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ABSTRACT High-quality environmental perceptions are crucial for self-driving cars. Integrating multiple
sensors is the predominant research direction for enhancing the accuracy and resilience of autonomous
driving systems. Millimeter-wave radar has recently gained attention from the academic community owing
to its unique physical properties that complement other sensing modalities, such as vision. Unlike cameras
and LIDAR, millimeter-wave radar is not affected by light or weather conditions, has a high penetration
capability, and can operate day and night, making it an ideal sensor for object tracking and identification.
However, the longer wavelengths of millimeter-wave signals present challenges, including sparse point
clouds and susceptibility to multipath effects, which limit their sensing accuracies. To enhance the object
recognition capability of millimeter-wave radar, we propose a GAN-based point cloud enhancement method
that converts sparse point clouds into RF images with richer semantic information, ultimately improving
the accuracy of tasks such as object detection and semantic segmentation. We evaluated our method on the
CARRADA and nuScenes datasets, and the experimental results demonstrate that our approach improves the
object classification accuracy by 11.35% and semantic segmentation by 4.88% compared to current state-
of-the-art methods.

INDEX TERMS Automotive radar, point clouds, GAN, object recognition.

I. INTRODUCTION
Advanced driving assistance systems (ADAS) rely on
onboard sensors to acquire environmental data and gener-
ate assisted decisions. Optical cameras and LIDAR sensors
are commonly used for scene recognition [1], [17]. But
optical cameras may suffer from darkness, glare, rain, and
fog, while LIDAR sensors cannot penetrate small particu-
late matter, leading to degraded accuracy in adverse weather
conditions. In contrast, millimeter-wave radar has a larger
wavelength and greater signal penetration, making it highly

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhongyi Guo .

robust in harsh environments, unaffected by light, and capable
of detecting obscured objects. Therefore, millimeter-wave
radar can operate in all weather conditions and offer better
detection capability than optical cameras and LIDAR sensors.

Conventional millimeter-wave radars use two types of
data representation: radio frequency (RF) images and point
clouds. To generate RF images, the raw radar signal
undergoes a series of Fast Fourier Transforms (FFTs),
and point clouds are derived from these images using
peak detection algorithms such as Constant Virtual Alert
(CFAR) [6]. A millimeter-wave radar point cloud con-
sists of two-dimensional spatial coordinates (x, y) and the
Doppler velocity in the third dimension. While LiDAR and
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FIGURE 1. Overview of our RF-GAN approach to semantic segmentation of radar point clouds. The RF image corresponding to the radar point cloud is
generated by fitting the GAN network, and then the features of each RF image are extracted by different encoders for feature fusion. Finally, the result is
output through the CNN decoder (the background is purple, the cyclist is yellow, and the car is green).

millimeter-wave radar point clouds share a similar format, the
latter tends to be sparser. For instance, a vehicle may have less
than 10 reflection points, as opposed to the 200-300 points
typically generated by LiDAR. Consequently, applying algo-
rithms such as PointNet [19], Voxelnet [31], and PointPil-
lars [34], which work well with dense LiDAR point clouds,
to millimeter-wave radar solutions presents challenges. For
instance, PointNet can accurately capture the local structure
and geometric shape of the vehicle from the dense point
clouds collected by LiDAR and make judgments accordingly.
However, the point cloud data collected by millimeter-wave
radar only contains a corner of the vehicle, and other positions
are unknown. Therefore, PointNet cannot accurately infer the
shape and category of the vehicle from sparse point clouds.
Moreover, due to the influence of multipath effects, there
are many noise points in the point clouds of millimeter-wave
radar, which results in many false positives in the prediction
results of PointNet. Researchers have noted that RF images
from automotive radar provide richer information for object
detection and semantic segmentation than point clouds [2],
[8], [9]. However, RF images contain significant noise, which
can increase neural network complexity and slow down pro-
cessing speed. Furthermore, RF image acquisition and preser-
vation require specialized equipment. Conversely, radar point
clouds offer benefits such as simpler data acquisition, lower
noise, and faster processing due to peak detection algorithms
like CFAR. As a result, large-scale millimeter-wave radar
datasets, such as the nuScenes dataset [16], the Radar Robot
Car dataset [3], and Astyx [4], predominantly contain point
cloud data.

We propose a new method called RF-GAN to enhance the
accuracy of existing point cloud datasets for tasks such as
object recognition and semantic segmentation. RF-GAN is
based on the relationship between radar RF images and point
clouds. With RF-GAN, we convert sparse point clouds into

RF images with low noise and richer semantic information,
thus increasing the amount of information available. These
RF images address the issue of sparse and noisy radar point
clouds and are then processed by an image-based neural
network to improve the accuracy of tasks such as object
detection and semantic segmentation. The RF-GAN com-
prises two modules: a point cloud encoding module and an
RF image generation network. Fig.1 provides an overview of
our RF-GAN approach to the semantic segmentation of radar
point clouds.

This paper presents the following main contributions:

• Design of a novel millimeter-wave radar point cloud
enhancement method called RF-GAN that significantly
improves the accuracy of point clouds for tasks such as
object recognition and semantic segmentation.

• Proposal of a data augmentation method suitable for
radar point clouds to prevent overfitting during the train-
ing phase.

• Validation of the proposed RF-GAN model to work
robustly in various driving environments, including
curbside scenarios and on-road scenarios.

II. RELATED WORK
A. POINT CLOUD-BASED OBJECT DETECTION
In recent years, automotive radar (also known as single-chip
millimeter-wave radar) has been widely used in autonomous
driving, robotics, and other fields because of its robustness
and signal penetration capability. Initially, Schumann et al.
[21] used a random forest classifier to classify dynamic
objects, while Prez et al. [27] utilized CNN neural net-
works to classify objects on the road, achieving good accu-
racy and real-time processing. However, their methods only
considered single-frame data, neglecting the significance
of temporal information. In dynamic scenarios, such as
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interactions between vehicles and pedestrians, utilizing tem-
poral information can help distinguish objects more easily.
To accomplish tasks such as object detection and seman-
tic segmentation, some researchers have borrowed networks
from LIDAR, optimized them, and input millimeter wave
radar point clouds into them [11], [26]. Danzer et al. [33]
proposed a 2D vehicle detection method based on PointNet
architecture using sparse radar point clouds, which showed
promising results in detecting and localizing vehicles in chal-
lenging scenarios with varying lighting conditions. However,
this approach may have limited generalizability to objects
other than cars and may struggle to detect objects with irregu-
lar shapes or partial occlusions in sparse point clouds. Despite
efforts to overcome hardware limitations, such as the lack of
height information in its point cloud, it is still difficult to accu-
rately infer the 3D position of an object using single radar sen-
sors alone. Among the researchers trying to overcome these
difficulties, Bansal et al. [18] used dual radars to increase
the number of point clouds and accomplished 3D bounding
box prediction of the vehicle. However, the manually set
thresholds in this algorithmmay result in missing many small
objects, thus further optimization is required to improve its
accuracy. There has also been some work using the fusion
of millimeter-wave radar point clouds and vision to increase
the accuracy and robustness of object detection [24]. Refer-
ence [10] proposed a multimodal sensor fusion and seman-
tic segmentation-based approach to stabilize and accurately
detect the 3D position of objects. However, in this approach,
the millimeter-wave radar serves as an auxiliary role for
distance and speed measurement, which weakens its superior
object detection and tracking capabilities. Reference [28]
proposes a multi-sensor fusion algorithm for object detection
and recognition that fully exploits the strengths of different
sensors. By integrating a camera and millimeter-wave radar
at the decision-making level, the algorithm enhances the
accuracy and robustness of object detection and recognition.
However, it is sensitive to factors such as camera accuracy and
noise, indicating that further optimization and improvement
are needed.

Although information fusion from multiple sensors can
improve detection accuracy, it is important to ensure the
good performance of individual sensors to maintain robust-
ness in adverse weather conditions or lighting. Millimeter-
wave radar can provide high-resolution object information
and detect objects that are not visible to other sensors or
have low reflectivity, thereby improving the accuracy of the
entire information fusion system. Additionally, millimeter-
wave radar is not affected by adverse weather conditions,
which enhances the robustness of the system.

B. RF IMAGES-BASED OBJECT DETECTION
After researchers identified the sparsity problem of point
clouds, they turned to the use of millimeter-wave radar raw
RF images for object detection and other related work. Ref-
erence [7] illustrates a solution for vehicle detection based

on the raw RF images, which operates on the range-velocity-
azimuth radar tensor, using a CNN to predict the object. Since
the raw RF images are a 3D range- azimuth -Doppler repre-
sentation, which is cumbersome to process, slicing along a
certain dimension is often used to process the raw RF images.
Major et al. [29] create 2D views by summing over each axis
of the tensor. Their multi-view representation is processed by
a single network dedicated to radar object detection. Simi-
larly, Gao et al. [8] preprocessed the RAD tensor into views.
The Autoencoder then extracts features from each view, and
these features are fused to locate objects in the range-azimuth
view.

Range-azimuth has the most intuitive view, using a polar
coordinate representation, and is often used for tasks such as
object classification, and semantic segmentation. Reference
[9] shows a real-time radar object detection network (ROD-
Net) for detecting objects from radar data in range-azimuth
image sequence format. And for the range-Doppler repre-
sentation. Recent engineers have used Doppler spectrograms
for vehicle classification [22] and range-angel views for
object detection [13]. These studies show the direct use of
raw RF images, which exhibit higher performance in object
detection and semantic segmentation than the use of point
clouds.

C. RADAR DATA SETS
The nuScens dataset [16] is the first large-scale dataset to
provide millimeter-wave radar data as well as camera data,
however, the radar dataset in it contains only a few dozen
unannotated points per frame. the Oxford RobotCar dataset
uses 360◦ scanning radar. However, as with conventional
radar, it has limited angular resolution and does not provide
Doppler information. Radarscens [20] uses a single cam-
era and high-resolution radar to capture radar point clouds
and visual images of multiple real driving scenes. With the
intensive research on raw RF images for millimeter-wave
radar, most of the newly released datasets contain raw RF
images. Rebut et al. [23] have recently released datasets
named RADIal includes raw ADC sampling and can be rep-
resented as a range-azimuth-Doppler tensor, range-azimuth,
and range-Doppler views or point clouds. The CRUW [9]
dataset uses radar data in RF image format for road vehicle
and pedestrian detection.

The CARRADA dataset [15] uses a camera and car radar
to record data from 30 sequences of multiple moving objects
in a variety of scenarios. They use a 77 GHz automotive
radar with a detection range of up to 50 m, mounted on
the front of the vehicle, and each frame of point cloud data
is time-stamped to synchronize the data from the camera
and the radar. The automotive radar not only provides data
on the position, velocity, time, and reflected intensity of
the point cloud, but also three-dimensional range-azimuth-
Doppler data. This is then annotated using the manual, which
is the only publicly available dataset that provides semantic
segmentation annotations and bounding box annotations in a
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dense, sparse format for both RA, RD and AD views. The
data used in our work is derived from this dataset.

In summary, althoughmany scholars havemade significant
progress in radar point cloud target detection, the sparsity
of point cloud remains one of the biggest bottlenecks in its
sensing field. Inspired by the use of Conditional GANs by Lu
et al. [25] and others to accomplish indoor map reconstruc-
tion, we utilized GANs to deal with radar point clouds. Unlike
indoor scenarios, outdoor environments pose additional chal-
lenges such as increased complexity and point cloud sparsity.
Our proposed method, RF-GAN, considers these challenges
and provides a solution based on deep GANs.

FIGURE 2. Radar signal processing flow.

III. BASIC THEORY
Millimeter-wave radar technology is capable of achieving
precise detection capabilities due to its use of a signal with
a wavelength of only a few millimeters. Specifically, radar
systems operating at frequencies between 76 and 81 GHz
can detect movements as small as a fraction of a millimeter.
One of the commonly used millimeter-wave technologies
is frequency-modulated continuous wave (FMCW), which
measures the distance, direction, and speed of an object using
a continuous FM signal.

To achieve this, a synthesizer creates a linear FM pulse
that is sent out by the transmitter (TX) antenna. The pulse
bounces off the object and generates a reflected linear FM
pulse that is received by the receiver (RX) antenna. The
mixer combines these two signals to produce an intermediate
frequency (IF) signal. In a radar system,multiple transmit and
receive antennas are typically used, resulting in multiple IF
signals that contain information about the object’s distance,
speed, and direction. The IF signal is then sampled by an
ADC and processed by a 3D-FFT algorithm, as illustrated in
Fig. 2. The 3D-FFT algorithm utilizes three separate Discrete
Fast Fourier Transforms (DFFT) to calculate the distance,
Doppler velocity, and azimuth spectra of the object. The
angular FFT is performed at the receiver for each cell of the
range-velocity spectrum, which is the output of the veloc-
ity FFT. In traditional FMCW radars, obtaining the range-
Doppler velocity-azimuth tensor is typically computationally
complex. Therefore, the Constant False Alarm Rate (CFAR)
algorithm is often used to detect objects in the range-Doppler
domain, and a sparse point cloud is obtained by beamforming.

However, according to [5], the CFAR method has two
major issues. Firstly, it may fail to detect the real object, caus-
ing a loss of the original RF image information. Secondly,
objects with high reflection intensity, caused by multipath
reflections or ground reflections, may not be filtered out,
resulting in the presence of ‘‘ghost points’’ in the point cloud.

IV. METHOD
To extract more useful information from data containing only
point clouds, we propose a new method for generating RF
images for automotive radar. Our method consists of two
modules the first is a point cloud encoding module and the
second is an RF images generation network.

A. THE CHALLENGE: NOISE AND SPARSITY ISSUES
Before delving into the technical aspects, we will first
explore the difficulties encountered while converting
CFAR-processed point clouds into RF images.

Automotive radar is subject to multipath indoors and out-
doors due to beam extension, diffraction, and reflection from
surrounding objects so that the receiver antenna receives
reflected wave signals from multiple paths, which is the main
source of noise and ’ghost spots’ in the automotive radar point
cloud. As conventional CFAR algorithms rely solely on the
intensity of the reflections from the range-Doppler medium
cell. However, ground reflections and multipath effects can
also cause some high-intensity cells in the range-Doppler to
be detected, resulting in many additional noise points in the
point cloud. During the process of converting single-frame
point clouds into corresponding RF images using the GAN
network, we observed that the noise points in the point cloud
remained unfiltered and appeared as distinct shapes in the
resulting RF images. This phenomenon has the potential to
significantly impact the accuracy of our subsequent object
detection efforts.

Automotive radar point clouds also have a very serious
sparsity problem due to the specular reflection effects of auto-
motive signals and the hardware limitations of automotive
radars. Due to the highly specular reflection of automotive
signals, only a small fraction of the reflected signal on the
surface of the obstacle propagates to the millimeter-wave
receiving antenna, resulting in a limited portion of the point
cloud representing the obstacle. Furthermore, hardware costs
can restrict the ability of automotive radar to differentiate
between objects, exacerbating the sparsity issue in the result-
ing point cloud. Furthermore, to reduce bandwidth and filter
out noise, the final point cloud is obtained by processing the
RF image using the CFAR algorithm, which further reduces
the point cloud density. Converting the sparse point cloud into
a more feature-rich RF image poses an even greater challenge
to our network.

B. RF-GAN NETWORKS
1) POINT CLOUD POSITION CODING
The point cloud data is inherently disordered and irregularly
sampled in 3D space, making it challenging to extract useful
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information from the sparse and unstructured point cloud
data, which is further exacerbated by the ambiguous ordering
problem caused by noise. The resolution in pitch angle is
negligible due to the limited number of antennas in automo-
tive radar. To address these challenges, we encode the point
cloud into a 2D image by setting the z-axis height to zero and
using (1).

angel =
arctan( xy )

1α

range =

√
x2 + y2

1β
(1)

where (x, y) are the coordinates of the point cloud and α

is the angle of arrival of the point cloud, β is the distance
of the point cloud, 1α is the angular resolution, and 1β is
the distance resolution, these two parameters depend on the
hardware of the automotive radar. (range, angel) is the posi-
tion of the point cloud projected onto the 2D map. To match
the height and width of the range-azimuth images stored in
the CARRADA dataset, we set the size of the (range, angel)
matrix to 256× 256, and the values in the matrix correspond-
ing to that point are expressed using the reflection intensity
of that point. After projection, we normalized the reflec-
tion intensities in it to between [0,1] to facilitate subsequent
convergence of the network. As the range-Doppler images
contain rich information about the motion of the reflected
object, we also project the point cloud into the range-Doppler
images, where doppler = d/1d , d is the Doppler velocity,
and 1d is the velocity resolution. To ensure that the dataset
maintains consistency concerning the same range-Doppler
images, we have set the size of thematrix representing (range,
Doppler) to 256× 64. The value of each point in the matrix is
represented using the normalized reflection intensity of that
point. It is worth noting that we can obtain the third view (AD)
from the range-azimuth and range-Doppler images. There-
fore, there is no need to encode the azimuth-Doppler images.

2) DATA AUGMENTATION
Data augmentation techniques can significantly improve the
size and quality of training datasets, leading to better deep
learning models. For LiDAR point clouds, common process-
ing, and enhancement methods include point cloud normal-
ization, random disruption, translation, rotation, scaling, and
discarding. However, it’s important to note that not all of
these methods are directly applicable to radar point clouds.
The velocity measured by radar must remain correlated with
the angle of the observed object, so certain enhancement
techniques, such as point cloud translation, may not be
suitable for radar point cloud imaging. Therefore, in radar
point cloud imaging, we need to focus on data enhancement
operations that are consistent with the unique characteristics
of millimeter wave radar imaging. In particular, we should
consider three data enhancement operations: superposition,
global scaling, and point cloud normalization. These methods
can help improve the quality and quantity of the training

dataset, leading to more accurate and reliable deep-learning
models.

Millimeter-wave radar data is typically sparse, with an
average of only 30-40 points per frame and a significant num-
ber of interference points. To address this issue, we employ
a multi-frame superposition method to obtain denser point
clouds. Specifically, we accumulate the multi-frame point
cloud from the previous scan into the coordinate system of the
current scan each time a new frame is acquired. This method
enables us to obtain dense radar point clouds, which in turn
improve the performance of object detectors.

We are scaling every point p(x, y) in every direction by
a scalar k drawn from a uniform distribution U (1 − t, 1),
where t ∈ {0.05, 0.1, 0.25} such that an augmented point
p∗ has the form p∗(k · x, k · y). The scaled point cloud is
then projected into the RF image. At the same time, we scale
the corresponding RF image labels to the same multiple for
training. Both increase the amount of data for training and
improve the generalization ability of the model.

FIGURE 3. Process for generating RA Image. The input of the model is
two-dimensional point clouds, and the corresponding RA Image is
obtained after location coding and data enhancement.

3) RF-GAN NETWORK ARCHITECTURE
The advancement in GANs has led to a significant improve-
ment in the photorealism of synthesized images in recent
years, GANs can now generate high-resolution images of
human faces, bodies, animals, cars, and other object classes
that are almost indistinguishable from real photographs [32].
GANs work by simultaneously training two neural networks,
a generator G and a discriminator D. The generator G takes a
noise vector as input and is trained to generate data samples,
while the discriminator D is trained to distinguish between
real samples and those generated from G. The feedback from
the discriminator is then used to improve the generator’s
performance, leading to better samples, and more effective
counteractions against the discriminator. Both networks com-
pete against each other, leading to an iterative process of
improving their respective tasks. In our study, we utilize a
network of GANs to generate dense RF images from sparse
point cloud inputs, as illustrated in Fig. 3. By leveraging the
power of GANs, we can achieve more realistic and accurate
RF images, which can enhance the performance of our object
detection system.
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a: GENERATOR NETWORK G
The generator G in our study, as shown in Fig. 4, is structured
as an encoder-decoder network. Since the input RF images
are stacked along the time dimension, we start by processing
the features in the time dimension using a 1 × 1 convolu-
tion. Next, we extract the features of the RF images through
multiple convolutional layers with a kernel size of 3× 3 and
apply batch normalization and activation layers. To compress
features between every two convolutional layers, we use a
pooling layer with a kernel size of 2 × 2 and a sliding of 1.
In the decoder stage, we use a transposed convolution with a
kernel size of 2×2 and a sliding of 1 to gradually convert the
feature map to the size of the input RF image. The activation
function used in the network is RELU.

FIGURE 4. Details of Generator network G, The notation (1,1,1,0,64)
represents the hyper-parameters of a convolutional layer, with a kernel
size of 1 × 1, a stride of 1, a padding of 0, and 64 output channels.

b: DISCRIMINATOR NETWORK D
The discriminator network D is designed similarly to the
encoder of the generator G network, with a series of con-
volutional layers using a 4 × 4 kernel size to extract deep
features from the input. Through the GAN loss function, the
discriminator D network learns to distinguish between factual
label matrices and predictive label matrices, providing crucial
feedback to the generator G network.

c: LOSS FUNCTION
Given an input millimeter-wave shot range-azimuth RF
images s transformed from a sparse point cloud, we useGANs
to model the distribution of the real RF images d. The loss
function of GANs can be expressed as (2)

LGAN (G,D) = E(s,d)[logD(s, d)]

+Es[log(1− D(s,G(s)))] (2)

where D is the discriminator model and G is the generator
model. From the loss function of GAN, we can see that
the generator G of GAN wants the output data distribution
to be closer to the distribution of the real data, while the
discriminator D of GAN needs to make a judgment between
the real data and the data output by the generator to find the
real data and the data generated by G.

FIGURE 5. (a) RA image (original) with a lot of noise, including ground
reflections, interference caused by snow piles (b) RA image (label) with
only the reflected part of the object being detected retained (c) Camera
image of the current scene.

4) TRAINING LABEL GENERATION
For supervised learning of GANs, it is crucial to generate
accurate real labels. However, due to the presence of noise
caused by the multipath effect in RF images captured by
automotive radars, using the original RA images directly as
training labels is not feasible, as shown in Fig. 5. In the
presence of snow piles, the radar signals are reflected between
the snow piles and the objects, leading to more interference
and resulting in the detection of false points in the radar
image. Conversely, in the absence of snow piles, the radar
signals mainly interact with the objects of interest, resulting
in reduced interference from other objects. To overcome this,
we adopt a semi-automatic annotationmethod available in the
CARRADA dataset. This method generates a bounding box
for each object in the RA, AD, and RD images, and only the
relevant part of the bounding box is retained. The resulting
transformed RA and RD images are then utilized as training
labels. We provide a detailed implementation of RF-GAN in
Algorithm 1.

V. EXPERIMENT
A. DATASET AND ASSESSMENT INDICATORS
In this section, we perform an experimental evaluation of our
model. We begin by describing the dataset we used and the
evaluation metrics. Finally, we give details of the experiments
and provide a qualitative and quantitative analysis of the
results.

1) DATASET
The CARRADA dataset is a valuable resource as it provides
synchronized camera and automotive radar recordings for
30 different sequences, each containing one or two mov-
ing objects. This publicly available dataset includes multiple
annotations for RD, AD, and RA images, as well as point
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Algorithm 1 RF-GAN Algorithm 1mplementation
Requirements: learning rate α, batch size b, number of
iterations of discriminator in each generator iteration n,
number of training epochs
Requirements: initial parameters δd0 of the discrimina-
tor network D, initial parameters δg0 of the generator
network G

Input: point cloud P(x, y, velocity, energy)
Output: RF images Gimage
1: z = Encoding(P) // Encoding point cloud
2: for epochs do
3: //Train the discriminator network
4: for t=0,,,,,n do
5: Sample {l(i)}

m
i=1 ∼ Dlabel a batch from the label

6: Sample {z(i)}
m
i=1 ∼ GZ a batch from the data z

7: ∇δd ←
∂

∂δd
[ 1m

m∑
i=1

LossD(l(i), z(i), δd , δg)]

8: //Update discriminator network parameters
9: δd ← δd − α · Optimizer(∇δd , δd )
10: end for
11: // Train the generator network
12: Sample {z(i)(i)}

m
i=1 ∼ GZ a batch from the data z

13: ∇δg←
∂

∂δg
[ 1m

m∑
i=1

LossG(z(i), δd , δg)]

14: //Update the generator network parameters
15: δg← δg − α · Optimizer(∇δg, δg)
16: end for
17: Gimage = G(z)

cloud coordinates. The objects in the dataset are classified
into three categories: pedestrians, cyclists, cars, and others
in the background. The RA images in the annotation set
have a size of 256 × 256, while the RD and AD images
have a size of 256 × 64. To improve the quality of the data
for training, we apply data augmentation techniques such as
superposition and global scaling to the radar point clouds.
The augmented data is saved locally and only used during
training to prevent overfitting. The distribution of the data for
the training, augmented, and test sets are shown in Table 1.

TABLE 1. Distribution for training and test.

2) EVALUATION METRIC
The GAN network used in this study transforms the input
point cloud into the corresponding RA and RD images.
To assess the quality and diversity of the generated RA and
RD images, we use the Fréchet Inception Distance (FID),
a classical performance metric that measures the distance
between the real image and the Inception feature vector of the

generated image. FID provides an integrated characterization
of the similarity between the real and generated images, and
is calculated using (3).

FID(x, g) = ||µx − µg||

+Tr(
∑

x
+

∑
g
−2

√∑
x

∑
g
) (3)

where g is the GAN network-generated image, x is the real
image, and µx is the mean of the features of the real image,
Tr is the sum of the elements on the diagonal of the matrix.∑

x and
∑

g are the covariancematrices of the feature vectors
of the real images and the generated images. The FID is more
robust to noise and gives a better evaluation of the quality of
the generated image, its score is more consistent with human
visual judgment, and the computational complexity of the
FID is relatively low.

In the image-based semantic segmentation task, we use
the joint intersection (IoU) to determine how well the detec-
tion results match the actual situation. The joint intersection
(IoU): Given the annotated test input, the specified class of
IoU is defined as the percentage |A∩B|

|A∪B| , where A is the set of
pixels predicted to originate from that class and B is the true
set of pixels at locations in the same class. This can be readily
applied to radar point clouds by (4)

IoU =
|predicted points ∩ true points|
|predicted points ∪ true points|

(4)

We use average precision (AP) and mean average preci-
sion (mAP) to evaluate the performance of object classifica-
tion as (5) and (6).

AP =
tp

tp+ fp
(5)

mAP =
1

class

∑
AP (6)

where true positive (tp) denotes the result of correct clas-
sification, false positive (fp) denotes the result of incorrect
classification, class is the number of object classes, and class
is 3 in the experiment of this paper.

B. TRAINING AND RESULTS
1) BASELINES
We used TMVA-Net [2] as our backbone network for the
object detection task and compared the experimental results
of TMVA-Net with the following methods using pure radar
point clouds: (1) object classification based on clustering and
decision trees [30]. (2) the PointNet-based object classifica-
tion method proposed by Danzer et al. [33].

2) TRAINING
Due to the different sizes of RA and RD images in the
CARRADA dataset, with RA images being 256 × 256 and
RD images being 256 × 64, we trained two separate GAN
models for each dataset. The training approach for both
models was the same, using an alternating iterative training
approach where we trained the discriminator network first
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while keeping the generator network fixed. For the discrimi-
nator network, we treated the problem as a supervised binary
classification problem and fed both sets of samples directly
into the discriminator network for training. The discriminator
was trained to accurately distinguish true samples, outputting
a value as close to 1 as possible, from fake samples, outputting
a value as close to 0 as possible. Subsequently, the generator
network was trained while keeping the discriminator network
fixed. During this phase, we used feedback from the discrim-
inator network to guide the generator network in generating
images that were as close to the true labels as possible. In the
training process using GAN loss, a total of 13427 frames of
point clouds from the CARRADAdataset were selected as the
training set, while 5401 frames were reserved for the test set.
The RMSProp optimizer [14] was used along with a batch
size of 32, a learning rate of 0.0001, a learning rate decay
of 0.9 per 10 iterations, and 600 rounds of training. Using
the pre-training model of the GAN network, we generated
RA and RD images corresponding to the 5401 frames in
the test set. We split 3544 of these images for TMVA-Net
training, while the rest were used for testing. The training
process in TMVA-Net utilized the Adam optimizer [12] and
recommended parameters (β1 = 0.9, β2 = 0.9, ε = 10−8).
The above network was built using the PyTorch framework
and implemented using the Python programming language.
We conducted all training on a single GeForce RTX 3080
(GPU) graphics card.

FIGURE 6. (a): RA image(predicted) (b): RA image (ground truth).

FIGURE 7. (a): RD image(predicted) (b): RD image (ground truth).

3) EVALUATION
In this section, we evaluate each module comprehensively,
first we assess the feasibility and accuracy of the designed
GAN network, and then compare our results with the

FIGURE 8. Camera image of the current scene.

PointNet based clustering and decision tree approach in the
object classification and semantic segmentation tasks. Fig. 6
and Fig. 7 show the results of predicting RA and RD images
using GAN networks with FID evaluation. The camera image
presented in Fig. 8 provides context to the scene and aids
in understanding the performance of the proposed method.
In Table 2, we can see the results of the object detection
task on the CARRADA-test set for both point cloud and
RAD image data. Noisy points in the radar point cloud can
lead to incorrect detection, while the sparsity of the point
cloud can result in missed detection of some real objects.
Our proposed module converts the point cloud into a RAD
image(predicted) for the object detection task and compares
it with the direct use of the point cloud. The results show that
our method achieves a mAP metric of 62.46% for the RAD
image(predicted), which is a 11.35% improvement for the
classification task and a 4.88% improvement for the semantic
segmentation task compared to the method used by Danzer
et al [33]. These results demonstrate the effectiveness and
accuracy of our proposed GAN-based approach for object
detection tasks in the autonomous driving domain.

a: QUALITATIVE RESULTS
In Fig. 9, we present the qualitative results for both meth-
ods on the CARRADA test set. Our predicted RAD image
(b) generated using the GAN network, after the TMVA-Net
output prediction, shows high accuracy in terms of object
localization and classification, as can be observed in (d).
On the other hand, the result (e) obtained from Danzer
et al. indicates that the point cloud mapping cyclists are
too sparse, resulting in the misidentification of pedestrians.
The predicted result from Decision Tree [30] directly fails to
identify cyclists. These experiments clearly demonstrate that
our method, which generates automotive radar RF images,
significantly improves the accuracy of object detection and
semantic segmentation.

To evaluate the generalizability of our method to other
automotive radar datasets containing point clouds, we con-
ducted experiments on the nuScenes dataset [16]. Our
RF-GAN network is a pre-trainedmodel that can directly pro-
cess point cloud data from the nuScenes dataset to generate
corresponding RA andRD images, which are then fed into the
TMVA-Net network to obtain prediction results. As shown
in Table 3, the accuracy of all three methods has decreased
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TABLE 2. Comparison with state-of-the-art radar-based object detection methods in the carrada dataset.

FIGURE 9. Qualitative results in the CARRADA test set. (a) Camera image of the scene, (b) RA view (predicted). (c) Prediction results
for real labels, (d) TMVA-Net prediction results (using RAD Image (predicted)) (e) Danzer et al. [33] prediction results (f) Decision Tree
[30] prediction results.

due to the more complex test scenarios and the larger number
of objects in the nuScenes dataset compared to the CAR-
RADA dataset. As the nuScenes dataset uses a more accurate
automotive radar with higher point cloud density, Danzer’s
method shows a 6% decrease in mAP for the object detection
task. RF-GAN network is a pre-trained model with a rela-
tively homogeneous training scenario using the CARRADA
dataset, and in the face of complex driving environments, our
method can further increase the point cloud information and
obtains a 7.31% improvement in mAP relative to the method
used by Danzer et al. [33].

TABLE 3. Comparison with state-of-the-art radar-based object detection
methods in the nuscens dataset.

b: TIME AND SPACE COMPLEXITY ANALYSIS
To determine the viability of our proposed autonomous driv-
ing method, we analyzed the space and time complexity of
RF-GAN, which we summarize in Table 4. Additionally,

we compared RF-GAN to two other methods. As shown in
Table 4, the decision tree-based approach has the shortest
processing time, taking only 10ms due to its reliance on a
manually crafted feature vector that does not require neu-
ral networks. In contrast, our method, which utilizes point
cloud-to-RF image conversion and TMVA-Net for classifi-
cation, takes 26ms with a total runtime of 55ms. Although
our method is 2.5 times longer than the method proposed
by Danzer et al. [33], it boasts an increased classification
accuracy of 11.35%, which we deem acceptable. Notably, all
three object detection algorithms have an inference time of
less than the sensor cycle time of 60ms, making real-time
processing feasible.

TABLE 4. Computional costs on different methods.

VI. CONCLUSION
In this paper, we proposed the RF-GAN model to address
the challenges associated with millimeter wave radar point
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clouds in localization and target detection. Our model con-
verts sparse point clouds into rich-information RF images and
achieves accurate classification of road targets. Experimental
results on multiple datasets demonstrate that our model can
effectively enhance sparse radar point clouds in different
road environments, with a 11.35% improvement in target
classification accuracy compared to traditional methods. This
improvement is due to our preprocessing approach, which
enhances the semantic information in point clouds based on
their unique characteristics. Additionally, we analyzed the
temporal and spatial complexity of the RF-GAN model and
showed that it can be applied to the field of autonomous
driving.

In future work, we will continue to study this enhancement
algorithm for radar point clouds, including the time complex-
ity and generalization of the model. Furthermore, we plan
to explore the fusion of enhanced RF images with other
sensors to achieve more accurate and stable target recognition
systems.
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