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ABSTRACT Internet of Things (IoT) devices are becoming increasingly ubiquitous in daily life. They are
utilized in various sectors like healthcare, manufacturing, and transportation. The main challenges related
to IoT devices are the potential for faults to occur and their reliability. In classical IoT fault detection, the
client device must upload raw information to the central server for the training model, which can reveal
sensitive business information. Blockchain (BC) technology and a fault detection algorithm are applied to
overcome these challenges. Generally, the fusion of BC technology and fault detection algorithms can give
a secure and more reliable IoT ecosystem. Therefore, this study develops a new Blockchain Assisted Data
Edge Verification with Consensus Algorithm for Machine Learning (BDEV-CAML) technique for IoT Fault
Detection purposes. The presented BDEV-CAML technique integrates the benefits of blockchain, IoT, and
ML models to enhance the IoT network’s trustworthiness, efficacy, and security. In BC technology, IoT
devices that possess a significant level of decentralized decision-making capability can attain a consensus
on the efficiency of intrablock transactions. For fault detection in the IoT network, the deep directional
gated recurrent unit (DBiGRU) model is used. Finally, the African vulture optimization algorithm (AVOA)
technique is utilized for the optimal hyperparameter tuning of the DBiGRUmodel, which helps in improving
the fault detection rate. A detailed set of experiments were carried out to highlight the enhanced performance
of the BDEV-CAML algorithm. The comprehensive experimental results stated the improved performance
of the BDEV-CAML technique over other existing models with maximum accuracy of 99.6%.

INDEX TERMS Blockchain, Internet of Things, consensus algorithm, fault detection, deep learning,
hyperparameter tuning.

I. INTRODUCTION
With the advent of 5G, wireless sensor networks (WSNs), and
relevant technology, the Internet of Things (IoT) has become
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more prominent as a new concept to satisfy the requirements
of ubiquitous, flexible, and agile availability of cyberspace
from physical systems [1]. But the present centralized IoT
framework is greatly limited by security challenges, single
point of failure, robustness, and data privacy [2]. Nowadays,
blockchain (BC) is a potential solution to sort out such issues
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because of its capability to maintain an immutable open
ledger that is easily accessed by all but is tamper-proof [3].
Aswell a wide range of innovative IoT applications is enabled
by the rapid development of edge computing. Few research
works are done on this subject, and various tools, like BC
and IoT, are utilized to make an intelligent supply chain. Still,
research gaps in this area are found, like the study of relations
of these three areas: BC, smart supply chain, and IoT [4].
Another application is the absence of categorization of IoT
features and BC that disturbs building an intelligent supply
chain. BC is a unique e-book, a kind of data and reporting
mechanism that records its worth [5]. The only difference
between BC and other mechanisms is that the saved data is
shared between networkmembers. Encryption usagemakes it
almost impossible to manipulate or delete the recorded data.

BC technology presents immense benefits like stability,
trust, speed, effectiveness, precision and independence [6].
The unique features of a BC program (unchangeable
records, peer-to-peer relationship, approval schedule, and
autonomous) lead to an error elimination of transfer,
increased productivity, the use of data, data security assur-
ance and time and money saving [7]. Decentralization indi-
cates the absence of central authority or intermediaries;
the selected or individual participants in one BC can val-
idate the reports of their trading partners and be suitable
to use the whole database and entire history without the
intermediary’s help [8]. Further, by eliminating the role of
management intermediary, BC eradicates the necessities of
centralized management; the distributed system called Peer-
to-peer systems composed of personal computers, which
offer their computational resources (information distribution,
storage capacity) directly to others [9]. Indeed, BC technol-
ogy is devised in dispersed systems to alleviate any single
point of failure; customers need not believe their service
providers. In the industrial Internet of Things (IIoT), one
significant problem is Fault detection. In traditional device
failure recognition of IIoT, for centralised model training,
client devices should upload local raw information to a cen-
tral server [10]. This may cause problems like data privacy
since the local data of clients can be business sensitive. For
instance, using air conditioning in hotels possibly reflects the
occupancy rate.

This study develops a new Blockchain Assisted Data
Edge Verification with Consensus Algorithm for Machine
Learning (BDEV-CAML) technique for IoT Fault Detection
purposes. In BC technology, IoT devices that possess a sig-
nificant level of decentralized decision-making ability can
reach an agreement regarding the effectiveness of intrablock
transactions. The deep directional gated recurrent unit (DBi-
GRU) model is used for fault detection in the IoT network.
Finally, the African vulture optimization algorithm (AVOA)
technique is utilized for the optimal hyperparameter tuning
of the DBiGRU model, which helps in improving the fault
detection rate. A detailed set of experiments were carried out
to highlight the enhanced performance of the BDEV-CAML
algorithm.

II. RELATED WORKS
Trivedi et al. [11] devised a DL and BC-based EV fault
detection (FD) structure to find different kinds of faults: bat-
tery faults, air tire pressure, and vehicle temperature. Further,
to achieve the FD data transaction with high reliability and
scalability for EV, the author uses a 5G wireless network,
including an interplanetary file system (IPFS). Initially, the
author uses an LSTM and a CNN technique to deal with
battery fault detection, air tire pressure fault, and anomaly
detection for temperature fault to forecast the faulty dataset,
guaranteeing users a safer journey. In [12], the author target
to detect a technique for potential FD in IoT gadgets. Based
on BC, an IoT network architecture is initially developed,
and a data edge authentication system is designed; the BC
is utilized for assuring that data could not be tampered with
and the precision can be guaranteed. Eventfully, a dataset
accuracy-weighted RF-related PSO was devised.

Belhadi et al. [13] developed an innovative structure to
precisely find anomalous patterns in privacy RL in a het-
erogeneous and distributed energy environment. The local
outlier factor was accomplished for deriving local abnormal
patterns in all sites of the distributed energy environment.
With BC technology, reinforcement privacy learning com-
bines local anomalous patterns into global complicated ones.
Huang et al. [14] presented a Gaussian Bernoulli restricted
Boltzmann machine (GBRBM)-oriented DNN innovative
algorithm for transforming the FD into a classifier issue.
The presented technique outpaces other baseline ML tech-
niques by real trace-driven experiments. In [15], an innovative
Energy-Efficient Heterogeneous Fault Management system
was devised to achieve such heterogeneous faults in IWSN.
The three new diagnosis techniques can achieve efficient
heterogeneous FD in this technique. The Tuned SVM clas-
sifier facilitated the classification of the heterogeneous faults
where the tuning parameter of the presented method is opti-
mized using the Hierarchy-related Grasshopper Optimization
method.

Mittra et al. [16] emphases on investigating these main
issues in the secondary transmission system, proposing tech-
niques to implement and integrate modern technologies like
BC and IoT, and sightseeing the scope of enhancements in the
current system. The research workers have modernised con-
ventional techniques and re-applied devices and equipment.
Zhang et al. [17] present a new adaptive privacy-preserving
federated learning method called AdaPFL for FD in IoS,
which organizes various shipping agents to develop a tech-
nique by sharing model parameters without data leakage.
Initially, the author uses two tasks as instances to show that
a smaller portion of model parameters may expose the raw
data of shipping agents. To protect the basic information of
shipping agents, the Paillier-based communication technique
was devised.

In [18], a maintenance-oriented KG is presented ini-
tialy dependent upon a explicit domain oriented ontology
scheme and accumulated preserved data. Afterward, an
Attention-Based Compressed Relational GCN was presented
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for predicting possible solutions and describe fault in preserve
tasks. Xia et al. [19] presents a novel hypergraph convolu-
tion network (HGCN) based model to forecast MRR from
the CMP procedure. A major contributions contains: (1) a
generic hypergraph method for representing the interactions
of difficult tools; and (2) a temporal enabled forecast method
for learning the difficult data correlation and high order rep-
resentation dependent upon the hypergraph. In [20], a vertical
federated learning (FL) method, privacy-preserving boosting
tree was established to collaborative fault analysis of indus-
trial practitioners but maintained anonymity.

Xia et al. [21] examines a residual-HGCN (Res-HGCN)
technique which holistically drive in tools structure and oper-
ational processes as a hypergraph procedure as data-driven
method allowing for reaction amongst equipment’s mecha-
nisms. Keung et al. [22] introduces the execution of devel-
oping ARP for IIoT and resource synchronisation flexible
robotic and facility control scheme for addressing this chal-
lenge. In [23], the authors propose for addressing the value
construction of exploiting the IIoT-driven resource synchro-
nization and sharing-based robotic mobile fulfillment system
(RMFS) for enhancing the entire operational efficiency and
effectiveness in the data transmission and synchronization of
resources.

The number of parameters of DL methods increases
quickly because of the continuous deepening of the method
that give rise to model overfitting. Meanwhile, various hyper-
parameters have a huge impact on the ability of the CNN
method. To be specific, the hyperparameters like learning rate
selection, epoch count, and batch size are vital to get produc-
tive results. As the trial and error method for hyperparame-
ter tuning is a erroneous and tedious process, metaheuristic
methods are adopted. Hence, the authors have used AVOA
method for the parameter selection of the DBiGRU approach
in this study.

III. THE PROPOSED MODEL
In this study, we have designed a novel BDEV-CAML algo-
rithm to identify faults in the IoT environment effectively.
The BDEV-CAML technique integrated the advantages of the
blockchain, IoT, and ML concepts for boosting the IoT net-
work’s trustworthiness, efficacy, and security. In the context
of intrablock transactions, IoT devices with strong decentral-
ized decision-making abilities can agree on the effectiveness.
Fig. 1 represents the overall procedure of the BDEV-CAML
approach.

A. BLOCKCHAIN TECHNOLOGY
Blockchain (BC) technology is the eminent domain for safety
and trust, which can be applied to any relevant topic to
keep data and information private [24]. Likewise, it is a
groundbreaking technology for distributed and decentralized
computing frameworks that support the data with encrypted
blocks in the chain. Digital data related to time, date amount,
transactions, and so on are enlarged in the transaction process

and stored in the block. The stored information is now avail-
able within the distributed network, with a participant node to
authenticate the transaction. Every node in BC is connected
and assists the transaction and crypto code. An additional
feature in BC technology is the mathematical algorithm that
is extremely powerful in these networks. It is responsible for
blocking authentication to minor nodes without affecting the
data; for that reason, BC is transparent and secure. There
exist recommendation systems based on BC and knowledge
discovery technology and many research requirements for
tackling security challenges. This procedure must implement
the incorporation of IoT and BC. Likewise, the security
challenges, which the research workers state, make the BC
a better choice. BC’s main characteristics are programma-
bility, trust, security, and so on. A BC comprises a private
BC, a consortium BC, or a public BC. The public BC is
well-known for digital currency. The primary goal of the con-
sortium BC is to integrate the service trading and stakeholder
entity.

B. IoT NETWORK MODEL AND DISTRIBUTED
LEDGER DEPLOYMENT
If the edge gateway fails, IoT using single-edge gateways
is prone to single-point failure since the whole IoT will be
disconnected. Multiple-edge gateways decrease the delay and
distance of communication of information and prevent energy
loss based on the fast consumption of the IoT node nearby
the edge gateway. In the presented method, multiple edge
gateways are the edge server and are applied to authenticate
the information received from the BC [12]. The edge node
process the received statistics and encapsulate the processed
information, timestamp, and other transaction data into the
block that can be represented as the data block. Data authen-
tication can be accomplished by transporting these blocks.
Each edge gateway retains a synchronized and shared dis-
tributed ledge. Every transaction between the edge gateways
is stored in the ledger, like data exchange or asset records.
Due to the computing power, limited storage capacity, energy,
etc., the distributed ledger is positioned on edge gateways and
is retained by the edge gateway. The information transferred
in IoT is stored in the ledger with decentralised features,
guaranteeing that the information is tamper-proof.
Data Consensus Algorithm: In BC technology, nodes

equipped with extensive decentralized decision-making abil-
ities could attain a consensus on the efficiency of intrablock
transactions. To guarantee consensus amongst edge gateways,
the conventional BC technique depends mainly on the com-
puting power of distributed edge gateway. With compara-
tively poor computation power, this doesn’t apply to IoT.
Consequently, the study developed a data consensus model
of IoT. The hash function is performed for transforming
the information into respective hash values once the edge
gateway receives the information [12]. Every evaluated hash
value corresponds to the data point, and the new information
could not be recovered through hashing. The edge gateway
receives the information store, the destination edge gateway,
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and other related data in the block. The data block is transmit-
ted to each edge gateway for authentication and waits for the
authentication outcomes. The information is authenticated by
checking the ledger once the edge gateway receives the infor-
mation from other edge gateways. The edge gatewaywaits for
confirmation and then gives feedback on the authentication
outcome (correct or incorrect). The received information is
processed based on the authentication result from diverse
edge gateways accountable for confirmation. Based on BC
technology, if the majority of the confirmed edge gateway
passes authentication (the confirmation outcome is true), the
information is labelled as correct otherwise, they are labelled
as incorrect. Lastly, the processed information is transmitted
to the management system to detect faults.

C. FAULT DETECTION USING DBIGRU MODEL
For fault detection in the IoT network, the AVOA with
DBiGRU technique is utilized. Unlike the standard uni-
directional RNNs, Bi-directional network includes two
single hidden RNN layers (the backward and forward lay-
ers) in its framework [25]. Every layer is interconnected
with input and output layers, correspondingly. The bidi-
rectional model enables its network to learn the tourist
volume sequence from the future and past directions.
Backward and forward layers in the network read input
series x(x1, x2, x3, . . . , xn−1, xn) from two opposite direc-
tions, in which x forward = (x1, x2, x3, . . . , xn−1, xn) and
xbackward = (xn, xn−1, . . . xt . . . , x2, x1), then attain a
forward hidden state h⃗t (h⃗1, h⃗2, . . . , h⃗n−1, h⃗n) and back-
ward hidden state

←

h t (
←

h1,
←

h2, . . . ,
←

hn−1,
←

hn), correspond-
ingly (Eqs. (1) and (2)). Consequently, backwards and for-
ward series are concentrated and produce the final output
series y(y1, y2, . . . yt . . . , yn−1, yn) that can be evaluated by
the following expression.

h⃗t = f
(
wxh⃗ · xt +Wh⃗h⃗ · h⃗+ bh⃗

)
(1)

←

h t = f
(
W
x
←

h
← ·xt +W←

h
←

h
· ht+1 + b←

h

)
(2)

yt = wyh⃗ · h⃗t + wy
←

h
·
←

h t + by (3)

where b←
h
, and by denotes the respective bias vector, h⃗t ,

←

h t
denote forward and backward propagation, correspondingly;
f represents a nonlinear activation function (viz., sigmoid
function); and wxh⃗,Wh⃗h⃗,Wx

←

h
,W←

h
←

h
,W←

h←y
, and W

x
←

h
char-

acterize the respective weight coefficient.
GRU cell was employed for adding to the abovementioned

bi-directional network that is a variant of LSTM cell and
called an improved version of RNN cell. Though GRU was
barely used for tourist volume prediction, it accomplished the
desired forecast effects the same as LSTM in other time-series
forecasts. GRU simplifies the gating model from the 3 LSTM
gates: forget, input, and output. A standard GRU cell com-
prises reset and update gates to decrease the computational
cost. Fig. 2 signifies the structure of GRU. The reset gate
defines what data the existing step could be accessed from

ht−1 and xt , which can be evaluated by Eq. (4). Consequently,
a candidate vector, h̃t , is generated using tanh function where
the output of reset gate, rt , only influence ht−1. Moreover,
the update gate controls the influence of the preceding state,
ht−1, and candidate vector, h, on state vector, ht , evaluated by
Eqs. (6) & (7).

rt = σ
(
Wr ·

[
ht−1′xt

]
+ br

)
(4)

h̃t = tanh (Wh · [rtOht−1, xt ]+ bh) (5)

ut = σ
(
Wu ·

[
ht−1′xt

]
+ bu

)
(6)

ht = (1− ut) ht−1 + ut h̃t (7)

where ht−1 and ht epitomize prior cell state and existing cell
state; h̃t represents a candidate activation vector; rt and ut
characterize the output of reset and update gates, correspond-
ingly; and br , bh, and bu denote bias vectors; Wr ,Wh, and
Wu characterize weight matrixes, ⊙ signifies the Hadamard
product.

D. HYPERPARAMETER TUNING USING AVOA
Finally, the AVOA technique is utilized for the opti-
mal hyperparameter tuning of the DBiGRU model, which
helps improve the fault detection rate. The hyperparameters
involved are learning rate, batch size, and number of epochs.
The AVOA is motivated by the navigational and foraging
behaviours of African vultures [26]. The biological nature of
vultures with reference to competing and searching for food is
considered in four distinct phases. Consider N vultures in the
environment representing the population n = {1, 2, . . . ,N }.
Next, calculate the fitness function of every location position.
Where pn is the probability of choosing the 1st or 2nd group
that can be evaluated by

pn =
Fn∑N
n=1 Fn

(8)

In Eq. (8), Fn denotes the fitness function of the nth loca-
tion. Next, the construction of the 1st and 2nd groups in every
iteration can be attained using Eq. (9):

R (it) =

{
first group, pn = L1
second group, pn = L2

(9)

The satiated vulture with adequate energy can be moved
to longer distances for searching food, while the hungry one
cannot.Where the ranges of L1 and L2 are 0 ≤ L1,L2 ≤ 1 and
L1 + L2 = 1. The rate of being hungry or satiated defines the
movement from the exploration stage to the exploitation stage
that can be formulated by using Eq. (10) and (11):

A = (2× rand1 + 1)× x ×
(
1−

it
ITmax

)
+ y (10)

y = h×
(
sinz

(
5

2
×

it
ITmax

)
+ cos

(
5

2
×

it
ITmax

)
− 1

)
(11)

where x, h, and rand1 denote the random integer differs from
−1 to 1, −2 to 2, and 0 to 1, correspondingly; A represents
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the vulture with the highest energy, z describes the prospect
of entering the exploration phase; it and ITmax denote the cur-
rent and maximal iteration, correspondingly. The exploration
phase defines the process of finding food by the African
vultures where the parameter p1, 0 ≤ p1 ≤ 1 determines the
selection of strategy thus,

P (it + 1) =

{
(6) , p1 ≥ rand2
(8) , p1 < rand2

(12)

P (it + 1) = R (it)− D (it)× A (13)

D (it) = |q× R (it)− P (it)| (14)

Here P(it + l) indicate the vultures’ location vector in the
following iteration. A and R(it) are attained, correspondingly
q = 2 × rand3, where rand3 indicates a random integer
ranging from zero to one.

P (it + l) = R (it)− A+ rand4 × ((ub − l)× rand5 + lb)

(15)

Eq. (15), ub and 1b denote the upper and lower boundaries
of the parameter; correspondingly, Rand4 and Rand5 show
the random integers within [0, 1]. The exploitation phase has
two distinct stages. The selection of any strategy relies on
the variables p2 and p3. p2 and p3 values lie within [0, 1].
If |F | lies within [1, 0.5], then the exploitation phase enters
the initial stage that defines two strategies, namely siege fight
and rotating flight:

P (it + 1) =

{
(10) , p2 ≥ rand6
(11) , p2 < rand6

(16)

In Eq. (16), rand6 denotes a random integer within [0, 1].
The solution to Eq. (16) is shown below:

P (it + 1) = D (it)× (A+ rand7)− d (it) (17)

D (it) = R (it)− P (it) (18)

Next, the rotational flight of the vulture can be modelled
by:

P (it + l) = R (it)− (M1 +M2) (19)

M1 = R (it)×
(
rand8 × P (it)

2π

)
× cos (P (it)) (20)

M2 = R (it)×
(
rand9 × P (it)

2π

)
× sin (P (it)) (21)

where rand8 and rand9 denote two random integers within
[0, 1]. if |F | > 0.5, then the exploitation stage enters the next
stage that describes the two dissimilar approaches of vultures,
namely aggressive and accumulation fight and siege to search
for food. Based on the following condition, the selection of
any strategy can be done:

P (it + 1) =

{
(16) , p3 ≥ rand7
(19) , p3 < rand7

(22)

where

P (it + 1) =
B1 + B2

2
(23)

TABLE 1. Precision rate analysis of BDEV-CAML approach with other
systems under varying classes.

B1 = Bestvulture1 (it)−
Bestvu1ture1 (it)× P (it)
Bestvu1ture1(it)× P(it)2

× A

(24)

B2 = Bestvulture2 (it)−
Bestvu1ture2 (it)× P (it)
Bestvu1ture2(it)× P(it)2

× A

(25)

where Best_vulture1(it) and Best_vulture2(it) represent the
optimum vulture of the 1st and 2nd groups, correspondingly,
in the existing iteration. The aggressive competition amongst
the vultures is given below:

P(it + 1) = R(it)− |d(it)| × A× Levy(d) (26)

where d1 signifies the dimension of optimization problem:

Levy(x) = 0.01×
u× σ

|v|
1
β′

,

σ = (
Y (1+ β)× sin

(
πβ
2

)
Y (1+ 2β)× β × 2

(
β−1
2

) ) 1β (27)

Fitness selection is a critical factor in the AVOA method.
Solution encoding is used to assess the goodness (aptitude)
of the solution candidate. Then, the accuracy value is the
primary condition applied to design a fitness function.

Fitness = max (P) (28)

P =
TP

TP+ FP
(29)

From the expression, TP characterizes the true positive,
and FP indicates the false positive value.

IV. RESULTS AND DISCUSSION
In this section, the experimental outcomes of the BDEV-
CAML technique are studied under different measures. The
results are inspected under various types of faults. In Table 1,
and Fig. 3, a comparative precision rate (PR) analysis of the
BDEV-CAML technique is given.

The results indicate that the RF model attains the least
efficiency, whereas the PSO-DAWRF and DAWRF models
attain closer results. Nevertheless, the BDEV-CAML tech-
nique reaches better PR values. For instance, with CPUHog
fault class, the BDEV-CAML technique obtains increasing
PR of 99.55% while the PSO-DAWRF, DAWRF, and RF
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FIGURE 1. The overall procedure of the BDEV-CAML system.

FIGURE 2. The architecture of GRU.

models accomplish decreasing PR of 98.6%, 97.06%, and
95.87% correspondingly. Simultaneously, with IOHog fault
class, the BDEV-CAML system obtains increasing PR of
99.72% while the PSO-DAWRF, DAWRF, and RF meth-
ods achieve decreasing PR of 97.91%, 96.41%, and 95.25%
respectively.

In Table 2, and Fig. 4, a comparative recall rate (RR)
analysis of the BDEV-CAML method is given. The results
show that the RF method accomplishes minimum efficiency,
whereas the PSO-DAWRF and DAWRF methods achieve
closer outcomes. Nonetheless, the BDEV-CAML method
obtains increasing RR values. For example, with CPUHog
fault class, the BDEV-CAML technique reaches a better
RR of 99.49% while the PSO-DAWRF, DAWRF, and RF

FIGURE 3. PR analysis of BDEV-CAML approach under varying classes.

FIGURE 4. RR analysis of BDEV-CAML approach under varying classes.

methods achieve a reducing RR of 98.51%, 97.55%, and
96.32% correspondingly. Simultaneously, with IOHog fault
class, the BDEV-CAMLmethod accomplishedmaximumRR
of 99.61% while the PSO-DAWRF, DAWRF, and RF meth-
ods attained minimum RR of 98.06%, 96.86%, and 95.51%
correspondingly.

In Table 3, and Fig. 5, a comparative accuracy rate
(AR) analysis of the BDEV-CAML method is given. The
results show that the RF method accomplishes the least
efficiency, whereas the PSO-DAWRF and DAWRF methods
attain closer results. Nonetheless, the BDEV-CAML method
reaches better AR values. For the case with CPUHog fault
class, the BDEV-CAML method obtains an increasing AR of
99.62% while the PSO-DAWRF, DAWRF, and RF methods
achieve a minimum AR of 98.44%, 96.78%, and 95.07%
correspondingly. Simultaneously, with IOHog fault class, the
BDEV-CAML method obtains a maximum AR of 99.53%,
while the PSO-DAWRF, DAWRF, and RF methods achieve a
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FIGURE 5. AR analysis of BDEV-CAML approach under varying classes.

FIGURE 6. FR analysis of BDEV-CAML approach under varying classes.

FIGURE 7. Accuracy curve of the BDEV-CAML approach.

minimum AR of 98.03%, 96.94%, and 95.81% correspond-
ingly.

In Table 4, and Fig. 6, a comparative F-score rate (FR)
analysis of the BDEV-CAML method is given. The results

FIGURE 8. Loss curve of the BDEV-CAML approach.

FIGURE 9. FDA analysis of BDEV-CAML approach with other existing
methods.

TABLE 2. Recall rate analysis of BDEV-CAML approach with other systems
under varying classes.

indicate that the RF model reaches the tiniest efficiency,
whereas the PSO-DAWRF and DAWRF methods attain
closer results. Nonetheless, the BDEV-CAML technique
obtains better FR values. For example, with CPUHog fault
class, the BDEV-CAML technique gets maximum FR of
99.55% while the PSO-DAWRF, DAWRF, and RF models
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TABLE 3. Accuracy rate analysis of the BDEV-CAML approach with other
systems under varying classes.

TABLE 4. F-score rate analysis of BDEV-CAML approach with other
systems under varying classes.

accomplish minimum FR of 98.6%, 97.06%, and 95.87%
correspondingly.

Simultaneously, with IOHog fault class, the BDEV-CAML
method accomplishes a maximum FR of 99.72%, while the
PSO-DAWRF, DAWRF, and RF methods obtain a minimum
FR of 97.91%, 96.41%, and 95.25% correspondingly.

Fig. 7 examines the accuracy of the BDEV-CAMLmethod
during the training and validation process on the test dataset.
The figure indicates that the BDEV-CAML method accom-
plishes increasing accuracy values over epochs. In addition,
the increasing validation accuracy over training accuracy
shows that the BDEV-CAMLmethod learns efficiently on the
test dataset.

The loss analysis of the BDEV-CAML technique at the
time of training and validation is demonstrated on the test
dataset in Fig. 8. The results show that the BDEV-CAML
technique obtains closer training and validation loss values.
Note that the BDEV-CAML method learns efficiently on the
test dataset.

Table 5 and Fig. 9 demonstrate the fault detection accuracy
(FDA) results of the BDEV-CAML technique with recent
models [12].

The results show better outcomes of the BDEV-CAML
technique with increasing FDA values under all values of
fault probability (FP). For instance, with FP of 0.05, the
BDEV-CAML technique gains increasing FDA of 99.10%
while the PSO-DAWRF, NFD, ETXTD, and DFD mod-
els obtain reducing FDA of 97.88%, 96.67%, 96.26%, and
94.10% respectively. Simultaneously, with FP of 0.50, the

TABLE 5. FDA analysis of BDEV-CAML approach with other existing
methods [12].

BDEV-CAML technique gains an increasing FDA of 87.06%
while the PSO-DAWRF, NFD, ETXTD, and DFD meth-
ods acquire minimum FDA 83.14%, 81.38%, 74.89%, and
65.83% correspondingly. These results assured the improved
performance of the BDEV-CAML technique over other exist-
ing models.

V. CONCLUSION
In this study, we have designed a novel BDEV-CAML algo-
rithm for the effectual identification of faults in the IoT
environment. The presented BDEV-CAML technique inte-
grated the advantages of the blockchain, IoT, and ML con-
cepts for boosting the trustworthiness, efficacy, and security
of the IoT network. In BC technology, IoT devices with
highly decentralized decision-making capability can attain a
consensus on the efficiency of intrablock transactions. For
fault detection in the IoT network, the AVOA with DBi-
GRU technique is utilized for the optimal hyperparameter
tuning of the DBiGRU model, which helps in improving
the fault detection rate. A detailed set of experiments were
carried out to highlight the enhanced performance of the
BDEV-CAML algorithm. The comprehensive experimental
results stated the improved performance of the BDEV-CAML
technique over other existing models. In future, hybrid
DL models can boost the performance of the BDEV-
CAML technique. In addition, the proposed model can be
extended to the detection of the faults in the real time IoT
environment.
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