
Received 11 May 2023, accepted 23 May 2023, date of publication 29 May 2023, date of current version 7 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3280638

A New Digital Signature Primitive and Its
Application in Blockchain
XIANG ZOU1 AND PENG ZENG 1,2, (Member, IEEE)
1Third Research Institute of Ministry of Public Security, Shanghai 200031, China
2Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China

Corresponding author: Peng Zeng (pzeng@sei.ecnu.edu.cn)

This work was supported in part by the 2014 Shanghai Leading Talents Program, in part by the Key Laboratory of Information Network
Security of Ministry of Public Security (The Third Research Institute of Ministry of Public Security) under Grant C22600, and in part by
the Shanghai Natural Science Foundation under Grant 23ZR1417800.

ABSTRACT In this paper, we propose a new digital signature primitive, called expander signature, and
discuss its application in blockchain. The most promising advantage of expander signature is that a signer
can generate all signatures at once using a powerful computer, and stores expander keys personally. Each time
the signer wants some of his signatures to be verified, he releases the related expander key. No matter when
or where, the signer can do this via a resource-limited device, for example, a personal portable terminal.
We formally define the syntax and security of expander signature. Under our precisely defined security
model, we give generic constructions of expander signature from both public key infrastructure-based and
identity-based signature schemes. The security of our constructed expander signature schemes rigorously
depends on the underlying public key signature schemes. The expander keys do not leak any information
about the signer’s secret key and the size of the expander keys is constant no matter how many times the
expander has been occurred. Finally, we give an application example of expander signature in blockchain.

INDEX TERMS Digital signature, expander signature, forward security, blockchain, smart contract.

I. INTRODUCTION
Digital signature is a powerful cryptographic mechanism to
ensure the integrity of data. In a conventional digital signature
scheme, a signer signs a message using his signing key sk so
that the produced signature σ can be verified by his pubic
key pk. Since sk of the signer is secret, nobody can forge a
valid signature on behalf of the signer as long as sk is not
compromised. The public key pk is usually assumed to be
publicly available for all, so once the signature σ is generated,
anybody can verify its validation.

All the digital signature schemes in the literature have a
common characteristic that once a signature σ is published
by the signer, it can be verified immediately using the signer’s
public key pk. It results in that these signature schemes fail
to meet the following requirement, i.e., one produces a set
S of signatures which can be divided into n subsets Si,
1 ≤ i ≤ n, with S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊂ S and

The associate editor coordinating the review of this manuscript and

approving it for publication was Mueen Uddin .

only the signatures in each subset Si can be verified when
certain conditions are satisfied over time.We can think of this
kind of digital signature as a fine-grained digital signature.
Taking into account that the nature of the signature’s verifying
is gradually expanded, we call this kind of new signature
primitive as expander signature.

In expander signature, the signer publishes an expander key
ek each time when he wishes the signatures related to ek to
be verified. With ek and the public key pk of the signer, the
signatures related to ek can be verified. With the evolution
of the process, the number of the verifiable signatures is
increasing, and the expander stops when all the signatures
have been verified.

Expander signature is specially demanded in some scenar-
ios. For example, suppose the signer is a one-year loaner of
bank B for buying a car from company C . The signer signs
a buying car contract ConSC with C and a 12-month repay-
ment contract ConSB with B. ConSB stipulates the amount of
money the signer should repay each month and how to deal
with when the signer violates the items in the contract. When

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 54607

https://orcid.org/0000-0002-3904-9245
https://orcid.org/0000-0003-1919-3407

X. Zou, P. Zeng: New Digital Signature Primitive and Its Application in Blockchain

the contract ConSC is valid, the bank B transforms the whole
car money to the company C . For the 12 repayment plans in
the contract ConSB, the signer generates 12 signatures, but
they should not be verified unless the signer transforms his
money to the bank B. In other words, the signer transforms
his month repayment to B and releases a token ek (we call it
an expander key later) each month. With the signer’s public
key pk and the token ek, anyone can verify the signer’s
signatures related to the current or previous ek. When all
of the 12 signatures are verified according to the contract
ConSB, the signer will own the car; otherwise, the bank B can
legitimately take back the car and auction it.

Nowadays many people around the world buy things (e.g.
cars or houses) in instalments. It may benefit us if we record
personal’s repayment on blockchain. Since blockchain is of
openness and unforgeability, individual honesty and trustwor-
thiness can be publicly verified on blockchain. Whenever a
signature is verified as valid, the transformation is recorded in
the blockchain. It is obvious, in the above example of buying
car, if the signer fails to transform the money to the bank
B, or cannot provide a token to verify his signature, he will
lose his money. As a result, there is a requirement to design
a signature scheme that generates signatures for which only
a part of them can be verified when some conditions are
satisfied. However, as far as we know, there are no digital
signature schemes satisfying the requirement and thus we try
to solve this kind of scalability problem of blockchain in this
paper.

Our construction of expander signature is generic since it
can transform any traditional signature scheme to an expander
signature scheme without losing its security. Besides, it is
worthy of mentioning that the additional expander algo-
rithm (please see the algorithm Expand in Section IV-A) is
efficient since it only needs operations on a cryptographic
collision-resistant hash function (e.g., MD5, SHA256, etc).
It is generally considered that hash operation is a kind of
lightweight computation and it has many important applica-
tions, for examples, message authentication, digital signature,
encryption, password protection [1], [2], [3], [4], [5].

Another feature of our construction is that the size of
expander keys is constant regardless how many times the
expander occurs. Our expander algorithm works as follows.
Suppose that there are n ordered tags t1, t2, . . . , tn ∈ {0, 1}∗

in the system. The signer starts the expander algorithm by
selecting a random seed r ∈ {0, 1}∗ and then computes
the n expander keys eki, 1 ≤ i ≤ n, in reverse order:
ekn = H (r, (t1, 1), (t2, 2), · · · , (tn, n)), ekn−1 = H (ekn),
ekn−2 = H (ekn−1), · · · , ek1 = H (ek2), whereH is a crypto-
graphic collision-resistant hash function. It is obvious that we
have eki = H [n−i+1](r, (t1, 1), (t2, 2), · · · , (tn, n)) for each
1 ≤ i ≤ n, where the notation H [j](x) denotes j consecutive
applications of the hash functionH on x (e.g.,H [1](x) = H (x)
and H [2](x) = H (H (x)) = H (H [1](x))). With the one-way
property of H , it is easy to compute eki−1 = H (eki) for a
given eki, but cannot compute the pre-image eki+1 of eki
(i.e. the backward expander key). In this way, the size of the

expander keys remains constant (i.e. the output length of H).
Figure 1 shows the expander key evolution paradigm.

Finally we mention that our proposed expander signature
can be used in blockchain and make the blockchain more
scalable. Though blockchain has been regarded to be suit-
able for many application scenarios [6], [7], [8], it needs
to be improved further and the scalability is one of these
problems to be addressed. There are some works discussed
the scalability of payment channel in blockchain [9], but no
works on solving the scalability of conditioned verification
in blockchain up to now. In this paper, we try to implement
expander signature in blockchain to achieve flexible verifica-
tion of transactions. If the verification of the signatures under
the expander key and all previous expander keys is successful
according to the items in the loan contract, the money is
transformed to the payee and then the transaction is recorded
into the blockchain.

A. OUR CONTRIBUTIONS
In this paper we construct a new digital signature primitive,
called expander signature. The most promising advantage of
expander signature is that a signer can generate all signa-
tures at once using a powerful computer, and store expander
keys personally. Each time the signer wants some of his
signatures to be verified, he can release the related expander
key. No matter when or where, the signer can do this via
a resource-limited device, for example, a personal portable
terminal. Other merits of expander signature include that the
expander keys do not leak any information about the signer’s
secret key and the size of the expander keys is constant no
mater how many times the expander has been occurred.

Our contributions in this paper are summarized as below:

• We propose a new digital signature primitive, called
expander signature, and discuss its application on
blockchain. As an example, a smart contract instance is
given in this paper.

• We formally define the syntax and security of expander
signature.

• We construct expander signature schemes from tra-
ditional signature schemes, including public key
infrastructure-based (PKI-based) and identity-based
(ID-based) expander signature schemes. The security of
the expander signature schemes rigorously depends on
the underlying digital signature schemes. Our construc-
tion is simple and efficient.

• We instantiate two expander signature schemes based on
BLC short signature scheme [10] and Boyen andWater’s
ID-based signature scheme [11].

II. RELATED WORKS
A. FORWARD-SECURE DIGITAL SIGNATURE
The notion of digital signature was first proposed by Diffie
and Hellman in their classic paper [12]. Digital signature can
be used to protect the authenticity and integrity of themessage
and has many important applications today. Forward-secure

54608 VOLUME 11, 2023

X. Zou, P. Zeng: New Digital Signature Primitive and Its Application in Blockchain

FIGURE 1. Paradigm for expander key chain: ekn = H(r) and eki = H(eki+1), i = n − 1, n − 2, · · · , 2, 1.

digital signature is a special digital signature which was pro-
posed by Bellare and Miner [13], followed by the works [14],
[15], [16], [17], [18], [19], [20], [21]. In a forward-secure
digital signature scheme, the signer’s public key is fixed, but
the signing key is updated at regular time intervals. At each
end of the interval, the signer computes a new signing key
using the current signing key and time for the next interval,
and deletes the current signing key. It is obvious that in such
a scheme, the compromise of the current signing key does
not enable an adversary to forge signatures pertaining to the
past (the time prior to key exposure) so that forward security
achieves. However, the existing forward-secure digital sig-
nature schemes in the literature only consider the update of
signing keys with time and thus the signer suffers from the
burden of constantly updating signing keys.

B. PUNCTURABLE ENCRYPTION
Puncturable encryption (PE) was first proposed by Green
and Miers [22]. It provides a new mechanism for achiev-
ing forward-secure encryption in store and forward mes-
saging systems. PE can be viewed as a form of tag-based
encryption [23] with an additional efficient puncture algo-
rithm. Secret keys in PE can be repeatedly and sequen-
tially punctured at many different points, replicating the
experience of normal message deletion [24], [25], [26].
More times the secret keys are punctured, the less
ciphertexs can be decrypted. Followed of the work [22],
Sun et al. [27] proposed the first symmetric puncturable
encryption (SPE) using pseudorandom function, and further
realised a backward-secure searchable encryption based on
SPE. Though it is a relative new cryptographic primitive,
PE has been found many applications, such as designing
chosen-ciphertext secure fully homomorphic encryption [28],
fully forward-secure key exchange for 0-RTT [29], [30],
and forward and backward secure private searchable encryp-
tion [27], [31]. However, there are no works on exploring
digital signature with the similar property as PE, which also
has its special applications.

In this work, we start to study the new primitive by first
giving the formal definition of expander signature and its
security model. Then we construct generic expander signa-
ture schemes from traditional PKI-based and ID-based sig-
nature schemes. Finally, considering the importance of smart
contracts to blockchain [32], [33], [34], [35], we design a
smart contract based on expander signature as an application
example of expander signature in blockchain.

III. PRELIMINARY AND DEFINITIONS
We denote by |S| the cardinality of a finite set S and x

$
←− S

the operation of choosing an element x from S uniformly at

random. Further, we denote by N = {1, 2, · · · , n} the set of
the first n positive integers and T = {(ti, i) | i ∈ N } the set
of n tag-index pairs.

A. EXPANDER SIGNATURE
Definition 1: A PKI-based expander signature scheme is

a tuple PKES = (KeyGen, Expand, Sign, Verify) of four
algorithms defined as follows:
• KeyGen(par,U)→ (pk, sk): On input a public param-
eter par and a user U , it outputs a public-private key
pair (pk, sk) for U , where sk and pk are for signing and
verifying, respectively. We assume that par includes the
system’s security parameter κ and the description of the
tag-index pair set T .

• Expand(par, (ti, i))→ eki: On input the public param-
eter par and a tag-index pair (ti, i) ∈ T , the algorithm
outputs an expander key eki on tag ti.

• Sign(par, sk, (ti, i),Mi) → σi: On input the public
parameter par, a signing key sk, a tag-index pair (ti, i) ∈
T , and a messageMi to be signed, the algorithm outputs
a signature σi onMi conditioned on the i-th tag ti. σi can
be verified by pk and eki.

• Verify(par, pk, eki,Mi, σi)→ {1, 0}: On input the pub-
lic parameter par, a verifying key pk, an expander key
eki, a messageMi and its signature σi, the algorithm out-
puts 1 if the verification on σi is successful; Otherwise,
it outputs 0.

Correctness. We say that a PKI-based expander signature
scheme PKES = (KeyGen, Expand, Sign, Verify) is cor-
rect if the following equation holds unconditionally: for any
public-private key pair (pk, sk) = KeyGen(par,U) of user
U , message Mi, tag-index pair (ti, i) ∈ T ,

Verify(par, pk, Expand(par, (ti, i)),Mi, σi) = 1,

where σi = Sign(par, sk, (ti, i),Mi).
Definition 2: An ID-based expander signature scheme is

a five-tuple IBES = (Setup, KeyGen, Expand, Sign,

Verify) which can be defined as following:
• Setup(1κ)→ (par, msk): On input a security parame-
ter κ , it outputs the public parameter par and a master
secret key msk. As in Definition 1, we assume that
par includes the system’s security parameter κ and the
description of the tag-index pair set T .

• KeyGen(par, msk, ID) → sk: On input the public
parameter par, the master secret key msk, and an iden-
tity ID of user U , it outputs the private key sk for U .

• Expand(par, (ti, i)) → eki: It is the same as the algo-
rithm Expand in PKES.

• Sign(par, sk, (ti, i),Mi) → σi: It is the same as the
algorithm Sign in PKES.

VOLUME 11, 2023 54609

X. Zou, P. Zeng: New Digital Signature Primitive and Its Application in Blockchain

• Verify(par, ID, eki,Mi, σi) → {1, 0}: On input the
public parameter par, an identity ID, an expander key
eki, a message Mi and its signature σi conditioned on
eki, it outputs 1 if the verification on σi is successful;
Otherwise, it outputs 0.

Correctness. We say that an ID-based expander signature
scheme IBES = (Setup, KeyGen, Expand, Sign, Verify)
is correct if the following equation holds unconditionally: for
any identity ID, messageMi, and tag-index pair (ti, i) ∈ T ,

Verify(par, ID, Expand(par, (ti, i)),Mi, σi) = 1,

where (par, msk) = Setup(1κ), sk = KeyGen(par, msk,

ID), and σi = Sign(par, sk, (ti, i),Mi).

B. SECURITY MODEL
In PKES (or IBES), the expander keys eki, i ∈ N , are evolv-
ing which means that, given the i-th expander key eki, it is
easy to compute the j-th expander key as ekj = H [i−j](eki)
for j < i, but no polynomial probability time (PPT) adversary
can compute any k-th expander key ekk for k > i with non-
negligible probability. In this sense, the security of PKES
includes two parts: (1) the existential unforgeability under
adaptive chosen-message attack (EUF-CMA); and (2) the
one-way property of the expander keys. In order to formally
describe these actions, we pin down an appropriate security
model for PKES based on the idea from [36] (the security
model for IBES is similar).

Let F be a forger against PKES = (KeyGen, Expand,

Sign, Verify) who knows the public tag-index pair set T =
{(ti, i) | i ∈ N }. The EUF-CMA security of PKES can
be formally defined by the following game GameEUF-CMA

PKES,F
interacted between a challenger C and F .
GameEUF-CMA

PKES,F : The challenger C first runs the algorithm
KeyGen(par,U) to get a public-private key pair (pk, sk) for
the signer U . Meanwhile, C initializes an empty list Lsign to
recordF’s signing queries on behalf ofU . Then C outputs pk
to F and allows F to adaptively make the following queries:
• Expander key queryOek(ti, i): On input a tag-index pair
(ti, i), C returns ⊥ if F has made an expander key query
Oek(tj, j) on a tag-index pair (tj, j) with j ≥ i; Otherwise,
it returns an expander key eki = Expand(par, (ti, i)) to
F .

• Signing query OSign((ti, i),Mi): On input a tag-index
pair (ti, i) and a message Mi from the message space
M, C first checks if F has made a signing query on
the pair ((ti, i),Mi). If yes, C returns ⊥. Otherwise, C
computes σi = Sign(par, sk, (ti, i),Mi) and returns it to
F . Meanwhile, C adds the new item ((ti, i),Mi, σi) into
the list Lsign.

Finally, F outputs a forgery F∗ = ((ti∗ , i∗),Mi∗ , σi∗).
We call F wins the game GameEUF-CMA

PKES,F if F∗ satisfies the
following conditions:

1) (ti∗ , i∗) ∈ T and F∗ /∈ Lsign;
2) Verify(par, pk, eki∗ ,Mi∗ , σi∗) = 1, where eki∗ =

Expand(par, (ti∗ , i∗)).

Definition 3: We say that PKES is EUF-CMA secure
if for any PPT forger F , the advantage, denoted by
AdvEUF-CMA

PKES (F), that F wins GameEUF-CMA
PKES,F is negligible.

Remark 1: Note that the forger F can even make an
expander query on (ti∗ , i∗) as long as its forgery F∗ =
((ti∗ , i∗),Mi∗ , σi∗) /∈ Lsign.

For the one-way property of PKES, we define a game,
denoted by GameOW

PKES,F , which is also interacted between
a forger F and a challenger C. F is allowed to adaptively
make the same queries Oek and OSign as in the game
GameEUF-CMA

PKES,F . ThenF outputs an expander key eki∗ . We call
F wins the game GameOW

PKES,F if eki∗ meets the following
conditions:

1) (ti∗ , i∗) ∈ T ;
2) F makes neither the query Oek(ti, i) nor the query
Osign((ti, i),Mi) for any i ≥ i∗;

3) For any messageMi∗ , it holds the equation Verify(par,
pk, eki∗ ,Mi∗ , σi∗) = 1, where σi∗ = Sign(par, sk,

(ti∗ , i∗),Mi∗).
Definition 4: We say that PKES is of one-way prop-

erty if for any PPT attacker F , the advantage, denoted by
AdvOW

PKES(F), that F wins GameOW
PKES,F is negligible.

IV. UNIVERSAL CONSTRUCTION OF EXPANDER
SIGNATURE
In this section, we present a universal construction of
expander signature. Using our method, any traditional digital
signature scheme can be easily transformed to an expander
signature scheme, meanwhile keeping the security of the
expander signature scheme. Our construction is divided to
two cases: PKI-based and ID-based.

A. UNIVERSAL CONSTRUCTION OF PKI-BASED EXPANDER
SIGNATURE
Let PKS = (Gen, Sig, Ver) be a secure PKI-based digital
signature scheme and H a cryptographic collision-resistant
hash function. Based on PKS, our PKI-based expander sig-
nature scheme PKES = (KeyGen, Expand, Sign, Verify)
can be constructed as follows:
• KeyGen(par,U) → (pk, sk): It runs the algorithm

PKS.Gen(par,U) to generate a public-private key pair
(pk, sk) for the user U .

• Expand(par, (ti, i))→ eki: For a tag-index pair (ti, i) ∈
T , the algorithm first checks if i = 1. If yes, it selects

r
$
←− {0, 1}∗ and computes

ek1 = H [n](r, (t1, 1), (t2, 2), · · · , (tn, n)).

Then it outputs the first expander key ek1 and establishes
a list

Lek = {r, (ek1, 1)}

locally. Otherwise (i.e. in the case of i > 1), it finds r
from Lek and computes

eki = H [n−i+1](r, (t1, 1), (t2, 2), · · · , (tn, n)).

54610 VOLUME 11, 2023

X. Zou, P. Zeng: New Digital Signature Primitive and Its Application in Blockchain

Finally, it outputs the i-th expander key eki and adds the
new item (eki, i) into Lek.

• Sign(par, sk, (ti, i),Mi) → σi: It first runs the
algorithm Expand(par, (ti, i)) to generate the i-th
expander key eki. Then it returns the signature σi =

PKS.Sig(par, sk,H (Mi)⊕ eki).
• Verify(par, pk, eki,Mi, σi) → {0, 1}: It first finds a
public expander key ekj with the greatest index j and
checks if the equation ekj = H [i−j](eki) holds. If not,
it returns 0. Otherwise, it returns PKS.Ver(pk,H (Mi)⊕
eki, σi).

Remark 2: Wemention that it is easy to combine the above
two algorithms Expand and Sign to efficiently generate the
n expander keys and the corresponding n signatures at once
for some specific applications. Specially, it can reduce the
number of hash operations from n(n − 1)/2 to n for the
generation of the n expander keys eki, i ∈ N . We denote
by Expand-Sign the combined algorithm which can be
described as follows:
• Expand-Sign(par, sk, M)→ (EK , 6): Given the pub-

lic parameter par, the signing key sk, and the n message set
M = {Mi | i ∈ N } to be signed, it chooses a random

string r
$
←− {0, 1}∗ and computes the n-th expander key as

ekn = H (r, (t1, 1), (t2, 2), · · · , (tn, n)) and the correspond-
ing signature as σn = PKS.Sig(par, sk,H (Mn)⊕ekn). Then
for i = n−1, n−2, · · · , 2, 1, it computes eki = H (eki+1) and
σi = PKS.Sig(par, sk,H (Mi) ⊕ eki) in sequence. Finally,
it outputs the expander key list EK = (ek1, ek2, . . . , ekn)
and the signature list 6 = (σ1, σ2, . . . , σn).

B. UNIVERSAL CONSTRUCTION OF ID-BASED EXPANDER
SIGNATURE
Let IBS = (Setup, Extract, Sig, Ver) be a secure ID-based
signature scheme and H a cryptographic collision-resistant
hash function. Based on IBS, the ID-based expander sig-
nature scheme IBES = (Setup, KeyGen, Expand, Sign,

Verify) can be constructed as follows:

• Setup(1κ) → (par, msk): On input a secu-
rity parameter κ , it runs IBS.Setup(1κ) to gener-
ate the public parameter par and the master secret
key msk.

• KeyGen(par, msk, ID) → skID: It runs the algorithm
IBS.Extract(par, msk, ID) to generate the private key
skID of the user UID with identity ID.

• Expand(par, (ti, i))→ eki: It is the same as the one in
PKES.

• Sign(par, skID, (ti, i),Mi) → σi: It first runs the
algorithm Expand(par, (ti, i)) to get the expander
key eki and then returns σi = IBS.Sig(par,
skID,H (Mi)⊕ eki).

• Verify(par, ID, eki,Mi, σi) → {1, 0}: It first finds
a public expander key ekj with the greatest index j
and checks if the equation ekj = H [i−j](eki) holds.
If not, it returns 0. Otherwise, it returns the result of
IBS.Ver(par, ID,H (Mi)⊕ eki, σi).

V. SECURITY ANALYSIS
Theorem 1: Suppose that PKS = (Gen, Sig, Ver) is a

(ε, t) EUF-CMA secure PKI-based signature scheme, then
our universal expander signature scheme PKES on PKS
(refer to Section IV-A) is (ε, t + µ · te + ν · ts) EUF-CMA
secure, where µ (resp. ν) is the times of the expander key
(resp. signing) queries and te (resp. ts) is the running time of
one expander key (resp. signing) query.
Proof: Let F be a forger of PKES, B and C the simulators

of PKES and PKS, respectively. During the whole game
GameEUF-CMA

PKES,F (refer to Section III-B), B maintains two lists
Lek and Lsign, which are initially empty.

At first, C runs PKS.Gen to generate the signer’s public-
private key pair (pk, sk). Then C sends pk to B and B for-
wards it to F . F adaptively makes the following queries to
B:
• Expander key query Oek(ti, i)1: On receiving this kind

of queries, B first checks if i = 1. If yes, B selects r
$
←−

{0, 1}∗, computes

ek1 = H [n](r, (t1, 1), (t2, 2), · · · , (tn, n)),

and sets Lek = {r, (ek1, 1)}; Otherwise, i.e. in the case
of i ≥ 2, by looking up the list Lek, B checks if F
has made an expander key query on some tag-index pair
(tj, j) with j ≥ i. If it did, B returns ⊥ to F ; Otherwise,
B gets the value r from the list Lek and returns the
expander key

eki = H [n−i+1](r, (t1, 1), (t2, 2), · · · , (tn, n))

on the tag-index pair (ti, i) to F . Finally, B records
(eki, i) in the list Lek.

• Signing query Osign((ti, i),Mi): On receiving this kind
of queries by the forgerF ,B first computes the expander
key eki ← Expand(par, (ti, i)) and makes an original
signing query for the message H (Mi)⊕eki to C. Then C
computes σi = PKS.Sig(par, sk,H (Mi) ⊕ eki) for B.
Finally, B returns σi to F and updates Lsign = Lsign ∪

{((ti, i),Mi, σi)}.
Finally, the forger F outputs a forgery F∗ =

((ti∗ , i∗),Mi∗ , σi∗) with the following conditions:
1) (ti∗ , i∗) ∈ T ;
2) ((ti∗ , i∗),Mi∗ , σi∗) /∈ Lsign;
On receiving a forgery F∗ = ((ti∗ , i∗),Mi∗ , σi∗), B com-

putes eki∗ = H [n−i∗+1](r, (t1, 1), (t2, 2), · · · , (tn, n)) and
sends (H (Mi∗) ⊕ eki∗ , σi∗) to C as a forgery to PKS. The
advantage that C resolves the hard problem related to PKS
is the same as that B resolves that hard problem, too, with
running time t +µ · te + ν · ts, where µ (resp. ν) is the times

1Note that F is allowed to make expander key queries on any tag-index
pairs not strictly according to the order of the tags. That is, F can make
expander key queries on (tj, j), j ∈ N , even if he did not make expander
key queries on tag-index pairs (t1, 1) · · · , (tj−1, j−1). But ifF has made an
expander key query on (ti, i), he is not allowed to make queries on tag-index
pairs (t1, 1) · · · , (ti−1, i−1), since he can compute these expander keys from
eki.

VOLUME 11, 2023 54611

X. Zou, P. Zeng: New Digital Signature Primitive and Its Application in Blockchain

of the expander key (resp. signing) queries and te (resp. ts) is
the running time of one expander key (resp. signing) query.
Theorem 2: Suppose that IBS = (Setup, Extract, Sig,

Ver) is a (ε, t) EUF-CMA secure ID-based signature scheme,
then our universal expander signature scheme IBES (refer to
Section IV-B) is (ε, t + µ · te + ν · ts) EUF-CMA secure,
where the notations µ, ν, te, ts have the same meanings as in
the above Theorem 1.
The proof of Theorem 2 is similar to the one of Theorem 1
and thus we omit it here.
Theorem 3: Both our universal expander signature con-

structions PKES and IBES are one-way secure, in the sense
that given an expander key, no PPT adversary can compute a
backward expander key, but anybody can compute the former
expanded keys.
Proof: We take PKES = (KeyGen, Expand, Sign,

Verify) as the example to prove this theorem. Let F be a
forger of PKES on a PKI-based signature scheme PKS =
(Gen, Sig, Ver) and let B and C be the simulators of PKES
andPKS, respectively. During thewhole gameGameOW

PKES,F
(refer to Section III-B), B maintains two lists Lek and Lsign,
which are initially empty.

At first, C runs PKS.Gen to generate the signer’s public-
private key pair (pk, sk). Then C sends pk to B and B
forwards it to F . During the game GameOW

PKES,F , F can
adaptively make the expander key query Oek(ti, i) and the
signing query Osign((ti, i),Mi) as in the game GameEUF-CMA

PKES,F
(refer to the proof of Theorem 1). Finally, F outputs an
expander key eki∗ which meets the following conditions:

1) (ti∗ , i∗) ∈ T ;
2) F makes neither expander key query Oek(ti, i) nor

signing query Osign((ti, i),Mi) for i ≥ i∗;
3) For any message Mi and 1 ≤ i ≤ i∗, it holds

Verify(par, pk, eki,Mi, Sign(par, sk, (ti, i),Mi)) =

1.

On receiving F’s output eki∗ , B computes ek′i∗ =
H [n−i∗+1](r, (t1, 1), (t2, 2), · · · , (tn, n)). If ek′i∗ = eki∗ , B
sends (H (Mi∗) ⊕ eki∗ , σi∗) to C as a forgery to PKS. The
advantage of C’s resolving the hard problem related to PKS
is the advantage of B’s resolving that hard problem related
to PKES, too. Otherwise, if ek′i∗ ̸= eki∗ , with the above
condition 3), it must hold eki∗−1 = H (eki∗) = H (ek′i∗),
which means that B finds a collusion of the hash function H .
This contradicts the fact that H is a collision-resistent hash
function. This shows the one-way property of PKES. The
one-way security of IBES can be proved accordingly.

VI. INSTANTIATION OF EXPANDER SIGNATURES
A. INSTANTIATION OF PKES FROM BLC SHORT
SIGNATURE
In this section, we briefly review BLC short signature
scheme [10] and then give the concrete construction of our
PKES scheme from it.
Let par = (q, g, G, GT , e,H) be the public parameter,

where G and GT are two multiplicative groups of same prime

order q, g is a generator of G, e : G×G→ GT is a bilinear
pairing, and H : {0, 1}∗ → G is a collision-resistant cryp-
tographic hash function. Then BLC short signature scheme
PKS = (Gen, Sig, Ver) can be described as follows [10].

• Gen(par,U) → (pk, sk): On input the public param-

eter par and a user U , it chooses x
$
←− Z∗q and sets the

public-private key pair as (pk = gx , sk = x) for U ,
where Z∗q is the multiplicative group of the finite field
Zq.

• Sig(par, sk,M) → σ : On input the public parameter
par, the signer’s private key sk, a messageM ∈ {0, 1}∗,
it computes σ = H (M)sk

= H (M)x .
• Ver(par, pk,M , σ) → {0, 1}: On input the public
parameter par, a public key pk of U , a message M and
its signature σ , it checks if the following equation holds:

e(g, σ) ?
= e(pk,H (M)). (1)

If yes, the algorithm outputs 1; and 0, otherwise.

Based upon the above PKS = (Gen, Sig, Ver) [10], our
expander signature scheme PKES = (KeyGen, Expand,

Sign, Verify) can be constructed as below:

• KeyGen(par,U) → (pk, sk): On input the public
parameter par and a user U , it runs PKS.Gen(par,U)
to generate the public-private key pair (pk = gx , sk =
x) for U .

• Expand(par, (ti, i)) → eki: If i = 1, the algorithm

selects r
$
←− {0, 1}∗ and computes the expander key on

the first tag-index pair (t1, 1) as

ek1 = H [n](r, (t1, 1), (t2, 2), · · · , (tn, n)).

Then it outputs ek1 and establishes a list Lek =

{r, (ek1, 1)}. If i > 1, it finds the random string r from
Lek and computes the expander key on the tag-index pair
(ti, i) as

eki = H [n−i+1](r, (t1, 1), (t2, 2), · · · , (tn, n)).

Finally, it outputs eki and stores (eki, i) in Lek.
• Sign(par, sk, (ti, i),Mi) → σi: On input the public
parameter par, the signer’s private key sk, a tag-index
pair (ti, i) ∈ T , and a message Mi ∈ {0, 1}∗, the
algorithm computes eki = Expand(par, (ti, i)) and
generates the signature onMi as σi = H (H (Mi)⊕eki)sk.

• Verify(par, pk, eki,Mi, σi) → {0, 1}: On input the
public parameter par, a verification public key pk,
an expander key eki, a message Mi and its signature σi
conditioned on eki, it first finds a public expander key
ekj with the greatest index j and checks whether ekj =
H [i−j](eki). If not, it returns 0. Otherwise, it checks if
the following equation holds:

e(g, σi)
?
= e(pk,H (H (Mi)⊕ eki)). (2)

If yes, the algorithm outputs 1; Otherwise, it outputs 0.

54612 VOLUME 11, 2023

X. Zou, P. Zeng: New Digital Signature Primitive and Its Application in Blockchain

B. INSTANTIATION OF IBES FROM ID-BASED SIGNATURE
In this section, we instantiate our expander signature scheme
IBES from Boyen and Waters’s ID-based signature scheme
IBS = (Setup, Extract, Sig, Ver) which can be depicted
simply as below [11]:
• Setup(1κ) → (par, msk): On input a security param-
eter κ , it first generates a six-tuple (p, q, g, G, GT , e),
where p, q are two random κ-bit primes, G, GT are two
cyclic groups of order p · q, Gp = ⟨g⟩ is subgroup of G
with |Gp| = p, and e : G×G→ GT is a bilinear pairing.

Then it selects 3+ k + m integers α, y′, z′, yi, zj
$
←− Z∗p,

1 ≤ i ≤ k , 1 ≤ j ≤ m, and computes A = e(g, g)α , u′ =
gy
′

, v′ = gz
′

, ui = gyi (1 ≤ i ≤ k), vj = gzj (1 ≤ j ≤ m).
Finally, it outputs the master secret key as msk = gα

and the system public parameter as

par = (g, u′, u1, u2, . . . , uk , v′, v1, v2, . . . , vm,A).

Here, we assume that par implicitly includes the param-
eter k (the length of user identity), m (the length of
message), and a description of (p, q, g, G, GT , e).

• Extract(par, msk, ID) → skID: On input the public
parameter par, the master secret key msk, and an iden-
tity ID = (λ1, λ2, . . . , λk) ∈ {0, 1}k of user UID,

it selects r
$
←− Z∗p and outputs the private key skID for

UID as

skID =
(
msk ·

(
u′ · U

)r
, g−r

)
∈ G2,

where U =
∏k

i=1 u
λi
i .

• Sig(par, skID,M)→ σ : On input the public parameter
par, a signer’s private key skID = (sk1, sk2) ∈ G2,
and a message M = (µ1, µ2, . . . , µm) ∈ {0, 1}m to be

signed, it chooses s
$
←− Z∗p and outputs the signature on

M as

σ =
(
sk1 ·

(
v′ · V

)s
, sk2, g−s

)
∈ G3,

where V =
∏m

j=1 v
µj
j .

• Ver(par, ID,M , σ) → {0, 1}: On input the public
parameter par, an identity ID = (λ1, λ2, . . . , λk) ∈
{0, 1}k , a message M = (µ1, µ2, . . . , µm) ∈ {0, 1}m

and its signature σ = (σ1, σ2, σ3) ∈ G3, it outputs 1 if
the equation

e(σ1, g) · e(σ2, u′ · U) · e(σ3, v′ · V)
?
= A (3)

holds, where U =
∏k

i=1 u
λi
i and V =

∏m
j=1 v

µj
j . Other-

wise, it outputs 0.
Based on the scheme IBS = (Setup, Extract, Sig, Ver) [11],

our ID-based expander signature scheme IBES =

(Setup, KeyGen, Expand, Sign, Verify) can be constructed
as follows.
• Setup(1κ) → (par, msk): It first runs IBS.Setup(1κ)
to generate the parameter par1 and the master secret key
msk. Then it chooses a collision-resistant cryptographic
hash function H : {0, 1}∗ → {0, 1}m. Finally, the

FIGURE 2. The interaction process of proposed smart contract.

algorithm outputs the system public parameter par =
(par1,H) and the master secret key msk.

• KeyGen(par, msk, ID) → skID: For an identity ID of
userUID, the algorithm runs IBS.Extract(par1, msk, ID)
to generate the private key skID and sends it to UID via
a secure channel.

• Expand(par, (ti, i)) → eki: It is the same as
the algorithm PKES.Expand, except that the range
of the hash function H is {0, 1}m, not G (please
refer to Section VI-A). That is, the algorithm out-
puts an expander key eki and maintains a list
Lek = {r, (ek1, 1), (ek2, 2), · · · , (eki, i)}.

• Sign(par, skID, (ti, i),Mi) → σi: It computes eki =
Expand(par, (ti, i)) and outputs the signature σi =

IBS.Sig(par, skID,H (Mi)⊕ eki) on Mi.
• Verify(par, ID, eki,Mi, σi) → {0, 1}: It first finds a
public expander key ekj with the closest index j to i and
checks whether ekj = H [i−j](eki). If not, it returns 0.
Otherwise, it returns IBS.Ver(par, ID,H (Mi)⊕eki, σi).

Remark 3: The instantiations of PKES and IBES are
computationally efficient since they only have a few more
lightweight hash operations than the original schemes [10]
and [11], respectively.

VII. APPLICATION ON BLOCKCHAIN: SMART CONTRACT
INSTANCE
Blockchain is an underlying technology for digital currencies
and it has attracted great attention from government depart-
ments, financial institutions and Internet giants. In this sec-
tion, we focus on designing a smart contract SC with repay-
ment transaction as an application example of expander sig-
nature in blockchain. The interaction process of SC includes
the following seven steps (refer to Figure 2) in which we
assume that the signer is a loanee from bank B.
1) The signer signs a contract ConSB with the bank B.

ConSB specifies the items which should be followed by
the signer and B, including how much money B should
lend to the signer, howmanymonths this money should
be returned to B by the signer, the amount of money

VOLUME 11, 2023 54613

X. Zou, P. Zeng: New Digital Signature Primitive and Its Application in Blockchain

FIGURE 3. Key pseudo-codes of proposed smart contract.

the signer should return to B each month, the amount of
money the signer should pay toB if he fails to transform
money before current transformation, and B’s privilege
if the signer violates the contract.

2) The signer generates all signatures, each for one-month
payment to B. These signatures could only be verified
when the signer transforms his monthly payment to B.

3) The signer uploads all the signatures to the smart con-
tract SC. SC initializes idx = 0 and totalPay = 0.

4) The signer transforms the current repayment to B.
5) The signer releases an expander key to SC. The

expander key together with the signer’s public key are
used to verify all the transforms before current month.

6) On receiving the expander key, SC first checks if the
signer has returned enough money to B (e.g. checking
whether totalPay = idx ∗ payPerMonth). If not, the
signer should transform idx ∗ payPerMonth− totalPay
to B in current month and the verification is on the

newmessage idx∗payPerMonth−totalPay. Otherwise,
SC computes all the previous expander keys, and then
verifies all the previous months’ signatures.

7) If the verification is successful,SC updates idx = idx+
1 and totalPay = idx∗payPerMonth. Finally themoney
is transformed to B’s address.

Figure 3 gives some key codes of SC based on the Solidity
programming language.

VIII. CONCLUSION
In this paper we proposed a new digital signature primitive,
called expander signature, which allows a signer to generate
all signatures and expander keys at once using a power-
ful computer. The signer needs only to release the related
expander keys when some of his signatures to be verified.
This can be done with a resource-limited device, for example,
a personal portable terminal. Further the expander keys do
not leak any information about the signer’s secret key and
the size of the expander keys is constant no mater how many
times the expander has been occurred. We gave two general
constructions of expander signatures with PKI-based and ID-
based digital signatures and instantiated two expander sig-
nature schemes based on two traditional signature schemes.
We formally defined the security model of expander signature
and gave rigorous security proof. Finally we designed a smart
contract as an application example of expander signature in
blockchain. Future study includes the code implementation
of the designed smart contract and a new design of expander
signature which does not depend on any existing digital sig-
nature schemes.

REFERENCES
[1] D. Yu, R.-H. Hsu, J. Lee, and S. Lee, ‘‘EC-SVC: Secure CAN bus in-

vehicle communications with fine-grained access control based on edge
computing,’’ IEEE Trans. Inf. Forensics Security, vol. 17, pp. 1388–1403,
2022, doi: 10.1109/TIFS.2022.3152405.

[2] H. N. Noura, O. Salman, R. Couturier, and A. Chehab, ‘‘A single-pass
and one-roundmessage authentication encryption for limited IoT devices,’’
IEEE Internet Things J., vol. 9, no. 18, pp. 17885–17900, Sep. 2022, doi:
10.1109/JIOT.2022.3161192.

[3] V. Srivastava, S. K. Debnath, B. Bera, A. K. Das, Y. Park, and
P. Lorenz, ‘‘Blockchain-envisioned provably secure multivariate identity-
based multi-signature scheme for Internet of Vehicles environment,’’ IEEE
Trans. Veh. Technol., vol. 71, no. 9, pp. 9853–9867, Sep. 2022, doi:
10.1109/TVT.2022.3176755.

[4] M. Rasori, M. L. Manna, P. Perazzo, and G. Dini, ‘‘A survey on
attribute-based encryption schemes suitable for the Internet of Things,’’
IEEE Internet Things J., vol. 9, no. 11, pp. 8269–8290, Jun. 2022, doi:
10.1109/JIOT.2022.3154039.

[5] S. Wiefling, P. R. Jørgensen, S. Thunem, and L. L. Iacono, ‘‘Pump up
password security! Evaluating and enhancing risk-based authentication
on a real-world large-scale online service,’’ ACM Trans. Privacy Secur.,
vol. 26, no. 1, pp. 1–36, Feb. 2023, doi: 10.1145/3546069.

[6] K. Qin, L. Zhou, and A. Gervais, ‘‘Quantifying blockchain extractable
value: How dark is the forest?’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2022, pp. 198–214, doi: 10.1109/SP46214.2022.9833734.

[7] S. Qahtan, K. Y. Sharif, A. A. Zaidan, H. A. Alsattar, O. S. Albahri,
B. B. Zaidan, H. Zulzalil, M. H. Osman, A. H. Alamoodi, and
R. T. Mohammed, ‘‘Novel multi security and privacy benchmarking
framework for blockchain-based IoT healthcare Industry 4.0 systems,’’
IEEE Trans. Ind. Informat., vol. 18, no. 9, pp. 6415–6423, Sep. 2022, doi:
10.1109/TII.2022.3143619.

54614 VOLUME 11, 2023

http://dx.doi.org/10.1109/TIFS.2022.3152405
http://dx.doi.org/10.1109/JIOT.2022.3161192
http://dx.doi.org/10.1109/TVT.2022.3176755
http://dx.doi.org/10.1109/JIOT.2022.3154039
http://dx.doi.org/10.1145/3546069
http://dx.doi.org/10.1109/SP46214.2022.9833734
http://dx.doi.org/10.1109/TII.2022.3143619

X. Zou, P. Zeng: New Digital Signature Primitive and Its Application in Blockchain

[8] M. K. Hasan, M. D. Akhtaruzzaman, S. R. Kabir, T. R. Gadekallu,
S. Islam, P. Magalingam, R. Hassan, M. Alazab, and M. A. Alazab,
‘‘Evolution of industry and blockchain era: Monitoring price hike and
corruption using BIoT for smart government and Industry 4.0,’’ IEEE
Trans. Ind. Informat., vol. 18, no. 12, pp. 9153–9161, Dec. 2022, doi:
10.1109/TII.2022.3164066.

[9] S. Dziembowski, S. Faust, and K. Hostáková, ‘‘General state channel net-
works,’’ in Proc. ACM SIGSACConf. Comput. Commun. Secur., Oct. 2018,
pp. 949–966, doi: 10.1145/3243734.3243856.

[10] D. Boneh, B. Lynn, and H. Shacham, ‘‘Short signatures from theWeil pair-
ing,’’ in Proc. 7th Int. Conf. Theory Appl. Cryptol. Inf. Secur., Dec. 2001,
pp. 514–532, doi: 10.1007/3-540-45682-1_30.

[11] X. Boyen and B. Waters, ‘‘Compact group signatures without ran-
dom oracles,’’ in Proc. 25th Annu. Int. Conf. Theory Appl. Cryp-
tograph. Techn., St. Petersburg, Russia, May 2006, pp. 427–444, doi:
10.1007/11761679_26.

[12] W. Diffie and M. Hellman, ‘‘New directions in cryptography,’’ IEEE
Trans. Inf. Theory, vol. IT-22, no. 6, pp. 644–654, Nov. 1976, doi:
10.1109/TIT.1976.1055638.

[13] M. Bellare and S. K. Miner, ‘‘A forward-secure digital signature scheme,’’
in Proc. 19th Annu. Int. Cryptol. Conf., Santa Barbara, CA, USA,
Aug. 1999, pp. 431–448, doi: 10.1007/3-540-48405-1_28.

[14] H. Jingxin, ‘‘A new forward-secure digital signature scheme,’’ in Proc. Int.
Workshop Anti-Counterfeiting, Secur. Identificat. (ASID), Kyoto, Japan,
Apr. 2007, pp. 116–129, doi: 10.1109/iwasid.2007.373738.

[15] W. Tzeng and Z. Tzeng, ‘‘Robust forward-secure signature schemes with
proactive security,’’ in Proc. 4th Int. Workshop Pract. Theory Public Key
Cryptography, Cheju Island, (South) Korea, Feb. 2001, pp. 264–276, doi:
10.1007/3-540-44586-2_19.

[16] M. Abdalla, S. K. Miner, and C. Namprempre, ‘‘Forward-secure thresh-
old signature schemes,’’ in Proc. Cryptographer’s Track RSA Conf.,
San Francisco, CA, USA, Apr. 2001, pp. 441–456, doi: 10.1007/3-540-
45353-9_32.

[17] G. Itkis and L. Reyzin, ‘‘Forward-secure signatures with optimal signing
and verifying,’’ in Proc. 21st Annu. Int. Cryptol. Conf., Santa Barbara, CA,
USA, 2001, pp. 332–354, doi: 10.1007/3-540-44647-8_20.

[18] T. Malkin, D. Micciancio, and S. K. Miner, ‘‘Efficient generic forward-
secure signatures with an unbounded number of time periods,’’ in Proc. Int.
Conf. Theory Appl. Cryptograph. Techn., Amsterdam, The Netherlands,
Apr. 2002, pp. 400–417, doi: 10.1007/3-540-46035-7_27.

[19] X. Boyen, H. Shacham, E. Shen, and B. Waters, ‘‘Forward-secure sig-
natures with untrusted update,’’ in Proc. 13th ACM Conf. Comput.
Commun. Secur., Alexandria, VA, USA, Nov. 2006, pp. 191–200, doi:
10.1145/1180405.1180430.

[20] B. Libert, J.-J. Quisquater, and M. Yung, ‘‘Forward-secure signatures in
untrusted update environments: Efficient and generic constructions,’’ in
Proc. 14th ACM Conf. Comput. Commun. Secur., Alexandria, VA, USA,
Oct. 2007, pp. 266–275, doi: 10.1145/1315245.1315279.

[21] M. Abdalla, F. B. Hamouda, and D. Pointcheval, ‘‘Tighter reductions
for forward-secure signature schemes,’’ in Proc. 16th Int. Conf. Pract.
Theory Public-Key Cryptography, Nara, Japan, Feb. 2013, pp. 292–311,
doi: 10.1007/978-3-642-36362-7_19.

[22] M. D. Green and I. Miers, ‘‘Forward secure asynchronous messaging from
puncturable encryption,’’ in Proc. IEEE Symp. Secur. Privacy, San Jose,
CA, USA, May 2015, pp. 305–320, doi: 10.1109/SP.2015.26.

[23] P. D. MacKenzie, M. K. Reiter, and K. Yang, ‘‘Alternatives to
non-malleability: Definitions, constructions, and applications (extended
abstract),’’ inProc. 1st Theory CryptographyConf., Cambridge,MA,USA,
Feb. 2004, pp. 171–190, doi: 10.1007/978-3-540-24638-1_10.

[24] J. Wei, X. Chen, J. Wang, W. Susilo, and I. You, ‘‘Towards secure asyn-
chronous messaging with forward secrecy and mutual authentication,’’ Inf.
Sci., vol. 626, pp. 114–132, May 2023, doi: 10.1016/j.ins.2023.01.052.

[25] S. Nuta, J. C. N. Schuldt, and T. Nishide, ‘‘PoS blockchain-based
forward-secure public key encryption with immutable keys and post-
compromise security guarantees,’’ IEICE Trans. Fundamentals Electron.,
Commun. Comput. Sci., vol. 106, no. 3, pp. 212–227, 2023, doi: 10.1587/
transfun.2022cip0016.

[26] Y. Wang, P. Wei, M. Miao, and X. Zhang, ‘‘Verifiable dynamic search over
encrypted data in cloud-assisted intelligent systems,’’ Int. J. Intell. Syst.,
vol. 37, no. 12, pp. 11830–11852, Dec. 2022, doi: 10.1002/int.23065.

[27] S.-F. Sun, X. Yuan, J. K. Liu, R. Steinfeld, A. Sakzad, V. Vo, and
S. Nepal, ‘‘Practical backward-secure searchable encryption from sym-
metric puncturable encryption,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Toronto, ON, Canada, Oct. 2018, pp. 763–780, doi:
10.1145/3243734.3243782.

[28] R. Canetti, S. Raghuraman, S. Richelson, andV.Vaikuntanathan, ‘‘Chosen-
ciphertext secure fully homomorphic encryption,’’ in Proc. 20th Int. Conf.
Pract. Theory Public-Key Cryptogr. (PKC), Amsterdam, The Netherlands,
Mar. 2017, pp. 213–240, doi: 10.1007/978-3-662-54388-7_8.

[29] F. Gunther, B. Hale, T. Jager, and S. Lauer, ‘‘0-RTT key exchange with full
forward secrecy,’’ inProc. 36th Annu. Int. Conf. Theory Appl. Cryptograph.
Techn., Paris, France, Apr. 2017, pp. 519–548, doi: 10.1007/978-3-319-
56617-7_18.

[30] D. Derler, T. Jager, D. Slamanig, and C. Striecks, ‘‘Bloom filter encryption
and applications to efficient forward-secret 0-RTT key exchange,’’ in Proc.
37th Annu. Int. Conf. Theory Appl. Cryptograph. Techn., Tel Aviv, Israel,
Apr. 2018, pp. 425–455, doi: 10.1007/978-3-319-78372-7_14.

[31] R. Bost, B. Minaud, and O. Ohrimenko, ‘‘Forward and backward pri-
vate searchable encryption from constrained cryptographic primitives,’’ in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Dallas, TX, USA,
Oct. 2017, pp. 1465–1482, doi: 10.1145/3133956.3133980.

[32] C. Wu, J. Xiong, H. Xiong, Y. Zhao, and W. Yi, ‘‘A review on
recent progress of smart contract in blockchain,’’ IEEE Access, vol. 10,
pp. 50839–50863, 2022, doi: 10.1109/ACCESS.2022.3174052.

[33] T. Górski, ‘‘Reconfigurable smart contracts for renewable energy exchange
with re-use of verification rules,’’ Appl. Sci., vol. 12, no. 11, p. 5339,
May 2022, doi: 10.3390/app12115339.

[34] W. Xiong and L. Xiong, ‘‘Data trading certification based on consortium
blockchain and smart contracts,’’ IEEE Access, vol. 9, pp. 3482–3496,
2021, doi: 10.1109/ACCESS.2020.3047398.

[35] P. Santamaría, L. Tobarra, R. Pastor-Vargas, andA. Robles-Gómez, ‘‘Smart
contracts for managing the chain-of-custody of digital evidence: A practi-
cal case of study,’’ Smart Cities, vol. 6, no. 2, pp. 709–727, Feb. 2023, doi:
10.3390/smartcities6020034.

[36] S. Goldwasser, S. Micali, and R. L. Rivest, ‘‘A digital signature scheme
secure against adaptive chosen-message attacks,’’ SIAM J. Comput.,
vol. 17, no. 2, pp. 281–308, Apr. 1988, doi: 10.1137/0217017.

XIANG ZOU received the Ph.D. degree in com-
puter science and technology from the Univer-
sity of Science and Technology of China, Anhui,
China, in 2004. He is currently a Research Profes-
sor with the Third Research Institute of the Min-
istry of Public Security. His current research inter-
ests include network information security, applied
cryptography, and personal identity information
protection.

PENG ZENG (Member, IEEE) received the Ph.D.
degree in computer science and technology from
Shanghai Jiao Tong University, Shanghai, China,
in 2009. He is currently an Associate Professor
with East China Normal University, Shanghai. His
current research interests include applied cryptog-
raphy, network information security, and coding
theory.

VOLUME 11, 2023 54615

http://dx.doi.org/10.1109/TII.2022.3164066
http://dx.doi.org/10.1145/3243734.3243856
http://dx.doi.org/10.1007/3-540-45682-1_30
http://dx.doi.org/10.1007/11761679_26
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1007/3-540-48405-1_28
http://dx.doi.org/10.1109/iwasid.2007.373738
http://dx.doi.org/10.1007/3-540-44586-2_19
http://dx.doi.org/10.1007/3-540-45353-9_32
http://dx.doi.org/10.1007/3-540-45353-9_32
http://dx.doi.org/10.1007/3-540-44647-8_20
http://dx.doi.org/10.1007/3-540-46035-7_27
http://dx.doi.org/10.1145/1180405.1180430
http://dx.doi.org/10.1145/1315245.1315279
http://dx.doi.org/10.1007/978-3-642-36362-7_19
http://dx.doi.org/10.1109/SP.2015.26
http://dx.doi.org/10.1007/978-3-540-24638-1_10
http://dx.doi.org/10.1016/j.ins.2023.01.052
http://dx.doi.org/10.1587/transfun.2022cip0016
http://dx.doi.org/10.1587/transfun.2022cip0016
http://dx.doi.org/10.1002/int.23065
http://dx.doi.org/10.1145/3243734.3243782
http://dx.doi.org/10.1007/978-3-662-54388-7_8
http://dx.doi.org/10.1007/978-3-319-56617-7_18
http://dx.doi.org/10.1007/978-3-319-56617-7_18
http://dx.doi.org/10.1007/978-3-319-78372-7_14
http://dx.doi.org/10.1145/3133956.3133980
http://dx.doi.org/10.1109/ACCESS.2022.3174052
http://dx.doi.org/10.3390/app12115339
http://dx.doi.org/10.1109/ACCESS.2020.3047398
http://dx.doi.org/10.3390/smartcities6020034
http://dx.doi.org/10.1137/0217017

