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ABSTRACT The discrete control problem of vertical take-off and landing unmanned aerial vehicle (VTOL
UAV) in the presence of time-varying uncertain disturbances is developed in this paper. The complexity of
control problem is managed by dividing the dynamical model into two subsystems i.e. translational dynamics
and rotational dynamics, where each subsystem is composed of three states. A discrete-time quasi-sliding
mode control (DTQSMC) is extended tomaintain the trajectory tracking control by proposing a new-reaching
law for VTOL UAV. A robust controller is designed to handle unknown time-varying disturbances acting
upon the translational and rotational dynamics. Moreover, the proposed controller is designed to reduce the
chattering issue that commonly appears in conventional slidingmode control (SMC). Rigorous mathematical
proof is presented to analyze the stability of the entire closed-loop system. The performance of this design
is demonstrated with numerous numerical analyses and simulations.

INDEX TERMS Chattering, discrete-time, disturbances, quasi-sliding mode control, time-varying, UAV,
VTOL.

I. INTRODUCTION
Research and development on VTOL UAVs have attracted
the attention of numerous researchers and industries in
recent decades. UAV deployment has many potential ben-
efits as compared to conventional methods operated by a
human. Moreover, VTOL UAV deployment can also increase
efficiency by saving time and cost. UAV with VTOL con-
figuration has some advantages such as a simple transition
mechanism and ease to take off and land in a narrow area.
It can be used in various applications of UAVs such as data
collection, monitoring, mapping, geographical photography,
inspection, surveillance, search and rescue, forest-fire detec-
tion, creative industries, and various civil applications [9],
[14], [28]. From the control engineer’s view, one of the trendi-
est research problems is to develop an autonomous operation
of UAVs that can maintain the VTOL settings with less
dependent on the human operator. Many control strategies
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have been studied for UAVs under various scenarios. One of
the most challenging parts of realistic situations is to design
control schemes with nonlinear dynamics and the presence of
external disturbances.

VTOL UAV is an under-actuated nonlinear system, with
four control inputs to handle a highly coupled six output
states. It is composed of three states related to translational
dynamics allowing UAV to move in backward, forward, lat-
eral, and vertical directions. The remaining states are related
to rotational dynamics referred to as roll, pitch, and yaw
angles. The main focus of the trajectory tracking problem
with the VTOL mission is to design the control scheme
for both translational and rotational dynamics in the pres-
ence of disturbances. The nonlinear control approach plays
an important role in maintaining UAV motion with com-
plete nonlinear behavior. Several research problems have
been investigated to tackle the trajectory tracking problem.
One of the common methods is the feedback lineariza-
tion method as developed in [34] and [40] for non-VTOL
configurations.
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In fact, uncertain external disturbances may act on the
system dynamics in numerous practical situations. These
uncertainties may cause more complex technical challenges
in designing controllers. Hence, the feedback linearization
approach cannot be simplified and extended to handle this
issue. In general, there are two main directions to tackle the
uncertainties in the closed-loop systems [21]. The first is to
use adaptive control scheme. The idea behind this method
is to estimate and cancel the uncertainties in the system
dynamics. In this way, the controller guarantees to handle
the uncertainties by proposing adaptive law in the feedback
controller.

Model reference adaptive control (MRAC) is one of the
popular adaptive schemes to deal with uncertainties. By using
the certainty equivalence principle, adaptive law, and refer-
ence model are added to the feedback control design to esti-
mate the unknown constant parameters [30]. This technique
has a major drawback to guarantee stability as investigated in
[2]. The L1 adaptive control was developed by adding a linear
filter in the control structure to handle this problem [17].
Some interesting results in adaptive control using Immer-
sion and invariance (I&I) were studied to handle unknown
constant parameters [3], [25]. However, most of the adaptive
schemes are to handle the unknown constant parameters [6].
As a result, the use of adaptive control approaches in general
cannot handle time-varying disturbances. Some results have
been presented for time-varying disturbances in limited cases
[5], [20], [22], [36].

Another method proposed in the literature to handle uncer-
tainties is model predictive control (MPC). For example,
adaptive MPC was developed with extended state observer
(ESO) for UAVs under a networked setting [39]. Another
common technique used to handle the uncertainties is intel-
ligent computation which can be categorized in the adaptive
control line. For example, neural networks (NNs) were devel-
oped for multi-agent systems [7], [8] and genetic algorithm
(GA) for a robotic manipulator [27]. However, this approach
has one crucial issue in handling uncertainties, where this
method requires a high-performance embedded computer in
many cases. In other words, it can only be implemented in
limited practical situations.

The second major research direction is robust control.
The idea behind this controller is to guarantee stability by
dominating the uncertainties within a certain bound. Com-
pared with adaptive control approach, it is more flexible to
be implemented for systems with time-varying uncertainties.
SMC is one of the most popular methods in this direction.
This approach is widely implemented in many practical set-
tings in the continuous-time domain by forcing the states to
follow desired sliding surface [19], [24]. SMC was devel-
oped to handle uncertainties in the discrete-time domain in
[32]. However, this technique has chattering problems due to
the presence of a signum function in the control structure.
Discrete-time robust MRAC using SMC and adaptive super-
twisting MRAC for first-order systems with chattering atten-
uation were compared in [16].

Control problem for an under-actuated UAV with a VTOL
mission becomes more complicated. An early study intro-
duced a control scheme for a micro VTOL UAV with-
out disturbance [4]. More complex control problems in the
presence of disturbances were studied by proposing distur-
bance observer-based control method in [26], higher-order-
observer-based dynamic SMC [29] and adaptive SMC in [1],
[23]. An integrated disturbance observer, MPC, and sliding
mode nonlinear inverse were proposed for a tail rotor tilting
three ducted fans VTOL-UAV [18].

Some interesting robust control methods were developed
for fault tolerance control (FTC) of VTOL UAV in the
continuous-time domain. For example, an adaptive SMC
for FTC of VTOL UAV was designed in [15] and [35]
to handle uncertainties and faults. In [37], a robust pas-
sive FTC was proposed for tracking control of VTOL
UAV with partial propeller fault and external disturbance.
The more advanced result was presented using adaptive
SMC for multi-UAVs subject to an aerodynamic disturbance
in [1].

In the practical setting, the control systems of UAVs rely
on sensor and actuator measurements. These measurements
are used by the controller to generate a new control input
for the dynamical model in a particular sampling time. From
the above literature, all controller schemes were designed
in the continuous-time domain. It means that the controllers
were not presented the practical situations. A result using
conventional sliding mode control for the non-VTOLmission
with chattering issue was investigated without disturbance in
the discrete-time domain [38].

In this paper, a control scheme is developed for an
under-actuated nonlinear VTOL UAV with uncertainties.
The control scheme is designed in the discrete-time domain
to represent the real application setting whereby the time-
continuous plant is controlled by a discrete-time controller
embedded in a microprocessor. Inspired by [12], a reaching
law is proposed for VTOLUAV to guarantee the convergence
of sliding surfaces to zero equilibrium points. The tracking
control stability is guaranteed by adding robust terms to
the control structure to handle time-varying uncertain exter-
nal disturbances added in both translational and rotational
dynamics. This extension is very important to tackle the
control problem to deal with uncertainties and nonlinear
dynamics in the discrete-time domain. Moreover, the poten-
tial benefits of UAV deployment can be expanded by design-
ing a controller with VTOL configuration, particularly for
UAV operating in confined spaces such as near walls and
narrow areas.

The remainder of this paper is organized as follows.
The dynamical model of VTOL UAV is presented in
Section II. Following that, the proposed tracking control
design with its stability analysis for both the outer and
inner loop of VTOL UAV is presented in Section III. Then
in Section IV, the performance of the proposed design is
demonstrated by conducting numerous numerical analyses
and simulation results. The summary of this paper and a
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brief suggestion for future research direction are presented
in Section V.

II. SYSTEM DYNAMICS OF VTOL UAV
Consider the general motion of VTOL UAV expressed by the
following states

η1 =

xy
z

 , η2 =

φθ
ψ

 ,
where η1 is a position vector consisting of forward (x), lateral
(y) and vertical (z) states and η2 is an orientation vector
consisting of roll (φ), pitch (θ ) and yaw (ψ) states. Figure 1
illustrates the coordinate frames of η1 and η2.
The translational and rotational dynamics of VTOL UAV

with the presence of disturbance in the continuous-time
domain are represented by the following state space [4], [23]

ẍ(t) = (cosφ(t) sin θ (t) cosψ(t) + sinφ(t) sinψ(t))

×
ut (t)
m

(1)

ÿ(t) = (cosφ(t) sin θ (t) sinψ(t) − sinφ(t) cosψ(t))

×
ut (t)
m

(2)

z̈(t) = −g+ δz(t) + (cosφ(t) cos θ (t))
ut (t)
m

(3)

φ̈(t) = wφ fφ(t) + δφ(t) +
τφ(t)
Ix

(4)

θ̈ (t) = wθ fθ (t) + δθ (t) +
τθ (t)
Iy

(5)

ψ̈(t) = wψ fψ (t) + δψ (t) +
τψ (t)
Iz

, (6)

where

wφ =
Iy − Iz
Ix

, fφ(t) = θ̇ (t)ψ̇(t)

wθ =
Iz − Ix
Iy

, fθ (t) = φ̇(t)ψ̇(t)

wψ =
Ix − Iy
Iz

, fψ (t) = φ̇(t)θ̇ (t).

The mass of VTOL UAV is denoted by m and gravitational
acceleration is denoted by g. The inertia parameters with
respect to x, y, and z axes are represented by Ix , Iy, and Iz,
respectively. The total force is denoted by ut and the torques
acting on the body frame in roll, pitch, and yaw directions
are denoted by τφ , τθ , and τψ , respectively. Note that Both φ
and θ angles are constrained between −

π
2 to π

2 i.e. cosφ and
cos θ are non-zero.

The external disturbances are represented by δz(t), δφ(t),
δθ (t), and δψ (t) satisfying the following assumption.
Assumption 1: The external disturbances acting on trans-

lational and rotational dynamics of VTOL UAV have bound-
aries such that |δz(t)| ≤ dz,

∣∣δφ(t)∣∣ ≤ dφ , |δθ (t)| ≤ dθ and∣∣δψ (t)∣∣ ≤ dψ where dz, dφ , dθ , and dψ are some constants.
Note that all δz(t), δφ(t), δθ (t), and δψ (t) are unknown. Only
dz, dφ , dθ , and dψ are available for feedback control design.

FIGURE 1. Earth and body-fixed reference frame of VTOL UAV.

The dynamical model of VTOL UAV in the discrete-time
domain is formulated from the continuous-time model using
the following forward Euler method

ẋ(k) =
x(k + 1) − x(k)

ts

ẏ(k) =
y(k + 1) − y(k)

ts

ż(k) =
z(k + 1) − z(k)

ts

φ̇(k) =
φ(k + 1) − φ(k)

ts

θ̇ (k) =
θ (k + 1) − θ (k)

ts

ψ̇(k) =
ψ(k + 1) − ψ(k)

ts
,

where k and k + 1 are the time step at k and k + 1 with time
sampling ts, respectively. It is obvious to see that

x(k + 1) = x(k) + tsẋ(k) (7)

y(k + 1) = y(k) + tsẏ(k) (8)

z(k + 1) = z(k) + tsż(k) (9)

φ(k + 1) = φ(k) + tsφ̇(k) (10)

θ (k + 1) = θ(k) + tsθ̇(k) (11)

φ(k + 1) = φ(k) + tsφ̇(k). (12)

By using a similar argument, the following can be generated

ẋ(k + 1) = ẋ(k) + tsẍ(k) (13)

ẏ(k + 1) = ẏ(k) + tsÿ(k) (14)

ż(k + 1) = ż(k) + tsz̈(k) (15)

φ̇(k + 1) = φ̇(k) + tsφ̈(k) (16)

θ̇ (k + 1) = θ̇ (k) + tsθ̈ (k) (17)

φ̇(k + 1) = φ̇(k) + tsφ̈(k). (18)

By substituting (13-18) to (1-6), the dynamical model of
VTOL UAV can be generated in the discrete-time domain as
represented by

x(k + 1) = x(k) + tsẋ(k)
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ẋ(k + 1) = ẋ(k) + ts
(
cosφ(k) sin θ (k) cosψ(k)

+ sinφ(k) sinψ(k)
ut (k)
m

)
(19)

y(k + 1) = y(k) + tsẏ(k)

ẏ(k + 1) = ẏ(k) + ts
(
cosφ(k) sin θ (k) sinψ(k)

− sinφ(k) cosψ(k)
ut (k)
m

)
(20)

z(k + 1) = z(k) + tsż(k)

ż(k + 1) = ż(k) + ts
(

− g+ δz(k)

+ (cosφ(k) cos θ(k))
ut (k)
m

)
(21)

φ(k + 1) = φ(k) + tsφ̇(k)

φ̇(k + 1) = φ̇(k) + ts
(
wφ fφ(k) + δφ(k) +

τφ(k)
Ix

)
(22)

θ (k + 1) = θ(k) + tsθ̇(k)

θ̇ (k + 1) = θ̇ (k) + ts
(
wθ fθ (k) + δθ (k) +

τθ (k)
Iy

)
(23)

ψ(k + 1) = ψ(k) + tsψ̇(k)

ψ̇(k + 1) = ψ̇(k) + ts
(
wψ fψ (k) + δψ (k) +

τψ (k)
Iz

)
, (24)

where

fφ(k) = θ̇ (k)ψ̇(k)

fθ (k) = φ̇(k)ψ̇(k)

fψ (k) = φ̇(k)θ̇ (k).

III. PROPOSED CONTROL DESIGN
In this section, a discrete robust control scheme is designed
for VTOL UAV under uncertain disturbances. Let the desired
trajectory of x, y, z, φ, θ and ψ are denoted by xd , yd , zd , φd ,
θd and ψd , respectively. The main objective of the proposed
controller is to guarantee all states of VTOL UAV to follow
the desired trajectories.

A. TRANSLATIONAL CONTROL DESIGN
VTOL UAV is an under-actuated system where the number
of control inputs is less than the number of states, where x(k)
and y(k) positions cannot be controlled directly using ut (k).
The φd (k) and θd (k) state variables are generated using error
position and velocity of x(k) and y(k) as represented by

φd (k) = λy1 (y(k) − yd (k)) + λy2 (ẏ(k) − ẏd (k)) (25)

θd (k) = −λx1 (x(k) − xd (k)) − λx2 (ẋ(k) − ẋd (k)), (26)

where λx1 , λx2 , λy1 , and λy2 are some positive constants.
There exists an external disturbance δz(k) in the dynamical

model (21). As a result, full feedback linearization method
cannot be applied to handle the uncertainties. To design a
robust controller, the error of z position is defined to be

ez(k) = z(k) − zd (k). (27)

It is obvious to see that

ėz(k) =
ez(k + 1) − ez(k)

ts
. (28)

From here, the dynamics error of z(k) is generated as follows

ez(k + 1) = ez(k) + tsėz(k)

ėz(k + 1) =
żd (k + 1) − żd (k)

ts
+ ėz(k) + ts

(
− g

+ δz(k) + (cosφ(k) cos θ(k))
ut (k)
m

)
. (29)

Define the sliding surface of error dynamics of z(k + 1) as

Sz(k + 1) = λzez(k + 1) + ėz(k + 1), (30)

where λz is a positive constant. If Sz(k + 1) = 0, then

ez(k + 2) − ez(k + 1)
ts

= −λzez(k + 1).

As a result

ez(k + 2) = (1 − tsλz)ez(k + 1), (31)

which implies that ez(k + 1) exponentially converges to zero
as t → ∞ for any positive constant λz.

By substituting (29) to (30), hence

Sz(k + 1) = λzez(k) + (tsλz + 1)ėz(k)

+
żd (k + 1) − żd (k)

ts
+ ts

(
− g+ δz(k)

+ (cosφ(k) cos θ (k))
ut (k)
m

)
. (32)

Now, a robust control scheme using an extended TDSMC is
designed to guarantee stability such that Sz(k + 1) → 0 as
t → ∞. The main result of this subsection is summarized in
Theorem 1.
Theorem 1: Consider the dynamical model (21) under

Assumption 1. The tracking control is guaranteed by selecting

ut (k) = −
m

ts cosφ(k) cos θ(k)

(
λzez(k) + (tsλz

+ 1)ėz(k) +
żd (k + 1) − żd (k)

ts
+ ts

×

(
− g−

kz1
ts
Sz(k) + kz2 tanh Sz(k)

))
, (33)

where kz1 < −1 and kz2 are tuned such that

kz2 >
dz(1 + kz1 )
1 − kz1

,
tskz2 − kz1

ts
> dz, (34)

for any kz1 ̸= 0 and λz > 0.
Proof: First, the controller is selected using the fol-

lowing conventional discrete-time sliding mode control
(DTSMC)

ut (k) = −
m

ts cosφ(k) cos θ (k)

(
λzez(k)

+ (tsλz + 1)ėz(k) +
żd (k + 1) − żd (k)

ts
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+ ts
(

− g−
kz1
ts
Sz(k) + kz2sgnSz(k)

))
. (35)

The system composed of (32) and (35) can be rewritten as

Sz(k + 1) = ts
(
δz(k) − kz2sgn(Sz(k))

)
+ kz1Sz(k). (36)

From (36), the following can be obtained

Sz(k + 2) = ts
(
δz(k + 1) − kz2sgn(Sz(k + 1))

)
+ kz1Sz(k + 1). (37)

Substituting (36) to (37), hence

Sz(k + 2) = ts
(
δz(k + 1) − kz2sgn(Sz(k + 1))

)
+ k2z1Sz(k) + tskz1

(
δz(k) − kz2sgn(Sz(k))

)
= tsδz(k + 1) − tskz2sgn(Sz(k + 1))

+ k2z1Sz(k) + tskz1δz(k)

− tskz1kz2sgn(Sz(k)). (38)

By following Gao’s reaching law [12], the quasi-sliding
motion (QSM) of the proposed design is shown by presenting
the monotonous decrement of the absolute value of sliding
surface Sz(k + 1) and the sliding surface trajectory stays in a
specific band. The condition for QSM is

sgn(Sz(k + 2)) = −Sz(k + 1) = Sz(k). (39)

The control gains kz1 and kz2 are selected to satisfy the
QSM motion condition (39). Assume that sgn(Sz(k + 2)) =

Sz(k) = 1, from (38), the worst setting for sgn(Sz(k + 2)) is
under δz(k) = δz(k+1) = −dz for Sz(k) ≈ 0 as expressed by

Sz(k + 2) = −ts(1 + kz1 )dz + tskz2 (1 − kz1 ). (40)

The worst setting for sgn(Sz(k + 1)) is under δz(k) = dz as
expressed by

Sz(k + 1) = tsdz − tskz2 + kz1 . (41)

By selecting kz1 < 1 and kz2 for any kz1 ̸= 0 such that
(34) is satisfied. Then Sz(k + 2) > 0 and Sz(k + 1) < 0
is guaranteed.

As an undesirable phenomenon, chattering is a common
problem in conventional SMC. Its oscillation has a finite
amplitude and frequency that occurs around the desired equi-
librium sliding surface [10]. Several methods have been pro-
posed to handle this problem. However, the results for the
discrete systems are still relatively rare in the literature. The
non-smooth signum function in the control structure causes
this problem. In this case, the function of the sgn(Sz(k)) has
the following properties

sgn(Sz(k)) =


−1, Sz(k) > 0
0, for Sz(k) = 0
1, Sz(k) < 0.

(42)

It means that the value of sgn(Sz(k)) is −1 or 1 for any
Sz(k) ̸= 0 regardless of the value of the sliding surface is
negative big or negative small and vice versa. Integral SMC

was proposed to attenuate high-frequency oscillation in [31].
However, this approach increases the sliding surface error
and degrades the response systems. Another approach was
developed in [33] for linear systems by proposing the aid of
an exponentially decaying barrier Lyapunov function. More
interesting results were investigated in [10] and [11] by
approximating the value of the signum function to attenuate
chattering. The performance and drawbacks of approximated
functions were compared to verify their effectiveness. It can
be concluded that the chattering can be attenuated by extend-
ing the boundary layer width. However, the robustness of the
system may degrade due to a large boundary layer. Note that
the aforementioned results were developed for continuous-
time systems.

Inspired by [11], the chattering in DTQSMC is attenuated
by approximating the value of the sgn(Sz(k)) using a hyper-
bolic tangent function tanh(Sz(k)). Hence, the sign function
in (35) is replaced by tanh(Sz(k)) as represented by (33).
This hyperbolic tangent function is a smooth function as
expressed by

tanh(Sz(k)) =
eSz(k) − e−Sz(k)

eSz(k) + e−Sz(k)
, (43)

and contains the following properties

tanh(Sz(k)) =


−1, for negative big Sz(k)
0, for Sz(k) = 0
1, for positive big Sz(k).

(44)

The proof is thus completed.

B. ROTATIONAL CONTROL DESIGN
In this subsection, a robust controller is designed for rota-
tional dynamics in the discrete-time domain in the presence of
external disturbances in time-varying form. The error position
of rotational states is defined to be

eφ(k) = φ(k) − φd (k)

eθ (k) = θ (k) − θd (k)

eψ (k) = ψ(k) − ψd (k).

The error dynamics of (22), (23) and (24) are represented
by

eφ(k + 1) = eφ(k) + tsėφ(k)

ėφ(k + 1) =
φ̇d (k + 1) − φ̇d (k)

ts
+ ėφ(k)

+ ts

(
wφ fφ(k) + δφ(k) +

τφ(k)
Ix

)
(45)

eθ (k + 1) = eθ (k) + tsėθ (k)

ėθ (k + 1) =
θ̇d (k + 1) − θ̇d (k)

ts
+ ėθ (k)

+ ts

(
wθ fθ (k) + δθ (k) +

τθ (k)
Iy

)
(46)

eψ (k + 1) = eψ (k) + tsėψ (k)
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ėψ (k + 1) =
ψ̇d (k + 1) − ψ̇d (k)

ts
+ ėψ (k)

+ ts

(
wψ fψ (k) + δψ (k) +

τψ (k)
Iz

)
. (47)

The sliding surface of error of rotational dynamics is
defined as

Sφ(k + 1) = λφeφ(k + 1) + ėφ(k + 1) (48)

Sθ (k + 1) = λθeθ (k + 1) + ėθ (k + 1) (49)

Sψ (k + 1) = λψeψ (k + 1) + ėψ (k + 1), (50)

whereλφ ,λθ andλψ are some positive constants. If all Sφ(k+
1), Sθ (k + 1) and Sψ (k + 1) are zero, then

eφ(k + 2) − eφ(k + 1)
ts

= −λφeφ(k + 1)

eθ (k + 2) − eθ (k + 1)
ts

= −λθeθ (k + 1)

eψ (k + 2) − eψ (k + 1)
ts

= −λψeψ (k + 1).

As results

eφ(k + 2) = (1 − tsλφ)eφ(k + 1) (51)

eθ (k + 2) = (1 − tsλθ )eθ (k + 1) (52)

eψ (k + 2) = (1 − tsλψ )eψ (k + 1), (53)

which imply that eφ(k+1), eθ (k+1) and eψ (k+1) exponen-
tially converge to zero as t → ∞ for some positive constants
λφ , λθ and λψ .

By substituting (45), (46) and (47) to (48), (49) and (50),
respectively, then

Sφ(k + 1) = λφeφ(k) + (tsλφ + 1)ėφ(k)

+
φ̇d (k + 1) − φ̇d (k)

ts
+ ts

(
wφ fφ(k)

+ δφ(k) +
τφ(k)
Ix

)
(54)

Sθ (k + 1) = λθeθ (k) + (tsλθ + 1)ėθ (k)

+
θ̇d (k + 1) − θ̇d (k)

ts
+ ts

(
wθ fθ (k)

+ δθ (k) +
τθ (k)
Ix

)
(55)

Sψ (k + 1) = λψeψ (k) + (tsλψ + 1)ėψ (k)

+
ψ̇d (k + 1) − ψ̇d (k)

ts
+ ts

(
wψ fψ (k)

+ δψ (k) +
τψ (k)
Ix

)
. (56)

Now, a robust control scheme using an extended DTQSMC
is designed to guarantee stability such that Sφ(k + 1) → 0,
Sθ (k + 1) → 0 and Sψ (k + 1) → 0 as t → ∞. The pro-
posed control design for rotational dynamics is summarized
in Theorem 2.

Theorem 2: Consider the rotational dynamics (22), (23)
and (24) under Assumption 1. The tracking control is guar-
anteed by selecting

τφ(k) = −
Ix
ts

(
λφeφ(k) + (tsλφ + 1)ėφ(k)

+
φ̇d (k + 1) − φ̇d (k)

ts
+ ts

(
wφ fφ(k)

−
kφ1
ts
Sφ(k) + kφ2 tanh Sφ(k)

))
(57)

τθ (k) = −
Iy
ts

(
λθeθ (k) + (tsλθ + 1)ėθ (k)

+
θ̇d (k + 1) − θ̇d (k)

ts
+ ts

(
wθ fθ (k)

−
kφ1
ts
Sφ(k) + kφ2 tanh Sφ(k)

))
(58)

τψ (k) = −
Iz
ts

(
λψeψ (k) + (tsλψ + 1)ėψ (k)

+
ψ̇d (k + 1) − ψ̇d (k)

ts
+ ts

(
wψ fψ (k)

−
kψ1

ts
Sψ (k) + kψ2 tanh Sψ (k)

))
, (59)

where both kφ1 < 1, kφ2 , kθ1 < 1, kθ2 , kψ1 < 1 and kψ2 are
selected such that where kz1 < 1 and kz2 are tuned such that

kφ2 >
dφ(1 + kφ1 )
1 − kφ1

,
tskφ2 − kφ1

ts
> dφ, λφ > 0 (60)

kθ2 >
dθ (1 + kθ1 )
1 − kθ1

,
tskθ2 − kθ1

ts
> dθ , λθ > 0 (61)

kψ2 >
dψ (1 + kψ1 )
1 − kψ1

,
tskψ2 − kψ1

ts
> dψ , λψ > 0, (62)

for any non-zero kφ1 , kθ1 and kψ1 .
Proof: In the first step, the controller is selected using

the following conventional DTSMC

τφ(k) = −
Ix
ts

(
λφeφ(k) + (tsλφ + 1)ėφ(k)

+
φ̇d (k + 1) − φ̇d (k)

ts
+ ts

(
wφ fφ(k)

−
kφ1
ts
Sφ(k) + kφ2sgnSφ(k)

))
(63)

τθ (k) = −
Iy
ts

(
λθeθ (k) + (tsλθ + 1)ėθ (k)

+
θ̇d (k + 1) − θ̇d (k)

ts
+ ts

(
wθ fθ (k)

−
kφ1
ts
Sφ(k) + kφ2sgnSφ(k)

))
(64)

τψ (k) = −
Iz
ts

(
λψeψ (k) + (tsλψ + 1)ėψ (k)

+
ψ̇d (k + 1) − ψ̇d (k)

ts
+ ts

(
wψ fψ (k)
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−
kψ1

ts
Sψ (k) + kψ2sgnSψ (k)

))
. (65)

The closed-loop systems composed of (54), (55), (56), (63),
(64) and (65) can be rewritten as

Sφ(k + 1) = ts
(
δφ(k) − kφ2sgn(Sφ(k))

)
+ kφ1Sφ(k) (66)

Sθ (k + 1) = ts
(
δθ (k) − kθ2sgn(Sθ (k))

)
+ kθ1Sθ (k) (67)

Sψ (k + 1) = ts
(
δψ (k) − kψ2sgn(Sψ (k))

)
+ kψ1Sψ (k). (68)

From (66), (67) and (68), it can be generated

Sφ(k + 2) = tsλφ
(
δφ(k + 1) − kφ2sgn(Sφ(k + 1))

)
+ kφ1Sφ(k + 1) (69)

Sθ (k + 2) = tsλθ
(
δθ (k + 1) − kθ2sgn(Sθ (k + 1))

)
+ kθ1Sθ (k + 1) (70)

Sψ (k + 2) = tsλψ
(
δψ (k + 1) − kψ2sgn(Sψ (k + 1))

)
+ kψ1Sψ (k + 1). (71)

Substituting (66), (67) and (68) to (69), (70) and (71), respec-
tively. Then the following can be obtained

Sφ(k + 2) = tsδφ(k + 1) − tskφ2sgn(Sφ(k + 1))

+ k2φ1Sφ(k) + tskφ1δφ(k)

− tskφ1kφ2sgn(Sz(k)) (72)

Sθ (k + 2) = tsδθ (k + 1) − tskθ2sgn(Sθ (k + 1))

+ k2θ1Sθ (k) + tskθ1δθ (k)

− tskθ1kθ2sgn(Sθ (k)) (73)

Sψ (k + 2) = tsδψ (k + 1) − tskψ2sgn(Sψ (k + 1))

+ k2ψ1
Sψ (k) + tskψ1δψ (k)

− tskψ1kψ2sgn(Sψ (k)). (74)

By following Gao’s reaching law [12], the quasi-sliding
motion (QSM) of the proposed design is shown by presenting
the monotonous decrement of the absolute value of sliding
surface Sz(k + 1) and the sliding surface trajectory stays in a
specific band. The condition for QSM is

sgn(Sφ(k + 2)) = −Sφ(k + 1) = Sφ(k) (75)

sgn(Sθ (k + 2)) = −Sθ (k + 1) = Sθ (k) (76)

sgn(Sψ (k + 2)) = −Sψ (k + 1) = Sψ (k). (77)

Now, the control gains kφ1 , kφ2 , kθ1 , kθ2 , kψ1 and kψ2 is
calculated to satisfy the QSM motion conditions (75), (76)
and (77). Assume that sgn(Sφ(k + 2)) = sgn((Sφ(k)) =

sgn(Sθ (k + 2)) = Sθ (k) = sgn(Sψ (k + 2)) = Sψ (k) = 1.
From (72), (73) and (74), The worst scenarios for sgn(Sφ(k
+ 2)), sgn(Sθ (k + 2)) and sgn(Sψ (k + 2)), respectively are

δφ(k) = δφ(k + 1) = −dφ, Sφ(k) ≈ 0

TABLE 1. The parameters of a VTOL UAV [13].

δθ (k) = δθ (k + 1) = −dθ , Sθ (k) ≈ 0

δψ (k) = δψ (k + 1) = −dψ , Sψ (k) ≈ 0.

As results

Sφ(k + 2) = −ts(1 + kφ1 )dφ + tskφ2 (1 − kφ1 ) (78)

Sθ (k + 2) = −ts(1 + kθ1 )dθ + tskθ2 (1 − kθ1 ) (79)

Sψ (k + 2) = −ts(1 + kψ1 )dψ + tskψ2 (1 − kψ1 ). (80)

In another side, the worst setting for sgn(Sφ(k + 1)),
sgn(Sθ (k + 1)) and sgn(Sψ (k + 1)) are

δφ(k) = dφ, δθ (k) = dθ , δψ (k) = dψ .

Hence

Sφ(k + 1) = tsdφ − tskφ2 + kφ1 (81)

Sθ (k + 1) = tsdθ − tskθ2 + kθ1 (82)

Sψ (k + 1) = tsdψ − tskψ2 + kψ1 . (83)

By selecting kφ1 < 1, kφ2 , kθ1 < 1, kθ2 , kψ1 < 1 and kψ2 for
any non-zero kφ1 , kθ1 and kψ1 such that (60), (61) and (62) are
satisfied. The following can be guaranteed

Sφ(k + 2) > 0, Sφ(k + 1) < 0

Sθ (k + 2) > 0, Sθ (k + 1) < 0

Sψ (k + 2) > 0, Sψ (k + 1) < 0.

Similar to translational controller design, the values of
the sgn(Sφ(k)), sgn(Sθ (k)) and sgn(Sψ (k)) are approxi-
mated using the hyperbolic tangent functions tanh(Sφ(k)),
tanh(Sθ (k)) and tanh(Sψ (k)), respectively, to reduce the chat-
tering in DTQSMC. Hence, the sign function in (63), (64) and
(65) are replaced by tanh(Sφ(k)), tanh(Sθ (k)) and tanh(Sψ (k))
as represented by (57), (58) and (59), respectively . The proof
is thus completed.

IV. SIMULATION RESULTS
Some simulations are presented in Matlab/Simulink to evalu-
ate numerically the proposed controller for VTOL UAV. The
parameters used are listed in Table 1.

The external disturbance is added as follows

δz = 0.1 sin t, δφ = 0.1 sin t

δθ = 0.12 cos t, δψ = 0.06 cos t.

The extended quasi-sliding mode control (QSMC)
schemes for both translational and rotational dynamics are
designed according to Theorem 1 and 2. The gains are
selected as follows

λx1 = 1, λx2 = 10−4, λy1 = 1, λy2 = 10−4
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FIGURE 2. Profile of φ, θ and ψ .

kz1 = −10−5, kz2 = 1, λz = 50

kφ1 = −0.5, kφ2 = 5, λφ = 100

kθ1 = −0.5, kθ2 = 10, λθ = 90

kψ1 = −0.5, kψ2 = 7, λψ = 95. (84)

To demonstrate the real application setting, the value of
total thrust ut is set to be between−60 kg·m/s2 to 60 kg·m/s2.
In another side, the values of τφ , τθ and τψ are limited from
−2 kg · m2/s2 to 2 kg · m2/s2. The simulation results using
the proposed controller are illustrated in Figures 2-5. Some
simulations are conducted with four different time sampling.
It can be seen that the proposed design is able to drive all
states to follow the desired VTOL trajectories, as presented
in Figures 2 and 3. The proposed scheme has robust terms
that can guarantee the convergence of VTOL UAV states to
the desired path.

Figure 3 illustrates the position of VTOLUAVwith respect
to x, y, and z axes. It can be seen that the aircraft takes
off from initial position η1(0) =

[
0 0 0

]T and requires
around 10 s for VTOL UAV to reach the highest desired
altitude. After hovering 3 s, it moves in x and y directions
and performs vertical landing is conducted from t = 40 s
to t = 50 s. This movement is plotted in 3D in Figure 5.
Also, all orientation angles can follow the desired trajectory
as presented in Figure 2. The initial position of orientations
angles is η2(0) =

[
0 0 0

]T. While Figure 4 shows control
inputs applied to maintain VTOL UAV movement. It can be

TABLE 2. The fitness of VTOL UAV states.

seen in Figures 2 and 3 that the chattering problem commonly
appearing in conventional SMC is significantly reduced using
the proposed control design. These results verify the perfor-
mance of the controller developed in Theorem 1 and 2.

To have a better presentation, the fitness of all states can
be calculated using the following formula

fitness of state(%) = 100
(
1 −

∥desired state − state∥
∥desired state∥

)
.

(85)

The fitness of all states for every time sampling is listed in
Table 2.

The proposed scheme to handle the VTOL UAV motion
is differentiated by conducting simulations in different ts, as
presented in Table 2. It shows that the tracking control of all
states has outstanding fitness. The fitness average of all states
is slightly decreasing for a higher ts. Note that the fitness of
ψ cannot be calculated as φd is zero. However, it can be seen
from Figure 2 that the tracking control for VTOL UAV with
smaller ts is slightly better.
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FIGURE 3. Profile of x , y and z .

FIGURE 4. Profile of ut and τ .

To evaluate the sensitivity of the control parameters, the
gains (84) are reduced 50% such that

λx1 = 0.5, λx2 = 5 × 10−5, λy1 = 0.5, λy2 = 5 × 10−5

kz1 = −5 × 10−6, kz2 = 0.5, λz = 25

kφ1 = −0.25, kφ2 = 2.5, λφ = 50

kθ1 = −0.25, kθ2 = 5, λθ = 45

kψ1 = −0.25, kψ2 = 3.5, λψ = 47.5. (86)

Similar to the previous setting, the value of total thrust ut
is between −60 kg.m/s2 to 60 kg.m/s2, and all of the torques
are limited from −2 kg.m2/s2 to 2 kg.m2/s2. The proposed
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FIGURE 5. Profile of x , y and z in 3D.

FIGURE 6. Profile of φ, θ and ψ under gains in equation (86).

control design still shows outstanding performance as illus-
trated in Figures 6-9. Figure 6 shows tracking control of every

attitude or rotational states i.e. φ, θ , and ψ . Position tracking
performance with respect to x, y, and z axes is illustrated
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FIGURE 7. Profile of x , y and z under gains in equation (86).

FIGURE 8. Profile of ut and τ under gains in equation (86).

in Figures 7 and 9. Also, Figures 6 and 7 confirm that the
chattering issue in every state of VTOL UAV is significantly

reduced as concluded by the proposed control design in
Section III. The fitness of all states is also calculated
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FIGURE 9. Profile of x , y and z in 3D under gains in equation (86).

TABLE 3. The fitness of VTOL UAV states under gains (86).

using (85) listed in Table 3. It shows that the proposed con-
troller still has excellent performance to maintain the tracking
control stability in various time sampling.

V. CONCLUSION
This paper studied a fully robust discrete tracking control for
6-DOFVTOLUAV in the presence of uncertain time-varying
disturbances. Discrete tracking control for translational and
rotational motions was designed using an extended QSMC.
The chattering issue in the conventional SMC was reduced
in the proposed design. A new reaching law for VTOL
UAV was developed to guarantee tracking control stability in
the discrete-time domain. A rigorous mathematical analysis
was presented to prove the tracking control stability of the
proposed design. Several simulations were conducted with
different time sampling to verify the performance of the pro-
posed approaches. Implementing this design for real VTOL
UAV applications will be interesting in future works.
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