of privacy-servicing protocol for
sharing economy in fog-enhance IoT, which considers both
fair cost sharing and data privacy protection. It realizes the
security of user information and device data in the process
of user request, IoT device response and data transmission.
Users can pay the required fees fairly according to the number
of people requesting IoT devices and share the data stored in
the requested IoT devices. A thorough investigation was done
to make sure the protocol safeguarded privacy. According to
the findings of the protocol performance testing, the protocol
is feasible in terms of computational and communication
overhead. Next, this work will be applied to real-world sce-
nario, such as smart grids, smart cities, etc.
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