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ABSTRACT Wavelet pooling (WP) in neural network architectures has recently demonstrated more
discriminative power than traditional pooling methods. This is mainly because the latter suffer from spatial
information loss while wavelet pooling harnesses the power of spectral information. However, the potential
of WP in increasing the data efficiency and the extent of this potential have not been investigated yet. Data
efficiency refers to the volume of training data required to attain a certain performance level during inference,
e.g., recognition accuracy. In this research, we are concerned with evaluating the data efficiency of WP
in light-weight architectures—MobileNets. Across a wide variety of seven datasets/applications including
object recognition (CIFAR-10, STL-10, CINIC-10, and Intel Image Classification datasets) and diagnostic
imaging (colon diseases, brain tumors, and malaria cell images datasets), and while considering classification
accuracy as a performance metric, we show that WP achieves an average data saving that exceeds 30%
compared to traditional pooling techniques. For other performance measures, namely, precision, recall, and
F1-score, we report an average of 30% data saving for object recognition datasets and 22% saving for
diagnostic imaging datasets. By focusing on a light-weight architecture, this research further emphasizes the
significance of wavelet pooling in training and testing resources-challenged settings such as the applications
of edge computing and green deep learning.

INDEX TERMS CNN:s, classification, MobileNet, pooling, wavelet, spectral information.

I. INTRODUCTION is not scarce, but the application framework would dictate

Deep learning has defined the state-of-the-art (SOTA) for
over a decade in various applications that involve signal
processing, analysis, synthesis, and communication. Never-
theless, the computational efficiency for training and testing
deep models have posed several challenges in use cases.
For example, many problems that demand high level of pri-
vacy and security, training data scarcity has represented a
significant obstacle towards harnessing the power of deep
models. Data augmentation and transfer learning have helped
closing the performance gap to some extent, but there is still
room for further improvement. In other applications, data
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certain distribution of computational workload. For example,
in edge computing [1], [2], the distribution of the compu-
tational workload between the cloud and the edge devices
(that are closer to the end user) would hinder system archi-
tects from harnessing the recognition power of large deep
models due to the constrained resources of edge devices.
Other areas that would benefit from deep learning might
not suffer from data scarcity and might not involve edge
computing, but reducing the systems’ carbon footprint and
energy usage, during model training and testing, is one of
their ultimate goals—green deep learning [3]. The aforemen-
tioned contexts, i.e., data scarcity, edge computing, and green
deep learning share the requirement of efficient usage of
data.
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Towards the efficient usage of data, the research literature
on reducing the volume of training datasets has featured
diverse research directions. One approach is known as data
distillation [4], and it aims to create a dataset that is smaller
than the original dataset. The synthesis process is guided by
the resulting accuracy level, i.e., the accuracy attained
using the model trained on the distilled dataset should match
that of the model trained on the complete dataset. Another
approach adopts a clustering framework [S] where samples
from the complete dataset are first aggregated using the
K-means algorithm or the k-nearest neighbour algorithm,
then the samples that fall within the same cluster are com-
bined. Data pruning is another direction that considers a
model’s ability to generalize well as a guiding metric to
eliminate specific data samples from the training dataset [6].
Previous research had also investigated the direction of sam-
ple ranking. In one of these approaches, the samples of the
training dataset are first ranked according to their discrimina-
tive power then the lowest ranked samples are removed in an
iterative manner [7].

In this research, we investigate the potential of an
emerging pooling technique, namely, the discrete wavelet
transform-based pooling (WP), in improving the training
data efficiency of light-weight neural network architectures.
We define the training data efficiency as the amount of train-
ing data that a learning model needs to achieve a certain
performance level. By considering the information in the
different sub-bands of the wavelet domain, WP widens the
receptive field, similar to other pooling techniques, while
retaining spectral information that are usually lost in average
and max pooling. Wavelet pooling was first introduced in
the literature to overcome spatial information loss which is
an inherent drawback in traditional pooling methods. It has
been implemented with various deep architectures, in classi-
fication and segmentation applications, and solely as well as
in hybrid pipelines with traditional pooling methods [8], [9],
[10]. Also, the incorporation of all sub-bands, approximation
sub-band only, as well as matching the input images to a
specific combination of wavelet sub-bands [11] has been
investigated in the literature.

Previous research on wavelet pooling has not investi-
gated its potential with regards to data efficiency. In [12]
and [13], we highlighted the capacity of WP in improving
the recognition accuracy of lightweight deep models with
a focus on objects and remote sensing datasets. In [11],
we showed, using extensive simulations, that the best recogni-
tion accuracy does not necessarily coincide with including the
four sub-bands of the first level wavelet decomposition, and
that choosing the sub-bands to include in an adaptive man-
ner guarantees higher recognition accuracies. Furthermore,
other previous studies on WP had shown that the accuracy
level attained using WP is comparable or can eclipse, i.e.,
is within respectable ranges or higher, compared to the level
attained using other traditional pooling techniques, keep-
ing other training parameters the same in the models being
compared [12], [14], [15]. However, the following research
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question has not been addressed yet: Given that model X
adopts WP and model Y adopts traditional pooling, how
much training data can be discarded, while training model X,
until the model performance degrades to that of model Y ?

We consider one flavor of wavelet pooling-base MobileNet
in this research. This model considers all the sub-bands in
a first-level wavelet decomposition [12]. On seven object
detection and diagnostic imaging datasets that are shown
in Fig. 1, we report an average training data saving that
exceeds 30%, taking the classification accuracy as our per-
formance measure. For the precision, recall, and F1-score,
we obtained an average data reduction that exceeds 30% and
22% for object recognition datasets and diagnostic imaging
datasets, respectively. By focusing on a light-weight archi-
tecture, which is specially useful in contexts where testing
resources are scarce, we aim at highlighting the potential of
WP when the training resources are also scarce.

The rest of this article is organized as follows. The sec-
ond section highlights the recent literature on data-efficient
models and wavelet pooling-based models. Section III is
devoted to discussing the details of the proposed pipeline.
Section IV presents the results obtained using the proposed
model before section VI concludes the research and identifies
relevant future research directions.

Il. RELATED WORK

This section is dedicated to discussing the research litera-
ture that overalps with the scope of this article. Particularly,
we highlight the recently proposed methods that aimed at
reducing the volume of the training datasets without compro-
mising the model’s performance. Furthermore, we cover the
recent literature on wavelet transform-based pooling in CNN
models, and we identify the two variants that will be adopted
in the rest of this research.

A. LITERATURE ON DATA EFFICIENCY
The development of model learning pipelines that get trained
on a subset of the training dataset, without compromising the
models’ performance, have recently attracted an increasing
attention from the research community. Towards this goal,
one approach is to use data distillation rather than retaining
a subset of the entire dataset [4]. By distillation, they mean
the synthesis process of a smaller dataset that would not
degrade the accuracy level of the model under consideration.
Over several training iterations, the authors proposed to opti-
mize the distilled data such that they minimize the distance
between the parameters of the network being trained and the
parameters of the network trained on the entire dataset. Using
this formulation, they guide the network that is being trained
to a similar state as a network trained on the whole dataset
across many training steps while enhancing data distillation.
Dataset pruning is another framework that was proposed
to downsize a training dataset by examining the influence
of eliminating specific sets from the training data on the
generalization accuracy of the model [6]. Then, the authors
proposed to generate the smallest amount of training data
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FIGURE 1. Samples from the diverse datasets adopted in our research. The applications of these datasets include object recognition such as:
a) CIFAR-10, b) STL-10, C) CINIC-10, and d) Intel Dataset, remote sensing such as e) Land Scene remote sensing images, and diagnostic imaging
such as f) Malaria Cell dataset, g) WCE Curated Colon Disease dataset, and h) Brain Tumor diseases.

that produce a highly restricted generalization gap. Using
this framework, the solutions obtained through training are
required to be competitive with those obtained in the full
dataset.

Clustering-based approaches starts by using widely used
techniques such as k-means [5] and k-nearest neighbor [16]
to aggregate dataset samples into clusters. Afterwards, the
dataset size can be decreased by combining samples from
the same cluster. The complexity of the k-nearest neighbor
algorithm and k-means algorithms, on the other hand, make
this approach difficult to adopt with small datasets. Using
coresets, which are weighted subsets of the entire dataset,
is another strategy for reducing the size of the training set
of data [17].

In order to reduce the number of training samples,
Benyamin et al. [7] proposed a technique known as Principal
Sample Analysis (PSA). In PSA, each sample in the set is
ranked according to how well it could be utilised to dis-
tinguish between different data classes. The PSA algorithm
removes the samples with the lowest rankings in an iterative
manner. Moreover, the authors of [18] proposed a formula
for estimating an example’s training value and employ it
for ranking other examples greedily. Nevertheless, sample
ranking approaches, so far, fit exclusively with classification
tasks. Also, they do not scale well with big datasets.

B. WAVELET POOLING

In general, pooling methods like stride, average and max
pooling are frequently employed for down-sampling opera-
tions and expanding the receptive field such as in [19], [20],
[21], and [22]. Nevertheless, they might cause a significant
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loss of information. In order to overcome this drawback,
recent literature had featured several investigations to com-
bine the discrete wavelet transform as a pooling method
with deep learning architectures. For instance, Juan et al. [8]
provided a classification system that adopts WP. Particularly,
they use the first level decomposition of an image. This
level contains 4 sub-bands that contain the approximation,
horizontal, vertical, and diagonal features. Beside classifi-
cation, AndréB) et al. [9] proposed to use WP in semantic
segmentation. They presented a hybrid pooling scheme which
combines wavelet and traditional pooling. This strategy was
applied on a new version of the Segnet model-MPSegnet.

In order to balance the size of the receptive area and the
computational performance, the multi-layer wavelet CNN
(MWCNN) approach was proposed [14]. The incorporation
of wavelet transform within the CNN architecture was shown
to minimize feature maps. Moreover, the MWCNN technique
was also applied on a U-Net architecture and the inverse
wavelet transform (IWT) for high-resolution image restora-
tion. Moreover, Qiufu Li et al. [10] proposed a 3D wavelet-
based neuron segmentation method-3D WaveUNet. Their
proposed model was proven effective to deal with the fine
structured neurons that spread over a large area while avoid-
ing the high computational cost that is inherent to the segmen-
tation process of such structures. That model was also shown
to effectively handle damaged fibers and the high levels of
noise that characterize this problem.

In our previous work, we implemented various flavors
of wavelet pooling strategies on light-weight models [12],
particularly with MobileNets [23], which are based on depth-
wise separable convolution and factorized Networks [24].
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MobileNet’s primary layer involves depthwise separable con-
volution. This is a sort of factorised convolution that splits
the standard convolution into a depthwise convolution and
a 1 x 1 convolution. We applied WP on various datasets,
including multi-label remote sensing tasks [13] to harness the
power of spectral information in deep networks. Furthermore,
We present a new training and inference approach called
Matched Wavelet Pooling (MWP) that determines which
sub-bands should be used in the pooling operation for every
image during training and testing [11]. This was based on the
observation that including all of the wavelet decomposition’s
sub-bands does not always result in higher performance than
utilising a specific subset of sub-bands. In this research,
we present results for the wavelet-based pooling that consid-
ers all the sub-bands in the first-level wavelet decomposition
of an image.

Ill. PROPOSED METHOD

In sec. I, in order to motivate the proposed research, we stated
three examples for scenarios that require efficient usage of
data, namely, data scarcity, edge computing, and green deep
learning. This section is dedicated to discussing the proposed
methods for evaluating the data efficiency of wavelet-based
pooling implemented in light-weight deep architectures,
namely, MobileNets (WaveMobileNets). By focusing on a
light-weight architecture, which is specially useful in con-
texts where testing resources are scarce, we aim at high-
lighting the potential of WP when the training resources are
also scarce. We start off by discussing the implementation
of WaveMobileNets. The weights of the wavelet filters and
the type of the mother function used in our experiments will
be given in this discussion. We will also present the differ-
ent layers of the proposed MobileNet-based model, high-
lighting the layers that involve wavelet pooling. Afterwards,
we explain our approach for simulating different levels of
data availability, since a good model’s performance with a
small volume of available training data would imply high data
efficiency. The discussion on varying data availability will
also involve a justification for key design decisions in our
experiments including the range of dataset’s size variation.
Lastly, we conclude the section by presenting the details of
the datasets adopted in our experiments.

A. DISCRETE WAVELET POOLING IN MobileNets

Following our previous work [12], we employ a modified ver-
sion of MobileNet architecture that uses DWT pooling layers,
which was shown to achieve significantly better results com-
pared to standard MobileNet in [12] and [23]. Figure 2 depicts
the architecture of our model and the various training datasets
fed to it. These training datasets represent sub-sampled ver-
sions of the whole training dataset which is initially con-
structed using an 80-20 train-test splitting. We elaborate on
the construction of these datasets in the rest of this section.
The model is shown to comprise five cascaded stages, where
the construction of every stage is indicated by the legend at
the bottom of the figure. The second and the fourth stages
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feature wavelet pooling layers which are computed as
explained in the following lines. In our model, a convolu-
tion block is comprised of a depth-wise convolution (DW),
a point-wise convolution (PW), and a depth-wise separable
convolution (DWCNN). The construction of a DWT block
is similar to that of a convolution block except that a DWT
pooling layer is inserted between the DW and the PW layers.

Given an image G of size (n, n, m), we propose to construct
the pooling layer using the Haar basis function which is
formed by the two filters | = (1/+/2,1/4/2) and h =
(1/+4/2, —1/+/2). In the output of the first-level 2D DWT,
Gy, represents the low-frequency sub-band of the input G,
which usually contains most of the information in natural
images. The other structures which are Gy, Gy, and Gy
represent components of high-frequency which contain the
vertical, horizontal, and diagonal details of G, respectively.
The four filters of Haar wavelets have fixed parameters with
convolutional stride 2 during the transformation. These filters
are defined as:

11 -1 -1
KLL=|:1 J,KLH=|:1 1],

Ky = [:i 1} , Kyg = |:_11 _11} . (D

In this research, we propose to realize filtering and down-
sampling in MobileNet-V1 as depthwise separable convolu-
tion (DWCNN in Fig. 2 and DWT pooling. This formulation
facilitates connecting MobileNets with multi-level wavelet
analysis. For computing the 4 subband images Gy, Gy,
Gur, and Gyp, the mathematical expressions are given as:

G =KL ®G6) |2
Gur = Ky ® G) | 2;

Giu =K ®6G) |2
Gy = Kup ®G) | 2, (2)

where stride | 2 denotes the downsampling operator with fac-
tor 2, and ® denotes the convolution operator. Furthermore,
based on the principle of the Haar transform, the (q, r)-th
value of Gy, Gry, Gy and Gyy after a 2D Haar transform
can be represented as:

Gu(g,r) =GRqg—1,2r — 1)+ GRq —1,2r)
+G(Q2q,2r — 1)+ G(2q, 2r)

Gru(q,r) = GR2q—1,2r — 1) — GQ2q — 1, 2r)
4+ G(2q,2r — 1)+ G(2q, 2r)

Gur(g,r) = G2q— 1,2r — 1)+ G(2¢g — 1, 2r)
—GQ2q,2r — 1)+ G(2q, 2r)

Gup(g,r) = GQR2q—1,2r — 1) — GQq — 1,2r)
—GQgq,2r — 1)+ G(2q, 2r). 3)

The proposed WaveMobileNets is based on MobileN-
et-V1. Specifically, we propose to replace MobileNet-V1’s
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The detailed description of the WaveMobileNets [12] is as
follows. Given M input channels, N output channels, and
a convolution kernel, K, of size d; x di: For a pointwise
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convolution and a depthwise convolution, the number of
parameters and the computational costs can be given as:
=dy.dy.(a.M)
Dyyenn = di .dk.(Ol.M).df.df
P, = (aN).(aM)
Pyenn = (@N).(aM).dr .dy, 5)

where D,, is the number of parameters of a depthwise con-
volution, the feature map’s size is df x dy, the depthwise
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convolution’s computational cost is Dy, the number of
parameters of a pointwise convolution is P,,, and the com-
putational cost of a pointwise convolution is Pyy¢y,;,,. The com-
putational cost CC of a depthwise separable convolution with
width multiplier « is:

CC = dy.dy.aM .dr.df + aN .aM .dy.dy, (6)
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where « is typically set to 1, 0.75, 0.5, and 0.25. In this work,
we set the value of « by 1. It is worth mentioning that in our

previous work [12], D"?vaw is represented as:

DOYEN = DWT (Dyewn), (7

where DWT(-) is the first level DWT of -, and Dwcyn
is the outcome of the depthwise operation. The Dlv%/‘gw is
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and F1-score) using CIFAR-10 dataset.

defined as:

DDWT

weny = WGir, Gru, GuL, Guy) (8)

where || denotes the concatenation operation, which means
that the four sub-bands, i.e., LL, LH, HL, and HH, are
included in the pooling stage. This is different from other
wavelet pooling models in the literature that only considered
the LL sub-band or other previous methods that considered
certain sub-bands in an adaptive manner based on the input
image [11].
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B. SIMULATING VARYING DATA AVAILABILITY

As a standard supervised machine learning problem, given
a training distribution of images X and a label distribu-
tion Y, our objective is to learn a classifier fg, parame-
terized by a set of variables ®, such that for any image
x € X with corresponding label y € Y,y = fo().
Let us suppose that our distribution is made of K different
classes and that our training dataset, sampled from X and Y,
is composed of N images per class. In the next sub-section,
we show that the adopted datasets not only represent different
areas of application but also contain different number of
classes.
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Our main research question is: Given that model X adopts
WP and model Y adopts traditional pooling, how much train-
ing data can be discarded, while training model X, until
the model performance degrades (during testing) to that of
model Y ? To address this question, we have to train the model
multiple times, each of which with a different amount of
training data. Accordingly, we have to choose a range of
variation for the amount of training data. The upper limit
of this range is the whole amount of training data which is
dictated by the initial 80-20 train-test split. This is depicted
as Training Set 1 in Fig. 2 which is 80% of the whole dataset.
In the following lines, we explain how we decided the lower
limit of the variation range.

For investigating the data efficiency of the model under
consideration, we put three criteria for determining the
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variation range or thr investigation range, i.e., the range of
training data sizes throughout which the model’s performance
is investigated. This includes the stopping condition, where
we stop reducing further the size of the training data. These
criteria are as follows:

1) The investigation range should include the case where
the full training split is considered. This is why the
ceiling of that range in our case is set to 80% of the
training data—the whole training split.

The floor of the investigation range is determined by the
point where the model starts to experience noticeable
performance degradation.

Throughout the larger part of that range, the model’s
performance should not demonstrate significant vari-
ations. Criteria 2 and 3 are meant to ensure that data

2)

3)
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FIGURE 9. A comparison between the baseline and the DWT1111 MobileNet according to various performance metrics (precision, recall,

and F1-score) using the UCM Land Scene dataset.

efficiency is not achieved at the expense of the model’s

performance, since this would constitute a degenerative

type of training data saving.
We tested the model’s performance on three datasets, namely,
CIFAR-10, the Intel Image Dataset, and UCM Land Scene
Remote Sensing dataset. According to the performance
shown in Fig. 3 for the WP-base model, we decided to stop
the investigation range at 50% of the whole dataset. From
the whole training split (80% of the data), we constructed
sub-samples using random sampling with sizes equal to 70%,
60%, and 50% of the whole dataset. This means that we chose
four checkpoints, throughout the variation range, at which we
investigated the training performance of a model with 10%
spacing between each two checkpoints. This is depicted as
Training Set 2, 3, and 4 in Fig. 2.

C. DATASETS
We perform our experiments on seven widely used object
recognition and diagnostic imaging datasets that are shown in
Fig. 1, namely CIFAR-10 [25], CINIC-10 [26], STL-10 [27],
INTEL [28], land scene remote sensing [29], Colon Dis-
ease [30], Malaria Cell [31], and Brain Tumor datasets [32],
[33]. CIFAR-10, STL-10, and CINIC-10 are comprised of
RGB images of dimension 32 x 32. The total number of
categories is 10 and the classes represent different objects
such as airplanes, cars, birds, cats, deers, dogs, frogs, horses,
ships, and trucks. CIFAR-10 and CINIC-10 originally have
50,000 training images and 10,000 testing images with both
sets balanced, while STL-10 has a 96 x 96 image size. Also,
it has 500 training images (10 pre-defined folds), and 800 test
images per class.

Furthermore, the land scene remote sensing dataset (UCM)
contains satellite images of 21 classes such as buildings,
baseball fields, freeways, etc. The original size of the images
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is 256 x 256 pixels. Finally, for the medical classification
datasets, we have the following: 1) the Brain Tumour dataset
which has three classes of meningioma, glioma, and pituitary
tumor brain type, 2) the WCE Colon images are captured via
Wireless Capsule Endoscopy (WCE), which has four classes
of normal, ulcerative colitis, polyps, and esophagitis type,
3) and the malaria cells dataset has two classes, infected and
uninfected with a total of 27558 images. According to the
aforementioned details, this research is validated on prob-
lems that are not just from different areas of appliation but
also involve different number of classes. Figure 4 present a
subjective comparison between the feature maps of standard
MobileNets (top) and MobileNet-DWT (bottom) for medical
and general objects from different datasets.

IV. RESULTS AND DISCUSSION
The results and simulations in this section were obtained
using a machine with a GeForce RTX 2080 GPU (8 GB
VRAM). All the computer programs were written in Python,
and Tensorflow was incorporated as the backbone for the
model training and testing. Table 1 summarizes the adopted
performance metrics, where be referred, and TN refers to the
number of True Positives, False Positives, False negatives,
and True Negatives, respectively. We found them to be the
most widely incorporated metrics in the relevant research on
the classification of medical images. In the following lines,
we motivate some key decisions in our simulations before
presenting and discussing the results of our experiments. For
the sake of results reproducibility, we provide the code of the
testing stage publicly.!

In the rest of this section, we present a performance
comparison between different flavors of the same deep

1 https://github.com/shimaaelbana/Wavelet-Pooling-on-Improving-the-
Data-Efficiency-of-Light-Weight-CNNs
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FIGURE 10. A comparison between the baseline and the DWT1111 MobileNet according to various performance metrics (precision, recall,

and F1-score) using the WCE Curated Colon dataset.

TABLE 1. Quantitative Performance Measures.

Metric Equation

Accuracy (TP+TN)/(TP+FP+TN+FN)
Specificity TN/(TN+FP)

Precision TP/(TP+FP)

Recall=Senstivity = TP/(TP+FN)

model-MobileNet. Particularly, we compare the perfor-
mance of the baseline MobileNet model with the WP-based
MoileNet proposed in [12] which will referred to as
DWTI111 in the rest of this document. Whenever the term
classification performance will be used, it will be referring
to the classification accuracy. Lastly, five random samplings
from the whole training dataset were acquired at each of the
four checkpoints in the investigation range, and the results
of each sampling iteration will be shown together with the
average of all iterations. As mentioned in sec. I, this research
addresses the evaluation of a model’s data efficiency by
addressing following research question: Given that model
X adopts WP and model Y adopts traditional pooling, how
much training data can be discarded, while training model
X, until the model performance degrades to that of model Y ?

Computing the Achieved Percentage of Training Data
Saving: In Table 2, we show a performance compari-
son between the baseline MobileNet and the WP-based
MobileNet on the Intel Image Dataset at the four chosen
checkpoints as mentioned earlier. When the training split is
only 50% (instead of 80%), the WP-based model (DWT1111)
achieved an average accuracy of 94.24%. On the other hand,
When the training split is 80%, i.e., the full training split
is used, the baseline model achieves an average accuracy
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TABLE 2. A comparison between the classification accuracy attained by
baseline MobileNet and MobileNet-DWT1111 using various
train-test split ratios on the Intel dataset.

Dataset Intel Dataset

%Data Split 80% 70%
KF/Models Baseline DWTI1111 Baseline DWT1111
KF1 90.16 92.73 90.35 94.03

KF2 91.80 94.83 93.10 94.61

KF3 93.40 96.54 95.38 95.54

KF4 96.40 98.68 94.84 98.56

KF5 96.68 98.93 96.70 98.41
Average 93.069(+2.54)  96.34(x2.34) | 94.07(x2.19) 96.23(x1.90)
%Data Split 60% 50%

KF/Models Baseline DWTI1111 Baseline DWT1111
KF1 90.80 93.02 86.76 89.20

KF2 79.08 94.03 90.00 92.13

KF3 95.25a 96.59 90.64 94.68

KF4 96.38 97.69 90.90 96.38

KF5 94.49 98.94 92.87 98.82
Average 91.20(6.34)  96.06(x2.21) | 90.23(+1.98) 94.24(+3.33)

of 93.069%. This means that the WP-based model could
outperform the baseline model while the training data size
is 30% less with the former model. Hence, the training data
saving in this case is more than 30%. This approach for
computing the volume data saving will be adopted throughout
the rest of this section. Although intuitive, we highlight the
drawback of this approach in the next few lines.

Because we evaluate the performance of the models at
discrete checkpoints only, which are 80%, 70%, 60%, and
50%, the resolution of measuring the volume of data saving
is limited by those checkpoints. Accordingly, the maximum
saving that can be reported in this research is that the saving
exceeds 30%, which is the difference between 80% and 50%.
Lastly, with every saving, we also report the accuracy gain
(AG) which indicates how much training data can be saved

VOLUME 11, 2023



S. El-Bana et al.: Evaluating the Potential of WP on Improving the Data Efficiency of Light-Weight CNNs

IEEE Access

TABLE 3. A comparison between the classification accuracy attained by

baseline MobileNet and MobileNet-DWT1111 using various train-test split

ratios on the CIFAR-10 dataset.

TABLE 5. A comparison between the classification accuracy attained by
baseline MobileNet and MobileNet- DWT1111 based Mobilenet using
various train-test split ratios on CINIC-10 dataset.

Dataset CIFAR-10 Dataset Dataset CINIC-10 Dataset
% Data Split 80% 70% Data Split% 80% 70%
KF/Models Baseline DWT1111 Baseline DWT1111 KF/Models | Baseline DWT1111 Baseline DWTI1111
KF1 74.84 82.95 69.77 83.14 KF1 94.23 96.20 94.47 95.97
KF2 80.91 87.72 79.37 90.12 KF2 95.34 97.12 95.69 97.21
KF3 85.61 95.53 83.28 93.29 KF3 96.27 98.57 96.16 98.42
KF4 87.18 96.70 88.25 96.53 KF4 97.13 98.83 96.97 98.91
KF5 90.39 98.77 90.41 98.50 KF5 97.86 99.55 97.46 99.38
Average 8379(£541) 92.33(26.0) | 8222(27.3) 92.31(25.4) Average 96.17(+1.27) 98.05(x1.21) | 96.1(+1.03)  98.0(+1.23)
% Data Split 60 % 50% Data Split% 60 % 50%
KF/Models Baseline DWT1111 Baseline DWT1111 KF/Models Baseline DWTI1111 Baseline DWTI1111
KF1 71.56 81.82 67.59 79.91 KF1 93.96 95.66 94.12 95.72
KF2 77.58 88.99 76.07 98.98 KF2 94.96 96.86 94.84 96.96
KF3 82.37 94.11 80.57 92.05 KF3 95.66 98.30 96.48 98.19
KF4 86.26 96.72 86.94 93.72 KF4 96.77 99.25 96.06 98.97

KF5 97.12 99.46 97.23 99.62
fvlziage 2?22 (+6.4) gg:gg( £6.02) %:gi( 473 19;;:3(5)( £6.42) Average 095.69(£1.16)  97.91(£1.44) | 9574( £1.12) 97.89( £1.40)

TABLE 4. A comparison between the classification accuracy attained by
baseline MobileNet and MobileNet- DWT1111 based Mobilenet using
various train-test split ratios on STL-10 dataset.

Dataset | STL-10 Dataset

% Data Split ‘ 80% 70%
KF/Models | Baseline DWTI1111 Baseline DWTI1111
KF1 93.80 93.08 92.67 93.48

KF2 91.10 92.79 92.44 94.88

KF3 93.30 98.29 95.58 97.20

KF4 94.80 97.60 94.88 98.02

KF5 97.10 99.09 97.20 98.60
Average 94.02(x1.95) 96.17(+2.6) | 94.55(x1.80)  96.44(+1.94)
% Data Split ‘ 60% 50%
KF/Models Baseline DWTI1111 Baseline DWTI1111
KF1 93.85 93.28 94.33 91.50

KF2 92.28 96.14 96.50 96.16

KF3 92.71 96.15 93.00 97.66

KF4 95.57 97.14 95.49 97.67

KF5 97.57 97.71 98.16 99.00
Average 04.40(£1.95) 96.08(21.52) | 94.90(x1.183) 96.40(x2.6)

further before the gain turns into loss. In the same case in
Table 2, the gain would be 1.17% (the difference between
94.24% and 93.069%). The higher the AG, the higher the data
saving that can be achieved at the expense of the AG.

In Fig. 5, the whisker plot also compares the distribu-
tion of variations among the different folds for each of the
adopted models. The WP-based model clearly shows less
inter-quartile range (IQR) with regards to precision, recall,
and F1-score at 80%, 70%, and 60%, in addition to achieving
higher median values for the aforementioned performance
metrics. It is worth mentioning that as the values resulting
from the different folds approach a Gaussian distribution, the
mean value approaches the median value. The only exception
is at the 50% case where the WP-based model still achieves
higher median yet the IQR among the different folds is higher.
The higher median values indicate that the training data
saving which was reported in Table 2 (considering accuracy
as the performance metric) generalizes well to other perfor-
mance metrics. Also, given that each whisker plot indicates
the IQR of the distribution, comparing the variance of IQRs
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TABLE 6. A comparison between the classification accuracy attained by
baseline MobileNet and MobileNet-DWT1111 using various train-test
split ratios on land scene remote sensing dataset.

Dataset Land-Use Scene (UCM) Dataset

% Data Split 80% 70% 50%
KF/Models | Baseline DWTI1111 Baseline DWTI1111 Baseline DWT1111
KF1 92.23 96.80 94.13 95.96 89.06 86.83

KF2 97.80 97.19 97.48 98.58 92.48 95.83

KF3 95.76 99.57 98.48 98.69 84.90 98.88

KF4 97.33 98.52 98.37 99.84 96.08 97.70

KF5 97.23 98.57 93.50 98.53 93.29 X

Average 96.07(x2.03)  98.13(x1.005) | 96.39(2.14) 98.32(%£1.27) | 91.16(3.84) 95.59(+4.51)

TABLE 7. A comparison between the classification accuracy attained by
baseline MobileNet and MobileNet-DWT1111 using various train-test
split ratios on the WCE Curated Colon dataset.

Dataset WCE Curated Colon Dataset

% Data Split 80% 70%
KF/Models Baseline DWTI1111 Baseline DWTI1111
KF1 85.93 99.37 95.19 97.01

KF2 99.53 99.84 98.50 99.50

KF3 99.06 99.84 99.33 99.51

KF4 99.68 100.0 99.0 100.0

KF5 99.68 99.68 99.50 100.0
Average 96.78(+5.42)  99.75(+0.21) | 98.0(+5.0) 99.20(x1.11)
% Data Split 60 % 50%
KF/Models Baseline DWTI1111 Baseline DWTI1111
KF1 94.69 99.31 99.65 98.45

KF2 99.65 99.82 75.51 99.82

KF3 99.14 96.06 99.65 99.82

KF4 99.31 100.0 99.82 100.0

KF5 100.0 99.82 99.82 96.81
Average 98.56(x£1.95)  99.00(x1.49) | 94.89(+9.62) 96.98(+5.11)

(for each performance metric separately) at varying sizes of
training data shows that the WP-based model is less sensitive
to variations in the volume of training data compared to the
baseline model.

In Table 3, we show that on CIFAR-10, we can attain a
data saving that exceeds 30% at an AG of 5.91%. Similarly,
in Table 4 on the STL-10 dataset, it is shown that a data saving
that surpasses 30% could be achieved at an AG of 2.38%.
Table 5 on the CINIC-10 dataset features a data saving that
is more than 30% at an AG of 1.72%. Figure 6 shows the
distributions of the precision, recall, and F1-score, obtained
from the five folds, which were attained on CIFAR-10 for the
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FIGURE 11. A comparison between the baseline and the DWT1111 MobileNet according to various performance metrics (precision, recall,

and F1-score) using the Malaria Cell dataset.

TABLE 8. A comparison between the classification accuracy attained by
baseline MobileNet and MobileNet-DWT1111 using various train-test
split ratios on the Malaria Cell dataset.

TABLE 10. A comparison between the Precision, recall, and F1-Score
metrics attained by baseline MobileNet and DWT1111-based Mobilenet
using various training ratios on different datasets.

Dataset Malaria Cell Dataset P TP [owr Reeal [T FlScore
%Data Split 80% 70% ‘o ll-;;:l'l;set e aseline CIFAR-;\:)C ne aseline
KIiModels | Baseline  DWTIIIL _ Baseline  DWTIIN 06 D305(4470 BSO0ESES) | O1RUESKY TOSIGRD | 92430330) R2I5(47.4%
o 3.05(+4.72)  85.60(£5.65) .84(+5.83) .51(+8.81) .43(+5.30) .35(+7.43)
KF1 95.22 95.77 95.92 95.72 60% 92.93(5.15) 84.75(x4.7) | 91.47(26.60) 78.80(x7.89) | 92.17(5.91) 81.57(x6.47)
KF2 94.64 95.95 95.25 96.39 Dataset STL-10
80% 96.26(x2.61) 94.04(x2.09) | 96.6(x2.6)  94.04z2.1) | 962(x2.6)  94.05(x2.0)
KF3 96.28 97.42 96.11 96.35 70% 96.4(1.95)  94.56(x1.78) | 96.44(x1.94) 94.56(x1.80) | 96.44(x1.90) 94.56(+1.78)
KF4 96.30 98.42 96.71 98.03 60% 96.06(x1.53)  94.40(x1.94) | 96.07(x1.54) 94.4(x1.93) | 96.06(x1.53) 94.5(x1.94)
KF5 95.31 98.36 97.45 98.59 Dataset INTEL
80% 9635(x2.34) 93.70(x2.50) | 96.36(x2.35) 93.70(x2.54) | 96.30(x2.50) 93.72(x2.54)
Average 95.55(x0.64)  97.18(x1.13) | 96.29(x0.74) 97.02(x1.09) 70% 96.23(£1.91) 94.08(2.19) | 96.24(+1.90) 94.08(2.20) | 96.22(+1.90) 94.00(+2.1)
< 05(£2. 21(£6.34) | 96.05(x2.20) 91.22(x6.50) | 96.102.2)  91.21(26.34)
%Data Split 60% 50% o0 6.0562.20) o121 )
Dataset Brain Tumor
KF/Models Baseline DWTI1111 Baseline DWT1111 80% 9230(x7.05) 90.28(x6.0) | 9231(x7.0)  90.3(6.0) | 92.2(x7.01)  90.2(6.0)
70% 91.99(£5.94)  89.78(7.85) | 92.0(5.60)  89.79(x7.90) | 91.9(x6.00)  87.79(x7.86)
KF1 95.67 96.27 94.57 96.28 60% 924(x5.6)  8630(x7.10) | 92.42(x5.62) 86.33(x7.13) | 92.4(x5.6)  86.37(x7.10)
KF2 95.43 95.84 94.77 95.80 Dataset Malaria Cells
KF3 96.35 97.34 96.04 96.55 80% 9720(1.13) 95.51(20.66) | 97.21(x1.40) 95.51(20.63) | 97.20(1.13) 95.50(20.65)
: : : : 70% 96.99(1.10)  96.28(x0.75) | 97.0(x1.12)  96.30(£0.76) | 96.9(x1.10)  96.28(+0.74)
KF4 96.64 98.48 96.83 98.13 60% 97.43(£1.20)  96.30(20.62) | 97.44(x1.28) 96.24(x0.6) | 97.4(x1.30)  96.24(+0.63)
KF5 97.14 99.22 97.01 99.07
Average 96.24(+0.626)  97.43(+1.27) | 95.08(x1.01) 97.17(+1.23)

TABLE 9. A comparison between the classification accuracy attained by
baseline MobileNet and MobileNet-DWT1111 based Mobilenet using
various train-test split ratios on the brain tumor dataset.

Dataset Brain Tumor Dataset

% Data Split 80% 70% 50%
KF/Models Baseline DWTI1111 Baseline DWTI1111 Baseline DWTI1111
KF1 81.56 71.97 76.18 81.41 76.49 81.87

KF2 89.07 92.00 90.03 89.35 85.05 93.42

KF3 8743 96.24 90.18 96.95 84.83 92.61

KF4 95.75 97.87 95.76 97.70 92.61 98.003

KF5 97.22 96.56 98.30 95.43 97.40 96.60
Average 90.21(£5.72)  92.13(%7.34) | 90.09(£7.65) 92.02(£5.99) | 87.48(£7.13) 92.50(5.67)

models under consideration—the baseline MobileNet and the
WP-based MobileNet. It can be seen that the WP-based
model achieves higher median values for the precision,
recall, and F1-score. Hence, the training data saving which
was shown in Table 3 generalizes well to other perfor-
mance metrics. Lastly, observing the variance of IQRs of
the whisker plots in Fig. 6 at different percentages of
training data highlights that the WP-based model is less
sensitive to variations in the volume of training data com-
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pared to the baseline model. Similar insights can be drawn
from Fig. 7 and Fig. 8. Particularly, higher median val-
ues of the 50% case for the WP-based than the 80% case
for the baseline model indicates that a data saving vol-
ume similar to that achieved in Table 4 and Table 5 (con-
sidering accuracy as the performance metric) is reflected
in other performance metrics. However, the sensitivity to
data size variations is higher in the WP-based MobileNet
than the baseline MobileNet for these two datasets—STL-10
and CINIC-10.

Towards validating the previously mentioned results on a
wide variety of datasets, we chose a remote sensing dataset in
addition to three diagnostic imaging datasets. The latter fam-
ily of datasets include a colon disease, malaria cell, and brain
tumour datasets. Table 6 shows a performance comparison
between the models under consideration on the Land Scene
remote sensing dataset. Similar to all the previous datasets,
we obtained a training data saving that exceeds 30%. The
Colon Disease dataset (Table 7), the Malaria Cell datasets
(Table 8), and the Brain Tumour dataset (Table 9) feature
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TABLE 11. Comparing the performance of various classification techniques on CIFAR-10, STL-10, CINIC-10, INTEL, WCE Colon, Brain Tumor, Malaria Cells,

and Land Scene (UCM) remote sensing images.

CIFAR-10 INTEL STL-10 CINIC-10
Model Acc. | Model Acc. | Model Acc. | Model Acc.
MobileNet-V2 [34] 79.10 | Xceptionl [35] 87.87 | ResNet29_2x64d [26] 80.61 | VGG-16 [26] 97.77
MobileNet-V1 [23] 79.64 | Xception2 [35] 89.77 | NAT-M4 [36] 92.61 | ResNet-18 [26] 90.27
SqueezeNet [37] 82.36 | Xception3 [35] 90.13 | NAT-M2 [36] 97.2 DenseNet-121 [26] 91.26
Alexnet [38] 82.53 | ResNet50_1 [35] 82.03 | NAT-M3 [36] 97.80 | ResNeXt29_2x64d [26] 91.45
EffNet [34] 83.20 | ResNet50_2 [35] 87.13 | MobileNet [23] 94.02 | NAT-M1 [36] 934
DenseNet121 [37] 83.45 | ResNet50_3 [35] 87.73 | RegNet10B [39] 97.3 | NAT-M2 [36] 94.1
MobileNet-DWT [11] 86.62 | DenseNet169_1 [35] 84.57 | VGG-19bn [40] 95.44 | NAT-M3 [36] 94.3
ResNet-14 [41] 89.0 | DenseNet169_3 [35] 87.83 | FixMatch [42] 94.83 | Efficient Ensembling [43]  95.064
Ours_DWTI1111 92.33 | Ours_DWTI1111 96.34 | Ours_DWTI1111 96.17 | Ours_DWTI1111 98.05

WCE Colon Brain Tumor Malaria Cells Land-Use Scene (UCM)
Model Acc. | Model Acc. | Model Acc. | Model Acc.(50%) Acc.(80%)
SVM [44] 94.83 | [AlexNets]° + SVM [45] 88.35 | VGG-16 [26] 95.85 | PLSA(SIFT) [46] 76.55(x1.11)  71.38(x1.77)
MLP [44] 86.93 | [GoogleNets;]® + SV M [45] 88.69 | VGG-19 [47] 95.92 | GoogleNet [46] 92.70(x0.60)  94.31(+0.89)
InceptionResNetV2 [48] 80.13 | [ShuffleNets, + ShallowNet’] + SV M [45] 91.62 | Xception [47] 95.08 | AlexNet [46] 93.98(+0.67)  95.02(+0.81)
ResNet50V2 84.25 | [ShuffleNet]™ + SV M [45] 94.65 | DenseNet-121 [47] 94.52 | VGGNet-16 [46] 94.14(+0.69)  95.21(+1.20)
Xception 84.50 | [ResNet185]° + SV M [45] 92.02 | DenseNet-169 [47] 93.82 | SPP with AlexNet [49] 94.77(£0.46)  96.67(+0.94)
DenseNet121 84.50 | [ResNet18p + S}mllan(it]O + SV M [45] 92.14 | DenseNet-201 [47] 90.54 | TEX-Net with VGG [50] 94.22 £ (0.50)  95.31%(0.69)
InceptionV3 85.37 | [ResNet18;,]% + SV M [45] 96.76 | Inception-V3 [47] 93.06 | Gated Attention [51] 94.64 +(0.43)  96.12 £ (0.42)
EfficientNetB0O 88.25 | [ResNet18, + ShallowNet]*® + SV M [45] 97.25 | ResNet-50 [47] 95.17 | MIDC-Net CS [52] 95.41 +(0.40)  97.40+(0.48)
MobileNetV2 92.25 | CapsNet [53] 90.89 | ResNet-101 [47] 95.62 | RADC-Net [54] 94.79 +(0.42)  97.05 £ (0.48)
MobileNet 96.78 | Modified-CapsNet [55] 86.56 | ResNet-152 [47] 95.05 | VGG VD16 + SAFF [56] - 97.02 £ (0.78)
MFuRe_CNN [48] 97.75 | SVM [57] 91.14 | SqueezeNet [47] 94.35 | D-CNN with AlexNet [58] - 96.67 £(0.10)
WGS SVM (OACCorr) [44]  97.89 | BMRI-Net-PFpM [59] 98.45 | Proposed in [47] 96.82 | MobileNet 91.16 +(3.84)  96.07 +(2.037)
Ours_DWT1111 99.75 | Ours_DWT1111 92.5 | Ours_DWT1111 97.18 | Ours_DWTI1111 95.59 + (4.51) 98.13 + (1.005)

Training Sets of Brain Tumor Dataset
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FIGURE 12. A comparison between the baseline and the DWT1111 MobileNet according to various performance metrics (precision, recall,

and F1-score) using the brain tumor dataset.

similar results to the Land Scene dataset, in regard to data
saving, with less than 2% accuracy gain in all the datasets.
Finally, Table 10 presents a summary of the performance
metrics on different datasets using various ratios of train-test
splits.

We also considered the other performance metrics (preci-
sion, recall, and F1-score) on the remote sensing and medical
datasets. In Fig. 9, the medians of the whisker plots at 60%
for the WP-based model are less than those of the 80% case
for the baseline model, so the data saving advantage of the
WP-based model does not apply to other performance metrics
for this dataset. By observing the median scores at 70% for
the DWT1111 model, we report an achievable data saving
that is more than 10% yet less than 20%. Also, the sensitivity
to dataset size variations is higher for the WP-based model
than the baseline model.

Figure 10 shows the results of the colon dataset. The saving
lies between 20% and 30% for the three depicted performance
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measures while the sensitivity to dataset size variation of the
WP-base model is higher than that of the baseline model.
On the malaria dataset of Fig. 11, the data saving of the
WP-based model is at an advantage of more than 30% com-
pared to the baseline model. The results on the brain tumour
dataset (Fig. 12) shows a data saving that is approximately
equal to 20%. The sensitivities to dataset size variation for
the two models, on the malaria and brain tumour datasets, are
comparable.

V. CONCLUSION

In this research, we highlighted the potential of wavelet
pooling with regard to improving the training data efficiency
of MobileNets. Wavelet pooling was shown to improve the
performance of deep network models in classification and
segmentation applications. However, its impact on reducing
the amount of training data required to attain a certain per-
formance level, e.g., classification accuracy level, had not
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been explored before. To the best of our knowledge, this
is the first research to investigate the volume of data that
can be saved while training a WP-based model before the
model’s performance levels or degrades to the performance
of another model that adopts conventional pooling. Since the
performance of the model might vary considerably with the
distribution of the dataset under consideration, we ran our
simulations on seven widely adopted datasets for diagnostic
imaging and object recognition. Using a flavor of wavelet
pooling from the recent literature, we have shown an average
training data saving that exceeds 30% when the classification
accuracy is adopted as the metric of performance. When
other metrics such as precision, recall, and Fl-score are
adopted, object recognition datasets feature data savings that
are similar to the case where accuracy is considered, i.e.,
more than 30%. Less data savings though, that exceeds 22%,
were achieved for diagnostic imaging datasets. Our choice
to focus on a light-weight architecture, that stands out where
testing resources are scarce, aimed to stress the potential of
WP in applications with scarce training resources as well. The
findings of this research have significance to other areas of
research that involve constrained learning resources including
edge computing and green Al. Future research directions may
investigate the generalizability of our results to other datasets,
in addition to comparing the attained data efficiency to that
of larger deep models.
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