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ABSTRACT The technology advancement is supported by additive manufacturing industries, especially
3D printing companies, that enable fast object prototyping and development in Industry 4.0. As 3D printed
products are highly adopted in various fields, the final printed product must fulfill precise requirements
without any defects. Therefore, an efficient framework that simultaneously learns and detects faults during
the printing process is required. Unfortunately, most state-of-the-art studies utilize a centralized approach,
which is inefficient for continuous model updates. This article presents a hierarchical federated transfer
learning (HFTL) framework that employs edge, fog, and cloud concepts to enable an efficient model updating
mechanism. The proposed HFTL uses a well-known DL model with a new classifier to significantly reduce
the distributed training process while providing high detection and classification performance. Additionally,
the fog server comprehensively exploits the data collection from several edge servers and performs local
training. The extensive simulation results indicate that the performance of the proposed HFTL is more
efficient, with 24% faster training time, effectively detects flaws in 3D printing products with 45% accuracy,
and has a 59% F1-score improvement in non-IID data distribution compared to traditional FL architecture.

INDEX TERMS Additive manufacturing, hierarchical network, federated learning, fault classification,
transfer learning.

I. INTRODUCTION
The continuous development of technology in recent years
has succeeded in connecting the industrial world with
automation processes and bringing the industrial revolution
4.0 that enables the industrial internet of things (IIoT)
[1], [2]. As a result, various machines are interconnected
and communicate to boost productivity in the production
process. This concept has successfully made changes in terms
of effectiveness and efficiency for worldwide industries. For
example, machine automation can handle massive production
in the additive manufacturing industry within a short time.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mu-Yen Chen .

Additive manufacturing is one of the many fabrication
processes capable of printing various types of products. For
example, it is used to produce aerospace elements, accounting
for 30% of components in aeroengines [3], [4]. Additionally,
it finds applications in the manufacturing of radio-frequency
components [5] and parts for unmanned aerial vehicles
(UAVs) [6].

In order to produce an industrial-grade product, precise
printing is needed in 3D printing for additive manufacturing.
Therefore, the best 3D printer component and materials
are mandatory to satisfy those conditions. For plastic 3D
modelling, fused deposition modelling (FDM), stereolithog-
raphy (SLA), and selective laser sintering (SLS) are the
most popular printing techniques [7]. The FDM 3D printer’s
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printing process relies on an extruder heated with a specific
temperature value to melt the filament used as printing
material. In addition, another aspect that is also important
in FDM techniques is printing surface temperature and
levelling, cooling fan and positioning motor. In general,
the FDM 3D printing process rarely encounters problems
since the printing path is carefully generated based on the
actual object designed. However, problems such as filament
not adhering to the printing surface, nozzle clogging in the
extruder, or temperature fluctuation at bed and extruder might
occur due to printer malfunction. These circumstances tend
to construct faulty products and significantly influence the
production cost.

As technology advances, several techniques, such as
computer vision, machine learning (ML), and deep learning
(DL), were used to mitigate 3D printing faults in the
additive manufacturing industry. On the one hand, the author
in [8] introduces vision-based error detection for 3D printing
processes, especially FDMprinters. The captured video in the
form of a red-green-blue (RGB) colour model is transformed
into a hue-saturation-value (HSV) and compared based on
threshold values. In addition, the author also mentioned
the impact of light, where image brightness might increase
detection difficulty due to printing surface reflection. With
a similar approach, the author in [9] presented a real-time
computer vision system for automatic fault detection in FDM-
based printers using the prototyping method. The proposed
method that considers light intensity is sufficient to detect a
failure in each layer of the printed 3D product.

On the other hand, ML and DL as emerging technologies
were also utilized to detect 3D printer faults during the
printing process. A supervised ML approach with a support
vector machine (SVM) is used to detect FDM 3D printer
status. SVM is able to differentiate printed products as good
or bad as it is trained with labelled data [10]. A semi-
supervised ML was introduced in [11] by investigating the
laser power-bed fusion (LPBF) printer to improve the model
quality without disregarding performance. The author uses
labelled and unlabeled data to reduce the total cost and time
to capture the labelled data. The ensemble ML approach is
also used to enhance fault detection in the 3D printed surface
with low computing cost by utilizing pre-trained models [12].
Finally, the layer-wise and density-wise approach is adopted
to iteratively detect layer conditions during the printing
process, which has been proven to improve fault detection
performance.

Moreover, the feature extraction capabilities of DL are
utilized to further enhance fault detection in 3D printers.
A convolutional neural network (CNN)-based model is
proposed in [13] to diagnose FDM 3D printer conditions
based on accelerometer sensor readings. Six different classes
were analyzed, and the CNN-based network can outper-
form the ML approaches. FDM 3D printer uses a nozzle
to extract the filament into a printed product. In some
cases, the nozzle might clog, preventing filament from
going out and resulting in product failure. The author

in [14] introduces nozzle anomaly detection using a multi-
head encoder-decoder temporal neural network with high-
performance accuracy. Moreover, a collaborative technique
is introduced in [15] that combines computer vision with
artificial intelligence (AI), specifically deep CNN, with
real-world environment experiments. A machine-agnostic
algorithm is employed in [16] to improve real-time anomaly
detection and classification in 3D printers by utilizing a CNN-
based network with pixel-wise localization.

Furthermore, most state-of-the-art studies in fault detection
and classification for the 3D printer in additivemanufacturing
adhere to a centralized learning concept. This approach is
remarkable for its high performance since the amount of
training data is significant. However, in some scenarios,
sharing data might threaten user privacy [17]. Especially for
the industry use cases, where data is a crucial component
of the business process. Despite the fact that a company
is capable of providing enough data for detecting faults in
their 3D printers, a larger size of the dataset could improve
the model’s robustness. Federated learning (FL) becomes a
promising solution for conducting distributed learning while
preserving user privacy [18]. However, the architecture of
distributed learning is entirely different from centralized
learning. For distributed learning, an independent server is
placed to control the client selection mechanism for the
training process and aggregate parameters from training
results from those selected clients. Utilizing the FL approach,
the training process is conducted locally by the client with
a private dataset using a global model parameter from the
server. After local training is completed, the client forwards
the results parameter to the central server without sharing the
private dataset. Therefore, the data privacy of clients is wholly
secured. The aggregated parameter from several clients is
used for the following FL training rounds. Those processes
are repeated continuously to achieve higher fault detection
and classification.

Considering the requirements for advanced fault detection
additive manufacturing, especially for FDM 3D printers
with privacy-preserving capability in the industrial network
environment, this study proposes the following contributions:
• We present a distributed fault classification in addi-
tive manufacturing using FL. The proposed technique
exploits an image dataset with four different classes,
specifically captured and preprocessed with data aug-
mentation to deliver a large-scale dataset.

• We employed a federated transfer learning algorithm
to learn various features from clients with different
data distributions in a short period and generalize
the DL model. Moreover, we analyzed several pre-
trained models, such as VGG16, ResNet50V2, and
MobileNetv2, to explore the most efficient pre-trained
model for additive manufacturing.

• We proposed the edge, fog, and cloud concept to create
a hierarchical architecture in FL called hierarchical
federated transfer learning (HFTL). The proposedHFTL
assumes that each company maintains a fog server
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connected to a cloud server and multiple factory
branches with 3D printers. This technique will preserve
the data privacy of all companies during the distributed
learning process.

• We investigated the proposed model’s robustness in
the simulation by analyzing the fault classification
performance with and without hierarchical architecture
in FL using accuracy, loss, precision, recall, F1-score,
and training time.

The remainder of the paper is structured as follows:
Section II delivers the state-of-the-art of fault detection
and classification techniques for the FDM 3D printer. The
proposed architecture and pre-trained model are described
in Section III. The experimental results and discussion are
presented in Section IV. Finally, Section V concludes the
study and provides future research trends.

II. RELATED WORK
Generally, fault classification for additive manufacturing uses
three techniques: computer vision, ML, and DL approaches.
However, most of these approaches utilize the centralized
learning method, which is unsuitable for secure and efficient
fault classification in the additive manufacturing industry.
This section provides state-of-the-art approaches used for a
3D printer the fault classification.

A. COMPUTER VISION APPROACHES
In the computer vision techniques, 3D printer product is
collected based on RGB colours and then transformed into
HSV value due to RGB format is not ideal for algorithmic
segmentation [8], [9]. Therefore, the author in [19] intro-
duced two modules for fault detection, namely first layer
verification and nozzle analyzer with a threshold value. These
combined methods were able to detect 3D printer defects
during the printing process. Nevertheless, some mistakes are
not detected because the detection did not reach the minimum
threshold value. Another approach is layer-wise anomaly
detection, where computer vision plays a critical role in
continuously detecting faults of a running 3D printer layer-
by-layer [20]. However, the drawback of using computer
vision is the complexity of the image preprocessing, which
resulting a longer detection time.

B. ML APPROACHES
In the area of machine learning, supervised and semi-
supervised learning approaches were employed [21]. For
example, the author in [10] proposed collaborative learning
using image preprocessing and supervised machine learning
to detect defects of semi-finished 3D printed parts. The
proposed model can handle 3D printer classification for
two printing materials, such as acrylonitrile butadiene
styrene (ABS) and polylactide (PLA). Similarly, the author
in [22] presented an ML-enabled prediction of a 3D-printed
microneedle using image processing and ML. The prediction
was conducted in time series; hence the model can indicate
any possible anomalies that might occur in the near future.

On the contrary, the author in [11] employed a semi-
supervised learning approach to detect the LPBF 3D printer
faults using photodiodes data. The time-series data was pre-
processed and downsampled using randomized singular value
decomposition. The performance shows acceptable accuracy
of 77% and states that using semi-supervised learning can
reduce the dataset’s size. Ensemble ML models were utilized
in [23]. The author evaluated numerous ensemble models
for the prediction of form-tap wear. The results indicate that
combining multiple ML models can enhance the prediction
performance based on lower root mean square error. Lastly,
a layer-wise combined ML approach is also studied in [12].
The author also uses transfer learning to fasten the processing
time, hence applicable for real-time fault detection.

C. DL APPROACHES
For the deep learning approaches, sensor reading and image
data were employed to classify the defect in the 3D printing
process. The author in [13] uses an accelerometer sensor in
three axes (x, y, and z) to improve classification performance
with a CNN-based model. Comparison between artificial
neural networks (ANN) and SVM was also investigated.
The performance shows that the proposed CNN model can
achieve the highest accuracy in different class variations.
Fault prevention is another critical aspect of a 3D printermon-
itoring system. For example, the author in [14] continuously
uses nozzle temperature to anticipate future nozzle values
and prevent printing failure. Regarding 3D printer faults
uncertainty, the proposedmodel was built with temporal CNN
and successfully yielded an accuracy of 97.2%.

To comply with additive manufacturing privacy and
security. The author in [24] introduced an FL-based semantic
segmentation for the LPBF printer by considering the
pixel-wise effect. In addition, the author utilizes U-Net
to differentiate the defect during the printing process and
states that the proposed method results are comparable
to the centralized learning approach. To the best of our
knowledge, the aforementioned studies not concerning the
hierarchical architecture with transfer learning using well-
knownDLmodel scenarios and detailed communication flow
between the server and clients. In this paper, we proposed
a hierarchical federated transfer learning architecture for
the additive manufacturing industry concerning the data
diversity among numerous companies while also preserving
the privacy issue.

III. PROPOSED SYSTEM
This section describes the system model first, followed by
the proposed HFTL architecture and algorithm that covers
the concepts of FL combined with transfer learning and
hierarchical architecture. Additionally, the custom dataset
collection method for AM is also provided.

A. SYSTEM MODEL
The main idea of the proposed method in this paper is
presented in Fig. 1. Initially, the cloud server Cs store the
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FIGURE 1. The proposed architecture of hierarchical federated transfer learning (HFTL).

cloud model as a global DL model is connected to m 3D
printer company fog server Fsm = {fs1, fs2, .., fsm}. Each fog
server is linked to the edge server Esn = {es1, es2, .., esn},
representing the n factory branch. Then, each branch operates
p number of 3D printer Esnp = {esn1, esnn2, .., esnp}, where
each 3D printer is able to produce i images. Therefore, the
total images data produced by each branch is denoted as esnpi ,
whereas the total images from fog server with n edge servers
and p printers are calculated using (1).

fsmi =
n∑
j=1

p∑
k=1

es(j)(k). (1)

Each company uses fsmi images to conduct local training in
the fog server using cloud model parameters ωc within the tl
period. After the training, the fog server forwards the trained
weights ωf to the cloud server. Hence, the list of total weight
variation received by the cloud server from m fog servers can
be computed using (2)

ωc{1,..,m} =

m∑
l=1

ωf(l)C . (2)

where ωc expressed the list of weights acquired by the cloud
server, whereas C denotes the fraction of clients that joined
the training process in FL. The received weights are then
aggregated to obtain an updated cloud server DLmodel using
the FederatedAveraging (FedAvg) algorithm.

This work considers the learning process to produce a
robust DL model while preserving company privacy in 3D

printer image data sharing. Most previous studies focused
on centralized learning with a large number of datasets
and left privacy issues behind. As an emerging technology,
FL enables distributed training without sharing any dataset
information. The iterative procedure of FL is depicted in
Fig. 1.
1) Initially, each edge server gathers all 3D printer image

data on each factory branch from p 3D printer and
forward those data via a secured channel to their fog
server.

2) After image data is received from edge devices.
The selected fog server automatically downloads the
current model parameter from the cloud server for the
federated training process.

3) The downloaded parameter is forwarded to the edge
server; hence the local model on the edge server that
detects any fault during printing is also updated.

4) The downloaded parameter is also used to configure
the fog model and train the local dataset from multiple
edge servers. After the training process, an evaluation
is performed locally.

5) All fog servers send the updated model parameter after
the local training to the cloud server.

6) The parameter aggregation process is conducted in the
cloud server using the FedAvg algorithm to deliver an
updated version of the cloud model.

Those processes are continuously conducted for r com-
munication rounds, or the cloud server model is convergence
(e.g., accuracy=100%).
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FIGURE 2. The concept of transfer learning from a pre-trained model to a
specific application with a custom dataset.

B. FEDERATED TRANSFER LEARNING
Transfer learning opens opportunities to utilize a pre-trained
model; hence it can be reused in different applications by
eliminating the model classifier. Then a new classifier for
a specific task is added to the pre-trained model. This
technique significantly reduces the training time because
the trainable parameters are converted into non-trainable
parameters. The conversion process froze the pre-trained
model feature extraction and used the initial model weight
from the previous training process. Therefore, the training
time mostly influenced by the new model classifier design.
Overview of transfer learning illustrated in Fig. 2. The pre-
trained model feature extractor is utilized for training a
custom 3D printer dataset:

1) The data preprocessing is performed to ensure that the
custom image data’s input shape fits the pre-trained
model’s input size.

2) The pre-trained parameter is disabled, and a new
classifier with a specific number of classes is added
before training is performed.

3) In this work, the classifier is built by flattening the
feature extractor output into a one-dimensional vector.
Then two fully connected layers are added with sizes
32 and 16, respectively. Lastly, four neurons of dense
layers are inserted to classify faults in the 3D printing
process.

In this work, we employ federated transfer learning
to reduce training time while maintaining high accuracy.
Specifically, a pre-trained model is designed with a new
classifier, as depicted in Fig. 2. Then, the model is distributed
to all FL clients with random initial parameters for the
classifier. Each client uses the transfer learning model in the
distributed training process, which reduces the local training
time. Minimizing local training time is crucial to reduce the
overall training time of FL and improve model performance
(e.g., lower loss, higher accuracy). Finally, based on the
FL concept, those transfer learning models are stored in
cloud, fog, and edge servers, as depicted in Fig. 1. Moreover,
selecting a proper model for transfer learning is important
since the extracted feature from the pre-trained model might
differ from the additive manufacturing characteristic. Several

pre-trained models have been released in the past several
years through extensive training on a large dataset with more
than 1000 classes. This paper investigates three popular pre-
trained models built based on a convolutional neural network
without any knowledge transfer.

1) VGG
The first popular model for large-scale image classification
is VGG, built by increasing the network depth ranging
from 16-19 with (3×3) convolution filters. First, the VGG
network is trained using the ImageNet and VOC datasets with
1, 000 and 2, 000 classes, respectively. Next, a convolutional
network with a max pooling layer in between uses by the
VGG network, followed by a stacked fully connected layer
and classifier with softmax as an activation function [25].
In this work, we employ VGG16 to minimize computational
complexity.

2) ResNet
Microsoft Research introduced ResNet in 2015 to mitigate
deeper neural networks, which are challenging to train.
The residual connection is proposed to improve the model
accuracy while maintaining low complexity. ResNet was
evaluated with the ImageNet, CIFAR-10, and COCO datasets
consisting of 1, 000, 80, and 10 classes. The results show
that a network with residual learning efficiency is higher
than a plain network without any residual connection [26].
Among many interpretations, ResNet50V2 is selected due to
its performance compared to other layer variations [27] with
moderate parameter size.

3) MobileNet
Google Inc. proposed MobileNet in 2017 to provide a
lightweight model for the mobile user and embedded devices
with limited computing power. MobileNet is built with a
convolutional layer followed by 28 layers of depthwise
and pointwise convolutions. The batch normalization and
rectified linear unit as activation function is installed in
all layers, followed by the softmax layer for classification.
MobileNet, trained with the Stanford Dogs dataset, also
offers a trade-off between accuracy and model complexity
by varying the model shrinking hyperparameters [28].
MobileNetV2 is used in this paper as a pre-trained model
considering the accuracy and model complexity trade-off.

Those pre-trained models were then utilized as feature
extraction in an additive manufacturing environment with the
addition of flattened, fully connected and classifier layers.
Due to the pre-trained model’s capability to process many
variations of input size, the model input shape is configured
to (192 × 192 × 3).

C. HIERARCHICAL FEDERATED TRANSFER LEARNING
The traditional architecture of the FL process selects the
specific user with their private data to conduct the training
process. However, the edge, fog, and cloud concept is adopted
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FIGURE 3. The communication flow between 3D printers, edge, fog, and
cloud servers of the proposed HFTL.

in our proposed work. The communication diagram of the
proposed HFTL is depicted in Fig. 3. First, the client selection
is shifted from the user to the fog server. This modification
allows multiple users (3D printers) within the same company
to preserve their privacy by sending local data to the edge
server and their fog server. Then, the fog server that acts as a
client interacts with the cloud server and involve in the FL
process with another company’s fog server. Moreover, the
proposed architecture concept enables fog model parameters
to be easily forwarded to the edge server and ensures the edge
model is updated. Hence, the edge server’s capability to detect
faults in additive manufacturing is consistently improved
based on its fog server knowledge.

We proposed a hierarchical federated transfer learning
(HFTL) algorithm to provide efficient fault classification in
the additive manufacturing industry. The overall pseudocode
of the proposedHFTL is described in the Algorithm 1. During
the training process, the fog server parameter is continuously
updated following the local training epoch e by using (3).

ωf ← ωc − η▽ℓ (ωc; b). (3)

the learning rate denoted by η, where ℓ (ωc; b) represent
prediction loss of batch size b from local dataset B. After all
training results from various fog server fsm are received, the
cloud server updates its DL model parameter ωct+1 by using
the FedAvg aggregation method, which is expressed as (4):

ωct+1 ←

K∑
k=1

η (k)
η

ωl
(k)
t+1. (4)

Furthermore, adding a hierarchical strategy into an archi-
tecture might affect the overall network performance. The
total training time for FL is affected by the edge, fog, and

Algorithm 1 Pseudocode for Hierarchical Federated Transfer
Learning
1: Initialize pre-trained model {VGG16, ResNet50V2,

MobileNetV2
2: Initialize new classifier
3: Initialize transfer learning model parameter
4: Initialize client fraction C ← 0.9
5: Initialize other parameters: m, r, b, η

6: Cloud Server executes:
7: for each communication round 1 to r do
8: Sfm← m . C
9: for each m ∈ Sfm in parallel do

10: ωfsm ← FogServerTraining(ωc)
11: end for
12: ωct+1 ← aggregate new cloud model parameters using

(4)
13: F1← cloudmodel(ωct+1).evaluate()
14: end for

15: Function FogServerTraining(ωc)
16: B← gather 3D printer images data from all edge servers

using (1)
17: Forward ωc to all edge servers
18: Initialize dataset preprocessing
19: for local epoch 1 to e do
20: for batch b ∈ B do
21: ωf ← update local parameters using (3)
22: end for
23: end for
24: return updated parameter ωf

cloud server. The time needed for conducting FL trainingwith
r rounds can be calculated using (5):

ttotal =
r∑

u=1

t(u)edge + t(u)fog + t(u)cloud (5)

where tuedge is edge server processing time, tufog and
tucloud represent fog and server processing time, respectively.
Specifically, on the edge server side, the main task is to gather
and send 3D printer images data to the fog server, which is
detailed in (6):

tuedge = tugather + tusend (6)

The fog server processing time tufog is affected by multiple
processes, such as server parameter downloading, dataset
processing, and local training time. Therefore, the total
processing duration in the fog server is calculated with (7):

tufog = tudownload + tupreprocess + tutraining (7)

Lastly, parameter aggregation and model evaluation are
performed on the cloud server, and the total period to
complete those actions can be defined as (8):

tucloud = tu
m∑
v=0

ω(v)ct+1 + F1(v) (8)
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FIGURE 4. Dataset collection and preprocessing process using Creality Ender 5 Pro 3D Printer with Keras
image generator.

where m signifies the total number of fog layers
that joined the FL learning at each communication
round.

D. FDM 3D PRINTER DATASET COLLECTION AND
PREPROCESSING
A large dataset with multi-class labels is needed to provide
a reliable fault detection scenario in additive manufac-
turing, specifically the 3D printing process. However,
the availability of the printing process dataset is limited
and mainly records sensory data (e.g., accelerometer,
temperature). Moreover, more than applying sensor data
is required to provide accurate predictions due to the
different paths and temperatures characteristic of 3D objects.
For instance, the accelerometer path to print a rectangle
with a length of 10cm is different compared to the path used to
produce a 50cm long rectangle. The fault detection accuracy
might decrease if those two sensor data are compared.
Therefore, the fault detection accuracy might decrease if
those two sensor data are compared. Hence, we captured
an image-based dataset from the 3D printing process
that consists of four classes, namely normal cube,
faulty cube, normal cylinder, and faulty
cylinder. A printed product is classified as a fault if
the final printed product has one of the following errors:
stringy, unstick surface, burned layer, or immature adhesion
between layers. Otherwise, the printed product is categorized
as normal. The dataset was collected using a 3D printer

with FDM type, specifically Creality Ender 5 Pro with PLA
material. The single extruder attached to the printer is able to
create a printing object using a.gcode file with a maximum
dimension of 220 x 220 x 300mm, and a printing precision
of ±0.1 mm.

The dataset collection process is illustrated in Fig. 4. First,
a Raspberry Pi 4B that operates on top of the Raspbian
operating system is attached to the Raspberry Pi camera to
capture video files during the printing process. The dimension
of the printed product covered in this paper is 20 × 20 ×
20 mm. Each printed product generates a single video file
of 25 minutes duration. The video output is saved in the
form of.mp4 files with a resolution of 480p (640 × 480).
For each 3D shape, five printed product with five video
files is produced. Therefore, a total of 20 video files are
obtained for four different classes investigated in this paper.
Then, those videos were carefully sampled layer by layer
to generate an image dataset using the OpenCV library,
considering the image’s brightness and blurriness. A total of
2, 500 images are produced from 20 video files. To further
increase the size of the datasets, the data augmentation
process is conducted using the Keras image generator library.
A combination of image rotation, width shift, height shift,
zoom range, and horizontal flip techniques was used. Based
on the data augmentation process, the total images in the
dataset expanded to 8, 068 images. Lastly, the dataset is
divided into train, validation, and test with a percentage of
70%, 10%, and 20%, respectively.
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TABLE 1. Hardware and software specification for simulation work.

In this paper, the primary focus is on the utilization of
an FDM 3D Printer. However, advanced dataset collection
and preprocessing are necessary when considering various
printing techniques in additive manufacturing, such as LPBF
or directed energy deposition (DED). For example, the LPBF
process leads to the formation of columnar grain structures
in alloys [29], particularly in low-stiffness components [30],
which increases the difficulty of defect detection. Therefore,
solely relying on a layer-wise approach is inadequate, and
additional feature information, such as the heat distribution
of the printing object and its surface, must be carefully
considered.

IV. RESULTS AND DISCUSSIONS
This section covers simulation configuration, performance
metrics to evaluate the proposed architecture, and various
scenarios used to investigate the effectiveness of the HFTL
algorithm compared to the traditional FL approach.

A. SIMULATION SETUP
Flower [31] as an FL-based framework is utilized in this
work to demonstrate the proposed algorithm. Flower sup-
ports python-based programming language, enabling large-
scale FL simulation and experiments with independent and
identically distributed (IID) and non-IID data. In addition,
Flower support various distributed parameter aggregation
algorithm, such as FedAvg, FedBN, FedAdam, and others,
with a connection to TensorFlow [32], PyTorch [33], and
scikit-learn [34]. In this work, the hardware and software
details to execute the proposed HFTL algorithm in Flower
with TensorFlow are detailed in Table 1.

B. PERFORMANCE METRICS
Various performance metrics were used to validate the effec-
tiveness of the proposed HFTL algorithm. First, we investi-
gate the performance of the proposed HFTL compared with
the non-hierarchical approach. Then, we vary the different
data distributions among multiple clients by using IID and
non-IID data. The performance evaluation was performed
on the cloud server to generalize the model performance,
as depicted in the Algorithm 1. Not only accuracy A and loss
L were investigated, but also model precision P, recall R,
F1-score F1, and overall network delay ttotal were evaluated

FIGURE 5. Performance of proposed HFTL compared to traditional FL
without hierarchical architecture in terms of accuracy, F1-score, and
overall network delay using IID and non-IID data.

using the following formulas:

A =
Tp + Tn

Tp + Tn + Fn + Fp
× 100. (9)

P =
Tp

Tp + Fp
. (10)

R =
Tp

Tp + Fn
. (11)

F1 = 2×
(
P× R
P+ R

)
. (12)

where Tp denotes true positive, Tn refers true negative,
followed by Fp and Fn that represents false positive and false
negative, respectively.

C. HIERARCHICAL ARCHITECTURE ANALYSIS
The proposed HFTL architecture is compared with traditional
FL without a hierarchical structure for the first investigation.
Several parameters were used to investigate this scenario,
such as the total fog servers being set to 10 with two
edge devices and adopting the MobileNetV2 structure as
the pre-trained model. Fig. 5 depicts the evaluation results
from various performance metrics for IID and non-IID data
allocation. In terms of accuracy, the proposed hierarchical
architecture can enhance IID data’s performance from
98.10% to 99.26%. Then, after the proposed HFTL is
implemented using non-IID data, the accuracy improvement
is enhanced significantly. For example, the traditional FL
only produces 23.54% accuracy, whereas the proposed HFTL
is able to achieve 68.81%.

Moreover, we calculate precision and recall to obtain
the F1-score for both IID and non-IID data. As shown in
Fig. 5, the F1-score of the traditional FL network achieves
98.49%, whereas the proposed HFTL successfully improved
to 99.26%. On the other hand, traditional FL with non-IID
data that represents the real-world data distribution provides
an F1-score of 9.5%. For the proposed HFTL architecture,
superior improvement is obtained by giving an F1-score of
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FIGURE 6. Accuracy performance among different federated transfer learning models in 50 federated rounds for 10 fog servers using: (a) IID
Data; and (b) non-IID Data.

68.81%. The performance advancement obtained in this work
is due to the proposed HFTL architecture’s ability to perform
an efficient training process by gathering multiple image data
from different edge servers. Also, the data collection process
performed in the fog server is proven effective since the non-
similarity boundaries between FL participants are reduced.

Furthermore, the overall federated training process of the
proposed HFTL and traditional FL is addressed. Using a
similar configuration, Fig. 5 also shows the time required by
HFTL and FL to accomplish 50 rounds of iterative distributed
training. Again, the proposed HFTL is superior to traditional
FL architecture by using IID and non-IID data. As a result, the
average training time of the proposed HFTL and traditional
FL is 1, 283.51 s and 1, 592.36 s, respectively. Thereby total
training time reduction by adopting the proposed HFTL is
24.06%. Considering the number of communication rounds
and the number of participants who joined the distributed
learning process, the proposedHFTL can significantly reduce
federated training time by gathering edge server data and
conducting local training on the fog server.

Additionally, data privacy and security is not an issue
considering the edge and fog server within the same company.
Since the proposed HFTL architecture outperforms the
traditional FL in terms of accuracy, F1-score, and training
time different data distribution, the remaining analysis is
conducted using the HFTL network structure.

D. FEDERATED TRANSFER LEARNING EFFECTIVENESS
To show the robustness of the transfer learning technique in
the proposed HFTL, we compared the performance of three
different pre-trainedmodels and the proposed classifier with a
CNN-based model without knowledge transfer. Similarly, the
total number of fog servers is set to 10 with 20 edge servers
and 50 rounds of federated iteration. Finally, the distribution
of the IID and non-IID datasets were investigated with four
classes to provide extensive results.

Fig. 6 shows the iterative learning process in the FL with
a total communication round of 50. The cloud server model

performance, based on accuracy with IID data depicted in
Fig. 6 (a). It can be observed that the performance of DL pre-
trained models is superior to the CNN-based model without
knowledge transfer. For example, MobileNetV2 successfully
learn the 3D printer dataset with an accuracy of 99.13%.
Besides, VGG16 and ResNet50V2 are able to achieve
acceptable accuracy of 98.88% and 98.10%, respectively.
MobileNet can achieve the highest performance in the first
five iterations based on three pre-trained models investigated
in this study. On the other hand, the CNN-based model
cannot learn complex features from the image dataset despite
the fact that IID data distribution is used to evaluate the
model performance. For 50 federated rounds, the basic model
without knowledge transfer only provides 26.15% accuracy
for four different classes. This result indicates that the basic
model is not able to learn image features during the federated
process.

Moreover, federated learning was also performed using
non-IID data with results depicted in Fig. 6 (b) to validate the
previous results using IID data. As expected, the performance
of all pre-trained models is degraded. This phenomenon
occurs due to different classes owned by each fog server
incorporated in the FL process. Therefore, the cloud server
suffers from an aggregation process of multiple fog server
parameters characteristic and influences the classification
accuracy. MobileNetV2, which is able to deliver steady
performance using IID data for 50 rounds of FL, provides
inconsistent results while using non-IID data. For instance,
MobileNetV2 yielded 94.05% accuracy for the last commu-
nication round, whereas VGG16 and ResNet50V2 accuracies
degraded to 60.10% and 81.29%, respectively. Besides, the
CNN-based model produces unsatisfactory performance with
a constant accuracy of 25.90% without knowledge transfer.

Furthermore, precision, recall, and F1-score were also
used to evaluate model robustness. Fig. 7 (a) depicts the
performance of all models studied in this work using IID
data. Generally, the pre-trained models achieve outstanding
performance compared to the CNN-based model. The
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FIGURE 7. Various performance results of the pre-trained compared to CNN-based models without knowledge transfer for 10 fog servers using:
(a) IID Data; and (b) non-IID data.

FIGURE 8. Accuracy and F1-score results among different transfer learning models versus the number of fog servers in HFTL architecture using:
(a) IID Data; and (b) non-IID data.

significant difference is due to the basic model’s inability
to learn from the 3D printer image datasets. Lastly, based
on non-IID data, the performance gap between pre-trained
models becomes clearer, as shown in Fig. 7 (b). The
MobileNetV2 yielded the highest performance, followed by
ResNet50V2, VGG16 and the CNN-based model without
knowledge transfer. Referring to the comparative results of
the CNN basic model with pre-trained models, the federated
transfer learning process successfully improves the overall
model performance. In contrast, the basic CNN-based model
is insufficient to extract 3D printer image data. Therefore,
we focused on the pre-trained model investigation for the
following performance evaluation.

E. SCALABILITY ANALYSIS
To better understand the federated transfer learning model
performance, the total number of fog servers joining the
HFTL architecture was investigated by considering a large
number of additive manufacturing companies worldwide.
Besides, scalability is an important aspect of the FL

process. In this work, we evaluate the total number of
fog servers ranging from 10 to 50 for IID and non-IID
data. The first evaluation was conducted using IID data,
which is displayed in Fig. 8 (a). Generally, as the total
number of fog servers expanded, the cloud server model
performance, such as accuracy and F1-score, decreased. For
example, in the first 10 fog servers, the performance of
MobileNetV2 in terms of accuracy reaches 99.13% and
99.07% for the F1-score. However, as the total fog server
increased to 50, the performance of MobileNetV2 narrowly
degraded to 98.63% accuracy and 984% for the F1-score.
Similar behavior was achieved by ResNet50V2, with a
slight performance reduction. However, the VGG16 network
cannot comply with the fog server addition, resulting large
performance gap. An average 13.66% performance drop
is acquired by increasing the fog server from 10 to 50.
The performance degradation occurs because the pre-trained
VGG16 model cannot learn from a smaller portion of data,
as the edge device’s total image reduceswhile the fog server is
added.
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FIGURE 9. Overall training time required by HFTL architecture with fog server variations to perform hierarchical distributed learning for three
pre-trained models using: (a) IID data; and (b) non-IID data.

In addition, the accuracy and F1-score of all pre-trained
models used in federated transfer learning for this study
were tested using non-IID data. Fig. 8 (b) depicts the overall
performance of HFTL architecture using three different
models versus the number of fog servers. Although the
performance degradation in IID data is acceptable, the results
for non-IID data are completely different. The significant
accuracy and F1-score reduction are obtained from all
transfer learning models. For instance, VGG achieves 60.9%
accuracy with a 52.09% F1-score by performing 10 fog
servers for the FL process. Surprisingly, after the fog server
increased to 50, the average performance degradation was
684%, with accuracy and F1-score of 26.14% and 10.06%,
respectively. Not only VGG16, but the degradation also
occurs for ResNet50V2 with an average of 68.12% and
MobileNetV2 with an average of 65.64%. Based on Fig. 8(a),
we discovered that client increment reduces the model
performance with IID data. Scaling the HFTL architecture
by inserting a new fog server with non-IID data worsens the
FL’s performance. However, based on the discussed outputs,
MobileNetV2 is more suitable for HFTL in an additive
manufacturing environment than other pre-trained models.
The MobileNetV2 structure that uses residual connection
from ResNet and depthwise convolutional layer can extract
3D printer image features better than other models.

F. EFFICIENCY ANALYSIS
Herein, the efficiency of the proposed HFTL by implement-
ing transfer learning is analyzed in terms of overall federated
training time that comprise communication between cloud,
fog, and edge server. As shown in Fig. 9, the findings indicate
that the total federated training time linearly increased as
the client extended. In the experiments, we assume that the
communication link is in ideal circumstances; hence the
communication latency between servers is disregarded.
The experiment was conducted five times, and the results

were then averaged. Fig. 9 (a) with IID data shows that each
pre-trained model dramatically affects the overall federated
training using a different number of fog servers (i.e., Fs =
10; 20; 30; 40; 50). For instance, MobileNetV2 requires
1227.18 ± 11.83 s to perform 50 rounds of FL, whereas
ResNet50V2 and VGG16 require 2103.44 ± 22.21 s and
3851.09 ± 29.25 s, respectively. A significant increase of
213.81% betweenMobileNetV2 andVGG16 is acquired with
10 fog servers, then 60.50% for 50 fog servers. Therefore,
if the number of additive manufacturing companies joining
the HFTL is minimal, the MobileNet becomes the best option
with high efficiency and accuracy trade-off.

Furthermore, the impact of non-IID data in federated
training was also investigated. As depicted in Fig. 9 (b), the
fog server increment leads to longer federated training time,
similar to IID data outcomes in Fig. 9 (a). This enlargement
occurs because the number of selected fog servers for each
training iteration is increased following the participant size.
The client fraction C was configured to 0.9 to facilitate the
model generalization with a larger sample size; hence, 90%
of clients are included in the training process.

Lastly, referring to the pre-trained model architecture,
MobileNetV2 has a 3.5M parameter, followed by VGG16
with 138.4M and ResNet50V2 with 25.6M. It indicates
that the model complexity affects the federated training
process. However, the performance gap becomes smaller as
the client increases. Finally, the performance trade-off must
be carefully considered in the proposed HFTL. ResNet50V2
is the best option for IID and non-IID data for large-scale
networks with acceptable performance trade-offs, whereas
MobileNetV2 is suitable for low-scale HFTL networks.

G. APPLICABILITY TO OTHER PRINTING TECHNIQUES
Based on the findings presented in this paper, significant
improvements have been achieved by employing a hierarchi-
cal federated approach in terms of classification accuracy and
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efficiency for the FDM printing technique. As highlighted
in Section III-D, another challenge lies in implementing the
proposed HFTL approach to different printing techniques
in additive manufacturing, such as LPBF and DED, which
utilize metal powders as printing materials. The fundamental
concept of our approach remains similar across LPBF and
DED, as it considers a layer-wise technique.

We believe the proposed HFTL approach can be suc-
cessfully applied to LPBF and DED by providing high-
quality datasets for each layer alongside relevant sensory
data, such as printing surface temperature. Furthermore, the
proposed HFTL framework enables multiple companies to
collaborate to generate improved models without sharing
sensitive information and compromising data privacy.

V. CONCLUSION AND FUTURE DIRECTION
This article introduces hierarchical federated learning by
adopting transfer learning from a well-known DLmodel (i.e.,
HFTL) for the additive manufacturing industry to perform
secure distributed learning. The proposed HFTL is built from
edge, fog, and cloud concepts, where the fog server performs
the data collection and learning process instead of the edge
server. It also presents the effective communication process
between each tier server.

The results were obtained from thorough experiments to
validate the effectiveness of the proposed HFTL architecture
compared to traditional FL networks. Based on the findings,
the proposed HFTL can significantly improve FL perfor-
mance in terms of accuracy, F1-Score, and training time for
both IID and non-IID data. For instance, the performance
improvement using non-IID data obtained using the proposed
HFTL is 45% in terms of accuracy, 59% in terms of
F1-score, and 24% faster training time. Moreover, based
on three different pre-trained models, it is concluded that
MobileNetV2 is the best transfer learning model for small-
scale distributed learning, and ResNet50V2 is suitable for
large-scale HFTL networks based on the performance trade-
off.

Despite the outstanding findings of the proposed HFTL
presented in this work, a few topics can still be addressed in
future research, such as:

• The security element can be enhanced by utilizing
blockchain between fog and cloud servers; hence, the
model parameter is completely secured from malicious
attacks.

• Integrating the blockchain network in FL [35] with an
incentive mechanism with a blockchain-based reward
(i.e., cryptocurrency).

• Implementing a client selection mechanism [36] to
enhance the HFTL performance further.

• Real-world implementation and performance evaluation
concerning multiple additive manufacturing companies
is a promising research direction.

• Finally, implementing the technology on different print-
ing techniques, such as LPBF, should be considered due

to the distinct characteristics of the printing processes of
FDM and LPBF.
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