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ABSTRACT As one of the most common types of networks, transshipment networks face certain risks
in their daily operations. This risk either stems from a deliberate intervention in the process or from an
unpredictable natural effect. The owner of the network normally aims to minimize the total cost of the
transportation, while a rival or an opponent might attempt to intervene in the process and cause an increase in
the costs. Unpredictable natural setbacks, on the other hand, can also have a negative impact on the network
necessitating decision-makers to be more vigilant, especially for the worst-case consequences of network
disruptions. The problem can be designed as a bilevel mathematical model. In this study, we develop a bilevel
max-min model considering that the arcs in a transshipment network are liable to a disruption imposed by
an intervenor. We present an original model with a novel solution approach to identify vulnerabilities in the
arcs of a given transshipment network. The results reveal the most vulnerable arcs in the network, which
have the highest negative impact on transportation costs when a disruption occurs. The decision-makers can
use such results to analyze the risk in distribution networks such as electrical grids and develop associated
measures to decrease the cost and increase the flexibility of the distribution systems. The model also enables
decision makers with a methodical understanding of worst cases if the distribution network is interrupted for
some reason.

INDEX TERMS Network safety, bilevel mathematical modeling, linear programming, integer programming.

I. INTRODUCTION
In today‘s competitive and clash-likely environment, dis-
agreements quite often emanate from conflicting goals or
interests of at least two sides (players). Where there is a
conflict, there is usually an intervention by an opponent
with some certain means. It is likely that one of the two
players having a conflicting goal with the other tries to
maximize his/her own goal whereas the other attempts to
minimize it with some limited resources. The problem has
a vast area of applications, especially in network modeling
and optimization.

With many different types, networks play an important role
in our lives with increased intensity as never seen before.
We see the networkmodels in transportation, communication,
projects, electricity distribution, manufacturing, etc. Ahuja
et al. [1] give a comprehensive analysis of the networks in
terms of applications, modeling, algorithms as well as the
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fundamental theoretical aspects. The more the networks get
infiltrated into our lives, themore the scientists get involved in
their vulnerabilities and protection of them with the interdic-
tion of these models also gaining an impetus. The deliberate
intervention of an opponent in the network process may have
a huge impact on it and needs to be well analyzed by both the
interfering side and the network owner.

In general, there are two players in a network interdiction
problem, the network owner, and the opponent. The network
owner tries to run the network optimally and is the defending
side (defender). The opponent on the other hand tries to
impede the network process and is the attacking one (inter-
dictor/intervenor/attacker). With limited resources at hand,
the interdictor inflicts some negative effects on the network
arcs so that the objective of the network owner maximally
deteriorates. Both players have enough information about the
other concerning the courses of action to be selected. The
attacker is the one who usually acts first to choose his/her
strategy (decision). Then, the defender responds with his/her
own decision to optimize the network process. Each player
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tries to optimize his/her objective, which is in complete con-
flict with the other‘s, in a sequential manner. The problem can
be seen as a Stackelberg Game Von Stackelberg [34], Simaan
and Cruz [28]. Depending on who moves first, the problem is
also called an attacker-defender or defender-attacker model
as a bilevel optimization programming model. Drawing the
interest of scientists since the 1960s, the problem has been
studied in many different fields and types of networks.

Wood [37] gives an overview of the chronological emer-
gence of interdiction problems. Initial studies of the field
including Wollmer [35], Corely and David [9], Malik
et al. [22], Ball et al. [4], investigate the most vital arcs
in a network problem. Interdiction models come up usu-
ally in Min-Max or Max-Min type bilevel models and are
classified as NP-Hard from a computational complexity
point of view Ball et al. [4]. Smith and Song give vari-
ous interdiction models and algorithms including emerging
methodologies and techniques for future studies. Kleinert
et al. give a survey on mixed integer programming tech-
niques in bilevel optimization. Solution procedures usually
require using advanced linear programming approaches like
duality Wood [36], Kleinert et al. [21], Xie and Aros-
Vera [38] and mixed integer programming techniques like
decomposition Enayaty-Ahangar et al. [10], Grimm [14],
Ambrosius [3].

From a practical point of view, we see interdiction appli-
cations in various fields to handle the risk and figure out
optimal strategies in case of deliberate intervention in a
system. To mention a few examples, Salmerón et al. [27]
analyzes the security of an electric grid under a terrorist
attack, Brown et al. [6] provide a model for ballistic missile
defense, and Brown et al. [7] propose a model to defend
critical infrastructure. In another study, Brown et al. [8] study
how to delay a nuclear weapons project. Roy et al. introduce
some interdiction strategies to prevent the spread of infectious
diseases. Using the idea, a more efficient project management
approach is proposed by Kasimoglu and Akgün [18] in a
competitive environment in which a deliberate intervention
in the process is possible.

There are some studies quantitatively identifying the risk
and suggesting mitigating strategies in the networks having
potential life and environmental risks. Among those, Yin
et al. [39], Utku and Soyöz [33], and Utku and Erol [32]
propose a hazardous material (hazmat) transportation net-
work design model to decrease the risk in transportation.
Zhang et al. [40] suggest a model to determine the risk
factors of hazmat crashes on a macro level and develop
appropriate measures for improving hazmat transportation
safety. Ke and Verma [19] propose a framework to iden-
tify terminal criticality and associated mitigation strategies
in cases of random disruptions of rail intermodal termi-
nals. Sun et al. [31] develop a model to minimize the
total deprivation cost of casualties under the risk of disrup-
tions in temporary medical centers. Zhou et al. [41] pro-
vide a method for investigating vulnerabilities in airport
transportation networks facing disruptions such as Covid-19.

Insuasty-Reina et al. [16] aim at the identification and pri-
oritization of operational risks in a logistics network for
the recovery of waste cooking oil. Alsokhiry et al. [2]
apply a game theory-based method to deal with the strategy
of offenders having malware attacks in a wireless sensor
network-based transportation system.

While transportation safety is considered from a couple
of different perspectives in the aforementioned studies, it is
hardly ever possible to see in the literature the effect of a
deliberate intervention on a transshipment network, which is
especially critical in distribution systems like electric grids.
Sperstad et al. [30] describe four different aspects of the secu-
rity of an electricity distribution system, one of which is sup-
ply reliability. The reliability of supply is usually attributed to
the failures in the system components as in the studies done
by Guner and Ozdemir [12], Escalara et al. [11], Jimada and
Teh [17], Ourahou et al. [24]. The existence of an external
intervenor is not considered in the mentioned studies. How-
ever, in today’s competitive environment, distribution sys-
tems may also be influenced by the intervention of rival com-
panies and opponents. This will also enable decision-makers
to analyze the effect of a deliberate intervention on the system
as well as the worst cases when disruptions occur. Adding
a new facet to the problem we can summarise the main
contributions of our study as follows:

• For the first time, a generalized bilevel programming
model integrating external intervention to discover the
vulnerabilities of transshipment networks is presented.

• An exact solution procedure is developed with a novel
solution approach combining the duality theory and the
property of the coefficient matrix A.

• A generic model applicable in a broad area of study
including electricity distribution networks is provided.

• Worst-case outcomes in a transshipment network due to
disruptions in certain segments are uncovered.

In the remainder of the study, we first give a transshipment
network model (TNM), show that the coefficient matrix A
of the model is totally unimodular, and provide the dual
of the model. Then, considering a deliberate intervention
on our transshipment network we develop a bilevel (Max-
Min) interdiction model (Bi-TNM). Next, using duality and
total unimodularity concepts we transform our bilevel model
into an ultimate standard mixed-integer programming (MIP)
model. Finally, we apply our model in various scenarios in
which different sizes of networks and various numbers of
targeted disruptions by an intervener are contemplated.

II. A TRANSSHIPMENT NETWORK MODEL
Let G= (N, SA) be a directed graph denoting a transshipment
network where N represents the node set (stations) and SA
represents the set of existing arcs. A generic representation of
the network is given in Figure 1 assuming that the distribution
is done at two stages for the sake of simplicity. Here the
arcs indicate existing distribution routes. The requirements
at demand points must be met from existing supply points
through the transshipment stations. We assume that the
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transportation is done from one or more supply points i
through stations j and k in sequence to meet the demands at
points l.
We first give a mathematical formulation for a balanced

transshipment problem, in which total supply and total
demand are equal to each other. The indices, sets, and parame-
ters needed for modeling purposes are described and then the
transshipment model, Model TNM, is presented as a mixed
integer programming model below.

Sets and Indices
i supply points, (1, 2, . . . , I ).
j Stage 1 stations, (1, 2, . . . , J ).
k Stage 2 stations, (1, 2, . . . ,K ).
l demand points, (1, 2, . . . ,L).
SA Set of all existing arcs (lines)

{(i, j) ’s, (j, k) ’s, (k, l)’s}.

Decision Variables
xij quantity of transportation between i and j.
xjk quantity of transportation between j and k .
xkl quantity of transportation between k and l.

Parameters
Dl Demand at arrival station l.
Si The capacity of supply station i.
Cij Cost coefficient between i and j.
Cjk Cost coefficient between j and k .
Ckl Cost coefficient between k and l.

Thus, the transshipment network model that minimizes the
total distribution cost,Model TNM, is given as follows.

Min
∑

(i,j)∈SA
Cijxij +

∑
(j,k)∈SA

Cjkxjk

+

∑
(k,l)∈SA

Cklxkl (1)∑
j|(i,j)∈SA

xij = Si ∀i (2)∑
i|(i,j)∈SA

xij =

∑
k|(j,k)∈SA

xjk ∀j (3)∑
j|(j,k)∈SA

xjk =

∑
l|(k,l)∈SA

xkl ∀k (4)∑
k|(k,l)∈SA

xkl = Dl ∀l (5)

xij, x jk , xkl ≥ 0 and integers. (6)

In Model TNM, the objective function (1) minimizes the
total cost of the distribution in our network. Constraint (2)
defines supply amounts for each supply point i. Equations
(3) and (4) are balance constraints guaranteeing that what-
ever quantity of material coming to a transition station j or
k is transported to another station at the subsequent stage.
Constraint (5) specify the required quantity of transportation
needed at each demand point l. Constraint (6) is used to
identify decision variables.

The Model TNM can be equivalently stated in a more
standard way with some slight adjustments in constraints 3, 4,

and 5 as given below.

Min
∑

(i,j)∈SA
Cijxij +

∑
(j,k)∈SA

Cjkxjk +

∑
(k,l)∈SA

Cklxkl

(7)∑
j|(i,j)∈SA

xij = Si ∀i (8)∑
k|(j,k)∈SA

xjk −

∑
i|(i,j)∈SA

xij = 0 ∀j (9)∑
l|(k,l)∈SA

xkl −
∑

j|(j,k)∈SA
xjk = 0 ∀k (10)

−

∑
k|(k,l)∈SA

xkl = −Dl ∀l (11)

xij, x jk , xkl ≥ 0 and integers. (12)

A. TOTAL UNIMODULARITY OF THE COEFFICIENT MATRIX
A OF THE MODEL
Matrix A is said to be totally unimodular if every square
submatrix has determinant 0,+ 1, or−1. Thesematrices have
been investigated in relation to transportation problems by
Heller as well as to combinatorial mathematical problems see
Pulleyblank et al. [25]. There are also other ways of character-
izing a totally unimodular matrix. If a matrix A = [aij] having
entries 0,+1, or −1 has no more than two nonzero entries in
each column, and if

∑
i aij = 0 whenever column j contains

two nonzero entries, then A is totally unimodular Nemhauser
and Wolsey [23].

It can be shown that the constraint matrix A corresponding
to the constraint equations (8)-(12) is a totally unimodal
matrix. We can write the system in (8)-(12) as a matrix-
vector notation, Ax = b,where A is the constraint matrix
of the system consisting of (I + J + K + L) rows and
(IxJ) + (JxK ) + (KxL) columns; x is a column vector with
(IxJ)+(JxK )+(KxL) elements and b is a column vector with
(I + J + K + L) elements. One can partition the constraint
matrix A as given in Figure 2.

In Figure 2, A1 is a submatrix consisting of (I + J ) rows
and (IxJ ) columns; A2 is a submatrix consisting of (J + K )
rows and (JxK ) columns and A3 is a submatrix consisting of
(K + L) rows and (KxL) columns as given in Figures 2.a, 2.b
and 2.c respectively.

On the other hand, O1 in Figure 2 is a zero matrix consist-
ing of (K +L) rows and (I × J ) columns; O2 is a zero matrix
consisting of I rows and (J×K ) columns,O3 is a zero matrix
consisting of L rows and (J × K ) columns, and O4 is a zero
matrix consisting of (I + J ) rows and (K × L) columns.
Notice that the matrices A1, A2, and A3 has exactly two

nonzero entries +1 or −1 in each column, and the sum of
the entries in each column is exactly zero. Let us show these
submatrices are totally unimodular, indeed.
Proposition 1: The matrices Ok(k : 1, 2, 3, 4) and Ai(i :

1, 2, 3) in the partitioned coefficient matrix A, are totally
unimodular.

Proof: Since all entries of a zero matrix are zero, the
determinant of any submatrix of it is zero. Hence,Ok is totally
unimodular.
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FIGURE 1. Network representation of transshipment process.

Let us now prove that Ai is totally unimodular. Let B be an
n× n submatrix of A. We will show that det (B) = −1, 0, or
1 using proof-by-induction on n.

Basis Step: If n = 1, then B has a single entry. Since all
entries of Ai are −1, 0, or 1, then det(B) = −1, 0 or 1.

Hypothesis Step: Assume that every (n−1)×(n−1) square
submatrix B of A has determinant −1, 0, or 1 for any n ≥ 2.
Inductive Step: Assume B is an n×n submatrix of A. Since

all entries of Ai are −1, 0, or 1, and every column of Ai has
at most two non-zero entries of value −1 and 1, we have the
following cases regarding determinants of B:
Case 1: If B is a square submatrix with at least one zero

column, then det(B) = 0.
Case 2: Assume B has at least one column with exactly one

non-zero entry equal to 1. Assume the jth column of B has a
single entry of value 1, say the entry is in ith row. If we obtain
the submatrix C from B by deleting the ith row and jth column
of B, then by cofactor expansion we have,

det(B) = (−1)i+j det(C).

Since C is an (n − 1) × (n − 1) square submatrix of A, then
det(C) is −1, 0, or 1 by the assumption in the Hypothesis
Step. That is why, det(B) is also −1, 0, or 1.

Case 3: Assume B has at least one column with exactly one
non-zero entry equal to −1. Assume the jth column of B has
a single entry of value −1, say the entry is in ith row. If we
obtain the submatrix C from B by deleting the ith row and jth

column of B, then by cofactor expansion we have

det(B) = (−1)i+j+1 det(C).

Since C is an (n − 1) × (n − 1) square submatrix of A, then
det(C) is −1, 0, or 1 by the assumption in the Hypothesis
Step. That is why, det(B) is also −1, 0, or 1.

Case 4: Assume every column of B has at least one column
with exactly two non-zero entries−1 and 1. Since all nonzero
rows of B are distinct from each other and every column
contains exactly one −1 and 1, then the sum of all rows of
B is zero. And this means that the row space of B is linearly
dependent. Hence, det(B) = 0.

Since A is a partitioned matrix of the totally unimodular
matrices 0k and Ai, then A is a totally unimodular matrix.
Hence, we can give the following result.
Proposition 2: The coefficient matrix A of the model TNM

is totally unimodular.
This property of matrix A enables us to relax the integral-

ity constraint of the model without any loss of generality
since any optimal solution to the problem is guaranteed to
be an integer in the linearly relaxed version of the model
(Bazaraa et al. [5] (2005)). That is, the variables of the model
(xij, xjk , xkl) can be treated as linear ones instead of inte-
gers enabling us comfortably to exploit linear programming
approaches.

B. THE DUAL OF THE MODEL
Since the transshipment model can be treated as a linear
model, we can take the dual of the model and use the proper-
ties of duality. Having said that, we define the dual variables
of the model as given follows.

Dual Variables∑
j|(i,j)∈SA

xij = Si ∀i wi (13)∑
k|(j,k)∈SA

xjk −

∑
i|(i,j)∈SA

xij = 0 ∀j wj (14)∑
l|(k,l)∈SA

xkl −
∑

j|(j,k)∈SA
xjk = 0 ∀k wk (15)

−

∑
k|(k,l)∈SA

xkl = −Dl ∀l wl (16)
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FIGURE 2. Partitioning of the coefficient matrix A. (a) Submatrix A1. (b) Submatrix A2. (c) Submatrix A3.

The resulting dual model of Model TNM, DTNM, is given
below.

Max
∑

i
Siwi −

∑
l
Dlwl (17)

wi − wj ≤ Cij ∀(i, j) ∈ SA (18)

wj − wk ≤ Cjk ∀(j, k) ∈ SA (19)

wk − wl ≤ Ckl ∀(k, l) ∈ SA (20)

wi,wj,wk ,wl unrestricted ∀i, j, k, l (21)

III. FORMULATING AN INTERDICTION MODEL FOR THE
TRANSSHIPMENT NETWORK
Suppose that an opponent (interdictor/attacker) tries to
impede the distribution in our network so that the cost of
delivery is maximized. The opponent has the chance to
disable transportation in some parts (arcs) of the network
with his/her limited interdiction resources just before the
distribution begins. The opponent is clever enough to choose
the best interdiction plan (i.e., which arcs of the network
to disable with available interdiction resources) in order to
increase the distribution cost. Network users, on the other
hand, need to figure out their best distribution plan taking
into account that the network arcs are liable to intervention

and thus some of them might not be used. The problem can
be considered a classical Stackelberg Game Von Stackelberg
[34], Simaan and Cruz [28]. The following assumptions apply
to the problem.

• Interdiction is conducted just before the distribution
starts.

• Both the interdictor and network owner know each
other‘s most likely move.

• The interdictor is the one who moves first.
Note that here the opponent as the side acting first holds the

initiative. Even though we consider a deliberate intervention
in the network, the situation can also be thought of as the
worst-case scenario for the network owner if the interruption
stems from natural grounds. In this respect, we first propose a
bilevel attack model and then develop this bilevel model into
a standard one-level model that can be solved through regular
optimization techniques.

A. A BILEVEL INTERDICTION MODEL FOR
TRANSSHIPMENT NETWORK
Below we present a bilevel interdiction model for the trans-
shipment network model, Bi-TNM, with the new parameters
and decision variables introduced for interdiction.
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FIGURE 2. (Continued.) Partitioning of the coefficient matrix A. (a) Submatrix A1. (b) Submatrix A2. (c) Submatrix A3.

Parameters

rij interdiction resources needed to disable arc (i− j).
rjk interdiction resources needed to disable arc (j− k).
rkl interdiction resources needed to disable arc (k − l).
TIR total interdiction resources available.
M an arbitrarily large positive number.

Decision Variables
yij binary decision variable for interdictor to indicate

whether arc (i−j) is interdicted or not (1 if interdicted,
0 otherwise).

yjk binary decision variable for interdictor to indicate
whether arc (j − k) is interdicted or not (1 if inter-
dicted, 0 otherwise).
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ykl binary decision variable for interdictor to indicate
whether arc (k − l) is interdicted or not (1 if inter-
dicted, 0 otherwise).

In light of these definitions, we can formulate the Bi-TNM
model as follows:

Max
yij,yjk ,ykl

Min
∈ �

∑
(i,j)∈SA

Cijxij +
∑

(j,k)∈SA
Cjkxjk

+

∑
(k,l)∈SA

Cklxkl (22)∑
j|(i,j)∈SA

xij ≤ Si ∀i (23)∑
k|(j,k)∈SA

xjk −

∑
i|(i,j)∈SA

xij = 0 ∀j

(24)∑
l|(k,l)∈SA

xkl −
∑

j|(j,k)∈SA
xjk = 0 ∀k

(25)

−

∑
k|(k,l)∈SA

xkl = −Dl ∀l (26)

xij ≤ M (1−yij) ∀(i, j) ∈ SA (27)

xjk ≤ M (1−yjk ) ∀(j, k) ∈ SA (28)

xkl ≤ M (1 − ykl) ∀(k, l) ∈ SA (29)

xij, x jk , xkl ≥ 0 ∀i, j, k, l (30)

where � denotes the feasible set in the decision space of the
opponent defined by the following constraints:∑

(i,j)∈SA
rijyij +

∑
(j,k)∈SA

rjkyjk

+

∑
(k,l)∈SA

rklykl ≤ TIR (31)

yij, yjk , ykl ∈ {0, 1} ∀i, j, k, l (32)

In Model Bi-TNM the inner minimization model belongs
to the network operator while the outer maximization prob-
lem belongs to an opponent with the intention of interven-
ing in the distribution network with some limited resources.
Normally, the objective function (22) representing the total
distribution cost is minimized by the network runner. Here,
an external player in conflict with the network runner tries to
maximize the function. The courses of action for the opponent
are defined by constraint (31) and constraint (32) in the outer
model. Constraint (31) defines the intervenor‘s resource limi-
tation, and constraint (32) describes binary decision variables
y‘s, which indicate whether a specific segment is disabled
by the opponent. The other constraints (23)-(30) in the inner
model are similar to those in Model TNM.

From an efficient modeling perspective, one can set big M
in the model to the sum of the supply as in (33) since the
maximum value that xij, x jk , xkl can take, is guaranteed to be
less than the total supply.

M =

∑
i
Si (33)

B. DEVELOPING A STANDARD MIXED INTEGER
PROGRAMMING INTERDICTION MODEL FOR THE
TRANSSHIPMENT NETWORK
Bi-TNM given above can be converted into a standard
one-level model through duality. We have already given the
dual of TNM in Section II. Here we will give the dual of the
inner part of Bi-TNM. Notice that the inner model continues
to be totally unimodular, even though there are some new
constraints (27,28,29) added to the model associated with
the possible interdicted arcs. The coefficient matrix of these
additional constraints (27,28,29) forms an identity matrix.
With these constraints, the resulting coefficient matrix can be
given in the form of (34). [

A
I

]
(34)

Given any matrix A that is totally unimodular, the matrix
given in (34) is totally unimodular tooNemhauser andWolsey
[23]. Thus, we can still treat the variables as linear ones,
instead of integers without any loss of generality.

To take the dual of the inner part, we first introduce the
following dual variables in addition to the dual variables
already introduced in Section II for the associated constraints
of the model.

Dual Variables

xij ≤ M (1−yij) ∀(i, j) ∈ SA vij (35)

xjk ≤ M (1 − yjk ) ∀(j, k) ∈ SA vjk (36)

xkl ≤ M (1 − ykl) ∀(k, l) ∈ SA vkl (37)

Fixing the variable y‘s in the model and taking the dual
of the inner part we come up with a nonlinear program-
ming (NLP) version of the interdiction model, NLP TNM-I,
as given below.

Max
∑

i
Siwi −

∑
l
Dlwl +

∑
(i,j)∈SA

M (1 − yij)vij

+

∑
(j,k)∈SA

M (1 − yjk )vjk +

∑
kl
M (1 − ykl)vkl

(38)

wi − wj + vij ≤ Cij ∀(i, j) ∈ SA (39)

wj − wk + vjk ≤ Cjk ∀(j, k) ∈ SA (40)

wk − wl + vkl ≤ Ckl ∀(k, l) ∈ SA (41)∑
(i,j)∈SA

rijyij +
∑

(j,k)∈SA
rjkyjk

+

∑
(k,l)∈SA

rklykl ≤ TIR (42)

wi ≤ 0; wj,wk ,wl unrestricted ∀i, j, k, l;

vij, vjk , vkl ≤ 0 ∀ (i, j) , (j, k) , (k, l) ;

yij, yjk , ykl ∈ {0, 1} ∀i, j, k, l (43)

Notice that the objective function (38) of NLP TNM-I con-
tains nonlinear terms (i.e., (yijvij), (yjkvjk ), (yklvkl)). To solve
the problem with linear programming techniques, we can
linearize the objective function by introducing some new
variables and constraints. Let the variables qij, qjk , qkl defined
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as below in an attempt to eliminate the nonlinearity in
function (38).

qij = (1 − yij)vij (44)

qjk = (1 − yjk )vjk (45)

qkl = (1 − ykl)vkl (46)

Note that the variables qij, qjk , qkl cannot be positive since
vij, vjk , vkl ≤ 0 and yij, yjk , ykl are binary. Depending on the
value of the variables yij, yjk , ykl , we have two cases for each
of the equations (44), (45), and (46). Below we consider the
cases for equation (44) as an example.

If the variable yij = 1 in (44), then the associated new
variable introduced for linearization, qij, will take the value
of 0 in the objective function (38) as shown below.

M
(
1 − yij

)
vij = Mqij = 0 → qij = 0 (47)

Considering thatM is an arbitrarily large positive number and
qij ≤ 0, (47) can be expressed with the following constraint
to be used in the model.

qij ≥ −M (1 − yij) (48)

Notice that when yij = 0, constraint (48) turns out to be a
redundant one.

On the other hand, if the variable yij = 0 in (44), then the
associated new variable, qij, will take the value of vij in the
objective function (38) as given in (49).

M
(
1 − yij

)
vij = Mqij = Mvij → qij = vij (49)

Statement (49) can be equivalently given by the following
constraint in the model.

qij ≤ vij +Myij (50)

Note that if yij is 0, qij will have an upper value, vij, set by
constraint (50). Since the model is a maximization problem
and there is no other constraint for qij, it is guaranteed that qij
will take a value at its upper bound, vij. Notice also that when
yij = 1, constraint (50) turns out to be a redundant one.
We have developed the constraints (48) and (50) to satisfy

equation (44) to linearize the nonlinear term associated with
qij in the objective function (38). Similarly, we can also
develop the constraints to satisfy equations (45) and (46) so
that the nonlinear terms associated with qjk and qkl are also
linearized (i.e. constraints 58,59,60,61).

With the new variables and constraints used for lineariza-
tion, we end up with the following standard MIP interdiction
model for the transshipment network,Model TNM-I.

Max
∑

i
Siwi −

∑
l
Dlwl +

∑
(i,j)∈SA

Mqij

+

∑
(j,k)∈SA

Mqjk +

∑
kl
Mqkl (51)

wi − wj + vij ≤ Cij ∀(i, j) ∈ SA (52)

wj − wk + vjk ≤ Cjk ∀(j, k) ∈ SA (53)

wk − wl + vkl ≤ Ckl ∀(k, l) ∈ SA (54)

∑
(i,j)∈SA

rijyij +
∑

(j,k)∈SA
rjkyjk

+

∑
(k,l)∈SA

rklykl ≤ TIR (55)

qij ≥ −M (1 − yij) ∀ (i, j) (56)

qij ≤ vij +Myij ∀ (i, j) (57)

qjk ≥ −M (1 − yjk ) ∀ (j, k) (58)

qjk ≤ vjk +Myjk ∀ (j, k) (59)

qkl ≥ −M (1 − ykl) ∀ (k, l) (60)

qkl ≤ vkl +Mykl ∀ (k, l) (61)

wi ≤ 0; wj,wk ,wl unrestricted ∀i, j, k, l;

vij, vjk , vkl ≤ 0 ∀ (i, j) , (j, k) , (k, l) ;

qij, qjk , qkl ≤ 0 ∀ (i, j) , (j, k) , (k, l) ;

yij, yjk , ykl ∈ {0, 1} ∀i, j, k, l (62)

To summarize, in our eventual model TNM-I, the objective
function (51) is now linear and indicates the total distribution
cost, which is maximized by an opponent’s move. Constraints
(52), (53), and (54) result from the dual of the inner part
of Bi-TNM. Constraint (55) ensures not to exceed the total
interdiction resource available. Constraints (56), (57), (58),
(59), (60), and (61) are used for the linearization of the nonlin-
ear terms in the objective function. (62) defines the variables
in the model. In this regard, wi,wj,wk ,wl and vij, vjk , vkl
are the associated dual variables. The variables qij, qjk , qkl are
the ones used for linearization purposes. yij, yjk , ykl indicate
whether an interdiction exists on the associated arc (line) of
the transshipment network. These segments with yij, yjk , ykl
values of 1 will naturally be the most vulnerable parts of
the distribution network. As an MIP our eventual model can
easily be solved through standard optimization packages.

IV. EXPERIMENTAL STUDY
In this part of the study, we use GAMS (2010) with CPLEX
12.2 solver on a computer with a 3.2 GHz processor to
solve our models for the experimental instances we created.
We set a limit of 1.000-second (16,67-minute) time interval
for the solver to find a solution, which is defined by the user.
Depending on the available time and the goal of the study one
can change the mentioned time limit. However, since a lot of
runs need to be done for experimental purposes, we allow the
solver 1.000 seconds so that the analysis is conducted in a
timewise efficient manner.

In our problem setting, we create generic networks in
which transportation from every i to every j, from every j
to every k , and from every k to every l is possible. So,
our node-arc incidence matrix is dense in terms of pos-
sible transportation routes. However, it is possible to use
some arbitrarily big cost values to model non-existing routes
between nodes in real life situations. In our computational
part, we generate the parameters of our problem randomly
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FIGURE 3. Network representation of distribution process.

from a uniform distribution. We use integer-valued parame-
ters Si,Dl,Cij,Cjk ,Ckl, rij, rjk , rkl assign them values from
the uniform intervals [10, 15], [5, 10], [50, 400], [20, 80],
[150, 700] , [1, 2] , [2, 4], [1, 2] respectively.

A. AN ILLUSTRATIVE EXAMPLE
Consider a distribution network having 3 supply and
3 demand points in which the distribution is conducted
through two stages (Stage 1 and Stage 2) with 3 transshipment
stations at each stage. Each supply point has an associated
supply capacity (Si) and each demand point has an associated
demand value (Dl). Unit transportation costs between nodes
are known and denoted by Cij,Cjk ,Ckl respectively. The
network representation of the distribution process is given in
Figure 3.
The associated supply (Si) and demand (Dl) values can

be seen in Figure 3 and are also given in Table 1.a. Unit
distribution costs between supply points and Stage 1 sta-
tions, Cij’s, between stage 1 and stage 2 stations, Cjk ’s, and
between stage 2 stations and demand points, Ckl’s are given
in Table 1.b, Table 1.c and Table 1.d respectively.

For simplicity, suppose that an opponent needs one unit of
resource to disable an arc connecting any two nodes such that
rij, rjk , rkl values are all 1.

Normally when there is no intervention in the network,
the minimum cost of distribution in our example can be
found using our classical model TNM. The solution of
TNM through GAMS/CPLEX gives a minimum delivery cost
of 3800.

However, if an opponent had the chance to disable one arc
in the distribution network with the given data above, which
arc would this be and how much would the distribution cost
increase?

TABLE 1. (a) Supply and demand values. (b) Cost values-Cij . (c) Cost
values-Cjk . (d) Cost values-Ckl .

The answer to the question can easily be figured out by set-
ting total interdiction resource (TIR) to 1 and solving model
TNMI. The solution of TNMI through GAMS/CPLEX gives
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TABLE 2. (a) Computational results (N = 24, 40, 60, 80, 100, 120, 160, 200, 240, 280; TIR = 0, 1, 2).

a delivery cost of 4200with the interdicted arc (k1−l1) shown
with a crossmark in Figure 3. Note that originally the cost was
3800; now that arc (k1− l1) is out of use, the total distribution
cost has increased by 400 units. This is because when the
relatively less costly arc (k1 − l1) is not in use, the other arcs
have to be used for transshipment from Stage 2 to demand
points, which makes the transportation more costly. Under
the given circumstances, arc (k1 − l1) is the most vulnerable
arc for intervention since it has the largest detrimental impact
on the total distribution cost when disrupted. The disruption
in the network can either stem from a deliberate intervention
or from some natural setbacks, which are mostly out of the
control of the network owner.

Of course, an opponent can also disable more than one arc
in the network depending on his/her available resources and
more than one unit of resource might be needed to disable an

arc. In this case, one needs to update rij, rjk , rkl and TIR values
properly and solve model TNMI to find out vulnerable arcs
and the corresponding increase in the total delivery cost.

B. COMPUTATIONAL RESULTS
We use various quantities of total interdiction resources, TIR,
and different-size networks constituting different cases for
our analysis. We test up to 70 nodes (stations) in each station
type i, j, k, l; which means 280 total stations in our distri-
bution network. In our network with 280 nodes, there are
(ixj) + (jxk) + (kxl) = (70x70) + (70x70) + (70x70) =

14.700 arcs. This means that there are 14.700 cost coeffi-
cients to be handled giving us an idea about the complexity of
our experimentation. In order to handle the big data, we get
use of GDX (GAMS Data eXchange) facilities available in
GAMS; which make it possible to read data from Excel files.
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TABLE 2. (Continued.) (b) Computational results (N = 24, 40, 60, 80, 100, 120, 160, 200, 240, 280; TIR = 3, 4, 5).

We summarize the results obtained for the networks in dif-
ferent sizes and with several TIR values in Tables 2.a through
Table 2.f As seen in Table 2.a, when there are 6 available
stations for each type of nodes i, j, k, l, (I , J ,K ,L = 6 and

N = 24) the total cost of transportation is normally 15017,
where there is, in fact, no interdiction resource (TIR = 0).
With TIR values 1 and 2 the total cost turns out to be
16005 and 16458 respectively. The disabled arcs that are
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TABLE 2. (Continued.) (c) Computational results (N = 24, 40; TIR = 10, 20, 30).

chosen by the interdictor for each of the mentioned cases cor-
respondingly are (k1 − l2) and (i6 − j2, k1 − l2). We test our

model with different sets of nodes in the network increasing
each time the number of nodes. The results for the instances
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TABLE 2. (Continued.) (d) Computational results (N = 80, 160; TIR = 10, 20, 30).

where I , J ,K ,L = 10 and N = 40, I , J ,K ,L = 15 and
N = 60, I , J ,K ,L = 20 and N = 80, I , J ,K ,L = 25 and

N = 100, I , J ,K ,L = 40 and N = 160, I , J ,K ,L = 30 and
N = 120, I , J ,K ,L = 50 and N = 200, I , J ,K ,L = 60
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TABLE 2. (Continued.) (e) Computational results (N = 200, 240; TIR = 10, 20, 30).

and N = 240, I , J ,K ,L = 70 and N = 280, are given in
Table 2.a as well.

Similarly associated results for TIR values 3,4 and 5
are presented in Table 2.b for each of our instances. So, the
results clearly show the most vulnerable arcs in a certain
scenario andmake it available for the network owner to figure
out the arcs in the transshipment network requiring special

concern when a possible intervention is possible. It should
also be noted that the results in Table 2.a. are given as exact
solutions for all existing instances whereas the solutions for
large networks (N = 200, 240, 280) in Table 2.b are given
with some solution gaps within the defined solution run
time for GAMS/CPLEX solver, which is 1000 seconds. This
clearly shows that the performance of the model depends
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TABLE 2. (Continued.) (f) Computational results (N = 280; TIR = 10, 20, 30).

on both the network size, N , and the available interdiction
resource the opponent has, TIR.

In an attempt to better elaborate the performance of the
model and identify its limitations, we expand our experimen-
tation with larger TIR (10, 20, 30) values as well. As seen
in Table 2.c, exact solution values are provided for relatively
smaller networks with N = 24, 40. However, as given
in Tables 2.d, 2.e and 2.f, the solutions are provided with
some certain gaps for larger N values, namely 80, 160, 200,
240, 280.

One can say that solvers using exact solution algorithms
can easily yield solutions for small TIR values (i.e. 1, 2)
even when N has larger values (i.e. 240, 280), which can be
observed in Table2.a. The same is also true for the cases in
which N is small (i.e. 24, 40) and TIR is large (i.e. 10, 20,
30), which is observable in Table 2.c. So, when the standard
MIP solvers is used for solution, it will be time-consuming to
get an exact solution with large values of N and TIR, which
is a limitation of the proposed method.

V. CONCLUSION AND FUTURE WORK
In this study, we develop an interdiction model for a trans-
shipment network (TNM-I) to analyze the vulnerabilities in
the distribution process. We show that the coefficient matrix
A of the transshipment network is totally unimodular, which
enables us to use linear programming approaches regardless
of the discreteness of variables. Using duality and linearizing

certain discrete variables, we further show that the initial
bilevel interdiction model (Bi-TNM) we develop, can be con-
verted into a standard MIP model solvable through standard
MIP solvers (i.e. CPLEX).

The resulting Model TNM-I helps network analysts reveal
the courses of action of an opponent trying to increase the
cost of transportation by interdicting certain arcs of the
transportation network with certain interdiction resources.
In our application, we observe the critical arcs as well as
the resulting increase in the distribution cost in case the
network is interdicted by an opponent using limited interdic-
tion resources. The total cost substantially increases depend-
ing on the available interdiction resources on the opponent
side. The decision-makers can figure out the segments of
a transportation network that are potentially more costly
in case some are disabled. The decision-makers can also
increase their awareness with respect to the effect of any
such intervention on their objective function by observing
the change in the total cost depending on an opponent’s
available interdiction resources. Such information can help
decision-makers develop appropriate courses of action to
reduce transportation costs as well as get a deep understand-
ing of worst cases in cases of disruptions. A more sustainable
distribution process can be designed using the findings in
this study. The generic models developed in this study can
easily be used in typical transshipment networks like electric
grids.
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One limitation to the proposed method we identify in our
experimental study is that it will require much time to get an
exact solution through the standard MIP solvers when large
N and TIR values exist. Even though the model can be solved
via off-the-shelf optimization software for networks having
N less than 200 and TIR values less than 5 within short time
limits, further study would be beneficial to develop some
decomposition or heuristic techniques to solve problems with
larger N and TIR values so that the timewise efficiency of the
solution is improved. It would also be interesting to apply the
idea to the capacitated network problems since in this study
capacity of the arcs is not taken into account.
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