IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 1 May 2023, accepted 18 May 2023, date of publication 26 May 2023, date of current version 6 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3280477

== RESEARCH ARTICLE

Evaluating Robustness to Noise and Compression
of Deep Neural Networks for Keyword Spotting

PEDRO H. PEREIRA™, WESLEY BECCARO -,
AND MIGUEL A. RAMIREZ"”, (Life Senior Member, IEEE)

Department of Electronic Systems Engineering, Escola Politécnica, University of Sdo Paulo, Sdo Paulo 05508-010, Brazil
Corresponding author: Miguel A. Ramirez (maramire @usp.br)
This work was supported in part by Coordenacio de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) under Grant CAPES-PROEX

0472/2019, and in part by Fundacdo de Amparo a Pesquisa do Estado de Sdo Paulo (FAPESP) under Grant 2018/26455-8 and
Grant 2022/10909-5.

ABSTRACT Keyword Spotting (KWS) has been the subject of research in recent years given the increase
of embedded systems for command recognition such as Alexa, Google Home, and Siri. Performance,
model size, processing time, and robustness to noise are fundamental in these systems. Furthermore,
applications in embedded systems demand computationally efficient models that can be implemented in
current technology. In this work, an approach for keyword recognition is evaluated using three deep learning
models namely LeNet-5, SqueezeNet, and EfficientNet-BO. We evaluate transfer learning, pruning and
quantization strategies in training and test using noisy and clean speech signals. In addition, compression
techniques such as pruning and quantization were assessed in terms of the size reduction of the model
footprint and the accuracy obtained in each case. Using the Google’s Speech Commands dataset and additive
babble noise signal, our keyword recognition approach achieves an accuracy of 94.6% using an unstructured
pruning of 80% of the parameters of the original SqueezeNet network with a reduction of 70% in the model
size.

INDEX TERMS Speech recognition, machine learning algorithms, speech analysis, spectral analysis,
pruning, quantization, keyword spotting.

I. INTRODUCTION

Voice commands are becoming a natural way to interact with
consumer electronic devices [1], [2]. Systems with speech
command recognition such as Amazon’s Alexa, Apple’s
Siri, and Google’s Assistant are examples of this popularity.
These smart devices often use some embedded system (e.g.,
microcontrollers [3], microprocessors, field-programmable
gate arrays, or dedicated devices [4]) with limited resources,
making the implementation of speech recognition algorithms
dependent on hardware limitations [5].

Typically, microcontrollers, the cheapest approach, have
small memory capacity (i.e., a few kilobytes) and require
energy-saving strategies since, in most cases, these edge
devices are always active and they are generally powered
by batteries. Additionally, they must have low latency and

The associate editor coordinating the review of this manuscript and

approving it for publication was Mounim A. El Yacoubi

real-time response not to harm the user experience. There
are also security and privacy concerns when audio is contin-
uously streamed to cloud services, reinforcing the need for
speech recognition, in some cases, to be performed locally
thereby reducing internet data usage.

Given the hardware limitations, there is a need to obtain
low-complexity solutions [6], [7], in other words, models
that are computationally efficient and implementable in real
time [8]. A major obstacle in porting a deep learning model to
an edge device is its high memory consumption, which must
be decreased in order to fit within the device. This may be
brought about with a reduction in the number of parameters,
which, as a positive side effect, increases energy efficiency
by requiring fewer computing operations. Furthermore, the
assessment of the robustness of keyword recognition models
in noisy environments is in high demand [9], [10], [11],
[12]. In this work, we investigate three deep learning mod-
els regarding their robustness to detect keywords with and

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

53224 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-8535-1154
https://orcid.org/0000-0001-6599-2344
https://orcid.org/0000-0002-7107-0888
https://orcid.org/0000-0002-7383-0588

P. H. Pereira et al.: Evaluating Robustness to Noise and Compression of Deep Neural Networks for KWS

IEEE Access

without the addition of babble noise. Considering the trade-
off between complexity and detection performance, we also
evaluate neural network compression techniques using as
reference the best compromise model obtained. This leads
to contributions to the deployment of deep keyword spotting
models on edge devices by means of parameter pruning and
quantization methods.

The novelty of this work can be summarized in three main
contributions. First, in order to exploit the robustness to noise
of deep keyword spotting models, a strategy for training
and testing models by combining inputs with and without
noise is proposed, mapping the behavior of the models in
clean/noisy environments and the influence of the data in the
overall accuracy of each model. Second, a methodology for
analysis of the results obtained with pruning and quantization
methods was deployed, which makes it straightforward to
evaluate how these compression techniques impact the classi-
fication and efficiency metrics of the models and how feasible
they are. Both methods can be used by embedded systems
developers to assess and compare models before the final
implementation. Finally, we demonstrate the advantages of
SqueezeNet architecture [13] compared to the LeNet-5 [14]
and EfficientNet [15] models based on the performance anal-
ysis carried out.

Addressing the issues raised above, this article is structured
as follows: Section II presents theoretical aspects of KWS
and speech representation. The section briefly describes the
Convolutional Neural Networks (CNN) and also exemplifies
some state-of-art deep learning models detailing the LeNet-
5 and two architectures that have shown benefits in small
footprint networks, SqueezeNet and EfficientNet-B0O. Sec-
tion III qualitatively describes the pruning and quantization
techniques. Sections IV and V detail and discuss the exper-
imental setup and the results obtained, respectively. Finally,
Section VI highlights the findings of this paper.

Il. SPEECH REPRESENTATION FOR DEEP KEYWORD
SPOTTING SYSTEMS

A. KEYWORD SPOTTING STRATEGIES

The Dynamic Time Warping (DTW) [16] algorithm was one
of the first strategies for speech recognition. DTW leads to
an optimal alignment between time series under local and
global constraints composed of a forward pass that com-
putes a global distortion and an optional backward pass that
determines the warping function [17]. Another important
technique for continuous speech recognition was introduced
with Hidden Markov Models (HMM) [18], where the state
for a model and its sequence of states are hidden, but during
training the state sequence is estimated along with the state
transition probabilities and the observation probabilities for
each state in the sequence. When testing an utterance, its
sequence of acoustic features, taken as observations, is used
for determining how likely it is to have been generated by
each trained model and the more likely one is selected.

VOLUME 11, 2023

In recent years, improvements in automatic speech recog-
nition (ASR) have been achieved thanks to the evolution of
deep learning techniques [19], motivated by the increase in
computational capacity as well as in available data, allowing
the implementation of complex algorithms. Speech recogni-
tion systems have followed the evolution of machine learning
and recently deep neural networks have become an attractive
choice for ASR and KWS architectures due to their superior
accuracy compared to traditional speech processing and clas-
sifier algorithms. Among the most recent deep neural net-
works for the command recognition task, the convolutional
neural networks (CNN) and the recurrent neural networks
(RNN) stand out.

KWS algorithms are focused on identifying a small set of
pre-defined keywords, being, from the viewpoint of statistical
classification, a reduced task when compared to ASR [20].
Several works in the literature seek to improve KWS, both in
different treatments in the signal pre-processing stage and/or
in improvements in the models. Different databases, imple-
mentation methods, and performance metrics can be found in
the literature.

One of the first papers [21] developed in Google’s labora-
tories employed neural networks for KWS and achieved an
improvement of 45% in relation to previous models that use
HMM. In a later paper, Sainath et al. [22] presented a KWS
strategy using CNN obtaining an improvement between 27%
to 44% in false reject rate when compared to models based
on deep neural networks.

Tucker et al. [23] achieved significant progress in reduc-
ing false alarms without increasing processing and memory
resources in KWS systems using the knowledge distillation
technique, which is a process of transferring knowledge from
a large model to a smaller one.

Zhang et al. [24] presented a study evaluating several
neural network architectures oriented to memory usage, num-
ber of parameters, and operations per second. The Depth-
wise Separable Convolutional Neural Network (DS-CNN)
architecture reached an accuracy of 95.4% in a model with
189.2 kB and 19.8 Million Operations Per Second (MOPS), a
10% better in performance when compared to simple neural
networks with the same number of parameters, considering
the Google’s Speech Commands dataset [25], a widely used
dataset for KWS performance benchmarking.

Majumdar and Ginsburg [26] proposed an end-to-end
deep neural network architecture for efficient speech com-
mand recognition composed of 1D convolutional layers,
batch-normalization layers, Rectified Linear Unit (ReLU)
activation functions, and dropout. The model presents state-
of-the-art accuracy on Google’s Speech Commands dataset
with fewer parameters than models with similar accuracy.
By using intensive data augmentation with auxiliary back-
ground noise during training, the authors demonstrated that
the model can be very robust for recognition even with back-
ground noise.

More recently, Mittermaier et al. [27] employed end-to-
end deep models using as input the raw speech waveforms,

53225

IEEE Access

P. H. Pereira et al.: Evaluating Robustness to Noise and Compression of Deep Neural Networks for KWS

reaching an accuracy of 96.4% with only 62 k parameters
using Sinc-convolution in CNN. Unlike other papers, the
authors did not employ classical time-frequency representa-
tions as the input of the learning models.

B. SPEECH REPRESENTATION AND FEATURE EXTRACTION
Although deep learning models can directly employ the raw
signals as input [27], the strategy of performing feature
extraction for subsequent classification (i.e., feature engineer-
ing) plays a crucial role in the overall performance of the
system since KWS algorithms are very sensitive to the quality
of the feature representation [20]. Many techniques are avail-
able in the literature and one of the more frequent ones is
based on time-frequency representations. Speech signals are
non-stationary. By transforming short segments of the speech
signal into the frequency domain, we highlight the varying
spectral information over time without blurring its evolution
if properly segmented. In a typical approach, the Short-Time
Fourier Transform (STFT) of the signal is calculated as

X, (d'@) - i x[mw[— m]e~m (1)

m=—00

where 7 is the discrete time index that denotes the window
position and @& corresponds to the analysis frequency. The
usual implementation of the STFT is a sequence of Discrete
Time Fourier Transforms (DTFT) of the signal x;[m] =
x[m]w[n — m], that is, a sampled version of the DTFT of the
amplitude-weighted signal, x[m], multiplied by the sliding
window w[n — m] [28].

The discrete STFT,)?;,[k], computed using the Discrete
Fourier Transform (DFT), is a sequence of Fourier transforms
evaluated on a finite set of discrete frequencies wy = 2wk /N
as

L—-1

X, (ei(an/N)) — e TCTHIN S x4 mlwl—m]e ST/
m=0

=X;lkl, k=0,1,...,N —1,)

where L is the length of a non-causal window such that
w[—m] #0onlyin0 <m<L—1andL <N [28].

The visualization of STFT is often performed via its spec-
trogram, which is an intensity plot of STFT magnitude over
time, normally represented with a logarithmic amplitude unit.

Additionally, Mel spectrogram and Mel-Frequency Cep-
stral Coefficients (MFCC) are time-frequency representa-
tions based on the STFT that include aspects of human
auditory perception [29].

In Mel spectrogram, a set of band-pass filters known as
Mel-filter bank are applied to the power spectrum of the
speech signal. The Mel-scale aims to mimic the non-linear
human ear perception of sound, by being more discriminative
at lower frequencies and less at higher frequencies. Consid-
ering X;[k] the DFT of the 7" frame, the Mel-spectrum is

53226

defined as
U,

ME; 7] = Ai 3

k=L,

2
Ve [k1XGK]) 3

where V. [k] is the weighting function for the " filter ranging
from DFT index L, to Uy and A, = Y07, |V, [k]|> is a
normalizing factor for the r Mel-filter, considering r =
1,2,..., R, being R the number of Mel bands [28].

The MFCC is a representation of the short-term power
spectrum of the speech signal, based on a linear cosine trans-
form of the log power spectrum on a Mel scale of frequency,
calculated as

1 (1
mfccy[m]= % E log(MF;[r]) cos[? (r+§) mj| , @
r=1

where the mfcc;[m] is computed varying m from 1 to the total
number of MFCC chosen (usually about 10-25).

In this work, we focus on MFCC and Mel spectrogram as
inputs of the deep learning models since both representations
have proven their efficiency in speech-based classification
tasks and are still the most used features for KWS [20], [30].

C. DEEP NEURAL NETWORKS: LeNet-5, SqueezeNet, AND
EfficientNet

Much of the recent research involving deep neural networks
focuses on increasing accuracy in computer vision datasets by
changing and adding new blocks in the structure of the model,
such as GoogleLeNet [31], DenseNet [32], Vision Trans-
former [33], and VGG networks [34]. Another set of new
architectures has the main objective of obtaining an architec-
ture with a reduced number of parameters in addition to con-
sidering competitiveness related to classification evaluation
metrics. That is the case of the architectures SqueezeNet [13]
and EfficientNet [15].

In general, the initial layers of deep learning models are
implemented using CNN, a specialized kind of neural net-
work for processing data that has a known grid-like topol-
ogy [35]. CNN are invariant to translation, scaling, and elastic
deformations, being widely applied in pattern recognition
tasks. LeNet-5 convolutional neural network is one of the
earliest models based on this approach that has a simple and
effective architecture [14].

The LeNet-5 model consists of 3 convolutional layers,
2 subsampling layers, and 2 fully connected layers. The
architecture was originally conceived for image recognition
(i.e., handwritten digit recognition) and achieved great suc-
cess becoming a reference for deep learning models. In this
work, the LeNet-5 is used as baseline.

The SqueezeNet architecture, in general, employs three
main strategies. The first one is to replace filters (i.e., kernels)
3 x 3 withfilters 1 x 1, as they have 9 times fewer parameters
than a filter 3 x 3. The second one is based on decreasing
the number of input channels, in order to keep a small total
number of parameters in a CNN. It is important not only
to decrease the size of the filters 3 x 3 (first strategy) but

VOLUME 11, 2023

P. H. Pereira et al.: Evaluating Robustness to Noise and Compression of Deep Neural Networks for KWS

IEEE Access

also to decrease the number of input channels using com-
pression layers (squeeze layers). The third strategy is based
on late subsampling, at the end of the network, so that the
convolution layers have large activation maps that are directly
controlled by the size of the input data (e.g., images of size
256 x 256 pixels) and by the choice of layers in the which
downsampling occurs in the architecture [13].

Most commonly, subsampling is performed into CNN
architectures by setting the stride greater than 1 in some of
the convolution layers or via pooling. If the first three layers
of the network have large step sizes, most layers will have
small activation maps. On the other hand, if most layers in the
network have a step equal to 1, and steps greater than 1 are
concentrated at the end of the network, then many layers in
the network will have large activation maps. The intuition is
that large activation maps can lead to greater classification
accuracy.

Another architecture that has shown good results in pattern
recognition tasks is the EfficientNet. The EfficientNet mod-
els, proposed by Tan and Le [15], achieve greater accuracy
and better efficiency compared to other classic CNN archi-
tectures, reducing the number of parameters and the number
of Floating-point Operations per Second (FLOPS), with high
accuracy in classic computer vision datasets such as Ima-
geNet. The authors evaluated strategies for model scaling and
demonstrated, supported by empirical evidence, that scaling
only one dimension (e.g., width) quickly stagnates accuracy
gains. However, coupling this with an increase in the number
of layers (i.e., depth) or input resolution enhances the predic-
tive capability of the models. This implies that network sizing
to increase accuracy must consider a combination of the three
dimensions, employing a scaling method that uniformly mod-
ifies all depth, width, and resolution dimensions of the neural
network layers using a compound coefficient. For example,
if the spatial resolution of the input image is increased, the
number of convolutional layers should also be increased so
that the receptive field is large enough to encompass the
entire image which now contains more pixels. In this way, one
strategy is resizing the architecture together by a compound
factor, as proposed by the EfficientNet architecture.

IIl. PRUNING AND QUANTIZATION TECHNIQUES
Neural network pruning is a technique that removes redun-
dant parameters or neurons that do not contribute signifi-
cantly to the performance of the model. Typically, this condi-
tion occurs when a sizable subset of the weights and biases are
zero or close to zero. Besides, the networks can be retrained
after being pruned. This approach offers the possibility to
escape from local minima and further improve accuracy [36].
Therefore, pruning is an important strategy for reducing com-
putational complexity due to the decrease of the network
size [37] and allows, for example, neural networks to be
deployed in environments such as embedded systems.
Recently, new network pruning techniques have been pro-
posed [38], [39]. Modern pruning techniques can be classi-
fied into dynamic and static. Dynamic pruning determines

VOLUME 11, 2023

at runtime which layers, channels, or neurons will not par-
ticipate in further activity. Static pruning is a network opti-
mization technique that removes neurons, offline, from the
network after training and before inference. In this work,
static pruning was evaluated, since there is greater support
for it by the PyTorch library.

Static pruning can be classified into structured and unstruc-
tured pruning. Unstructured pruning refers to pruning indi-
vidual parameters, weights and biases in linear layers and/or
filters in convolution layers. The idea behind unstructured
pruning is that it is possible to prune parameters with-
out affecting their corresponding structure, hence the name
unstructured pruning. As an alternative to unstructured prun-
ing, structured pruning removes entire structures of parame-
ters. This does not imply that the full parameter set must be
removed, but, for example, in linear weights, it removes entire
rows or columns, or in convolution layers, complete filters.
An additional classification, pruning can be applied per layer
(local) or in multiple/all layers (global).

Static pruning usually has three parts. The first one
is the selection of the parameters to be pruned. The
second is the method of pruning neurons, and, finally,
the optional fine-tuning or retraining. Random selection
and magnitude-based prune are amongst the most popular
methods for finding prunable weights (pruning criterion).
In magnitude-based prune, the least weight parameters are
pruned based on L,-norm, for example. For unstructured
pruning, the criterion of the Lj-norm achieves the smallest
specified number or ratio of parameters to be pruned. Oth-
erwise, in structured mode, the same applies in relation to
the number of structures with the lowest L;-norm instead of
parameters.

An additional step in the pruning technique is to retrain
the neural network once pruned. Retraining can improve the
performance of the pruned network to achieve comparable
accuracy to the original network, but it requires significant
time and computing resources [37].

Another technique to reduce the size of deep learning
models is quantization. Generally, in the context of neural net-
works, quantization works by mapping the weights, biases,
and filters from single-precision floating-point format (fp32)
to low bit-width formats, such as signed integer numbers
stored with 8 bits (int8), thus reducing the total size of the
model and the inference time [40]. The built-in PyTorch
library uses the fp32 as default number representation for
tensor and gint8, quint8, or gint32 for quantization repre-
sentation. Quantized tensors store quantized data in integer
format (int8, uint8, or int32) and quantization parameters like
scale and zero-point.

PyTorch provides three different quantization algorithms,
which differ mainly in what moment they determine the quan-
tization operation. The algorithms are: dynamic quantization,
static quantization, also called Post-Training Quantization
(PTQ), and Quantization-Aware Training (QAT). Although
there are other quantization techniques proposed in the liter-
ature, this work focuses in particular on PTQ.

53227

IEEE Access

P. H. Pereira et al.: Evaluating Robustness to Noise and Compression of Deep Neural Networks for KWS

The function that maps values from floating-point to inte-
ger space is known as mapping function. A commonly used
mapping function is the nonlinear transformation given by
or) = round(§ + Z), where r is the input, and the quan-
tization parameters S and Z are, respectively, the scaling
factor and the zero-point. S can be computed as the ratio of
input range to the output range S = %, where [, 8]
is the interval where permissible inputs lie and [oy, B,] is
the interval in quantized output space that it is mapped to.
For example, considering an 8-bit quantization, the output
range is B, — oy = (2% — 1). The quantization parameter
Z ensures that a 0 in the input space maps perfectly to a 0 in
the quantized space by calculating Z = —(5 — ay).

The process of choosing the input clipping endpoints is
known as calibration. The simplest technique is to record the
running minimum and maximum values and assign them to
o and B, respectively. There are other alternatives to find
these parameters, such as minimization of the Kullback-
Leibler divergence, mean-square-error minimization, or per-
centiles over the input interval based on the histogram [37].
In PyTorch, the module Observer collects statistics on the
input values and calibrates the parameters S and Z. Different
calibrations result in different quantized outputs, and typi-
cally it is necessary to verify empirically which one works
better for the particular application [40].

In dynamic quantization, the weights and biases of the neu-
ral network are quantized once and are held fixed thereafter,
while the quantization of the activation step occurs dynam-
ically along the inference process, with small adjustments
in the scale factor made based on the observed input values
until the conversion is approximately optimal. Basically, this
method multiplies the input values by a scale factor, then
rounds the result to the nearest integer number.

PTQ works by tuning the quantization algorithm on a
set of test data after the initial model training is complete.
This additional inference process is not used to adjust the
model, rather it just adapts the parameters of the quantization
algorithm. This is much more complex than dynamic quanti-
zation, requiring an additional pass over the dataset to work.
In contrast, it is more accurate than static quantization and
gives the algorithm the opportunity to calibrate using real data
at once, rather than having to do it all at runtime.

In QAT, all weights and activations are falsely quantized
during the forward and backward training steps (i.e., float
values are rounded to int8 values, but all calculations still are
made with floating point numbers). Thus, all weight adjust-
ments during training are performed mindfully of the fact
that the model will eventually be quantized. In other words,
the quantization and dequantization simulate the quantization
loss and add it to the training loss during fine-tuning, making
the network more resilient to quantization. In general, QAT
is able to better preserve accuracy and can be an alternative
when PTQ is not enough [41].

Based on good results of PTQ in CNN presented in [42],
we conducted our experiments using this algorithm.

53228

IV. EXPERIMENTAL SETUP

This work involves 8 of the 35 classes provided by the
Google’s Speech Commands dataset [25], specifically the
words: “cat”, “stop”, “dog”, “bird”, “go”, “yes”, “no”’,
and “up”. In order to analyze the robustness of the
speech command classifier, segments of babble noise from
NOISEX-92 database [43] were added to the clean speech
files. Noise, an undesirable component in the message in a
communication process, is often present in the environment
with virtual assistants. In special, babble noise is a signal
made up of the voices of other people nearby and is one of
the most challenging interferences for speech systems, due to
its temporal structure and its similarity with the desired target
speech [44].

Preliminary results show that the accuracy obtained with
Signal-to-Noise Ratio (SNR) levels greater than 10 dB tend
to deliver mostly accurate identifications. Otherwise, SNR
levels lower than 5 dB impose a hard noisy condition, degrad-
ing the keyword recognition even by an attentive listener.
To assess the impact of noise in the speech command clas-
sifier, the models were evaluated with clean speech signals
and at two levels of SNR equal to 5 and 10 dB, respectively,
as shown in Fig. 1. Training and test strategies were also
evaluated by including inputs with and without babble noise.

The dataset was split into training and test subsets consid-
ering the proportion of 80% and 20%, respectively. Speech
files were sampled at a rate of 16 kHz. The speech signals
were segmented in frames of 20 ms overlapped by 50%
(i.e., 10 ms). Each short time frame was windowed by a
Hamming window function. After this, the Mel spectrogram
and the 22 coefficients of MFCC of the speech signal for
each frame were calculated. The use of around 20 MFCC
is common in ASR, although 10-13 coefficients are often
considered sufficient to encode speech signals [45]. In addi-
tion, for recognition tasks, the delta (i.e., first-order deriva-
tive) and delta-delta (i.e., second-order derivative) MFCC
provide additional information about the speech temporal
dynamics; however, increasing the computational cost. The
preprocessing and feature extraction were done in Python
with librosa [46], SciPy, and PyTorch libraries.

The audio files have different durations and generate Mel
Spectrogram and MFCC outputs with different dimensions.
Thus, it was necessary to standardize the network input data
for each set of parameters. A padding with zeros in the orig-
inal signal was considered, having as default dimension the
longest duration of the training set, which is about 1 second.

Three neural networks based on the architectures of
LeNet-5, SqueezeNet, and EfficientNet-BO were evaluated.
EficientNet-BO0 is the base model of the EfficientNet family
and presents a mobile-sized architecture. The LeNet-5 model
was trained from scratch. For SqueezeNet and EfficientNet,
we performed fine-tuning of pre-trained models available
in the PyTorch library. This transfer learning strategy saves
training time and circumvents the need for lots of data. All
models were trained for 50 epochs with a batch size equal

VOLUME 11, 2023

P. H. Pereira et al.: Evaluating Robustness to Noise and Compression of Deep Neural Networks for KWS

IEEE Access

Babble noise

03

SNR: 5 dB or 10 dB

Time (s)
Mel spectrogram

L e e e e -

- 1 Keyword 1
>>-: <820 | | classification |
% ® ! . |
I Metric: I

Lalteind | Accuracy
=<0~ | I |
TR

=< SO/O Efficiency
a | metrics: |
SqueezeNet ! I Number of |

<0 parameters,
= 2828% | | Model size, |
507 | | and Inference |
| L _ _Efﬁcie_ntN_et o I | time |

FIGURE 1. A general pipeline to assess the robustness to noise of the deep learning models: 1) babble noise is added to the speech signal, 2) MFCC or
Mel spectrogram are extracted from the clean/noisy speech signal, 3) each model is trained and tested individually with one of the time-frequency
representation combining inputs with and without babble noise, and 4) the 8 different classes are evaluated in terms of overall accuracy.

0.15 0.3

Speech command signal

e

Time (s)
Mel spectrogram

| W | I Keyword !
I s’ 20\0 | | classification |
s’ 0<o I |

I re'® I Metric:
+0dB q I : I

. | Best compromise model | Accuracy
-20 dB, I ¢ >o\o . I I I
% dBE:> = O>O@:§: |:> Efficiency I
0 1048 | o ® | metrics: |
' | Model pruned | Modelsize, |
| | >, >O\O ® I | and Inference |
| > /O\OW | time

I a @ I | |
| |

IiVIodel pruned and quantizedl

FIGURE 2. Steps to evaluate the pruning and quantization techniques: 1) the original speech signal is transformed into a Mel spectrogram, 2) the best
compromise model (i.e., SqueezeNet) was compared with its pruned and quantized versions in terms of overall accuracy, size, and inference time.

to 128 using the Adam optimizer with learning rate equal to
0.001. Besides, modifications were made in the dimensions
of the input and output layers to adapt the models to the
time-frequency representations and the numbers of classes
(i.e., 8).

As the speech command classes are balanced, the overall
accuracy of the test subset was used as a comparison met-
ric between models [47]. Considering the limitations of the
embedded systems, the MFCC and Mel spectrogram were
tested separately, obtaining accuracy metrics for each input.
We have also evaluated the inference time of the models under
comparison.

The best compromise model obtained from the clas-
sification tests was employed in the analysis of pruning
and quantization techniques. To assess the effect of prun-
ing, the technique of unstructured pruning, which removes
weights and biases in a pointwise manner, and the tech-
nique of structured pruning, which removes weights in
groups (e.g., removing entire filters at once), were eval-
uated. In both cases, the parameters of convolutional and
linear layers were considered. In addition, to analyze the
behavior of quantization, PTQ was evaluated for the selected
model as well as all the pruned networks obtained previ-
ously. In this analysis, we evaluated the accuracy and file
size for all the models pruned and pruned and quantized.

VOLUME 11, 2023

The inference time was estimated for some determined
conditions. Fig. 2 schematically shows the tests carried
out.

It is worth mentioning that the pruning functions in the
PyTorch library work just like a weight mask, assigning
zero to the position of the pruned parameter and one to the
unpruned one. Thus, there are no memory savings associated
with using only pruning techniques. Some accelerators in
hardware and/or software explore sparse neural networks to
improve inference-time [48], [49]. However, this occurs with-
out further contributions to reducing the size of the models.
A viable alternative to evaluate the pruning techniques is
applying algorithms that can efficiently compress the sparse
matrices originating from the pruning process. An exam-
ple of a compression algorithm is gzip, which is based on
the DEFLATE [50], LZ77 [51], and Huffman coding [52]
algorithms. Therefore, even if the pruned neurons are not
actually removed, we can deal with the theoretical estimation
of the models’ size improvement. Besides, some algorithms
are capable to optimize pruned neural networks by extracting
the remaining structure from a pruned model, and removing
all the zeroed-out neurons from the network, obtaining a
simplified model [53]. In this work, gzip compression was
applied to the SqueezeNet architecture before and after global
pruning.

53229

IEEE Access

P. H. Pereira et al.: Evaluating Robustness to Noise and Compression of Deep Neural Networks for KWS

Experiments have been conducted on a Google Colab Pro
virtual machine that provides 16 GB of RAM, an Intel Xeon
CPU 2.20 GHz processor with 2 cores, and a Tesla T4 GPU
accelerator with 16 GB.

V. RESULTS AND DISCUSSION

A. KEYWORD CLASSIFICATION AND EVALUATION OF
ROBUSTNESS

Figure 3 shows an example of Mel spectrogram and MFCC
without and with babble noise for an utterance of the keyword
“stop” by a male speaker. Evaluating the SNR condition
of 5 dB, it can be seen the decrease of gaps and/or dips in
the Mel spectrogram and high intensities in regions outside
the utterance making recognition of the keyword difficult.
In addition, as demonstrated in [44], babble noise and speech
share the same acoustic space when described using MFCC
spectral features. This fact can be seen in the first coefficients
of the MFCC in both conditions (5 and 10 dB SNR), which
can make the distinction between speech versus babble more
difficult.

Table 1 shows the classification results based on MFCC
input. The LeNet-5 architecture, used here as a baseline,
presents lower values of accuracy compared with the other
networks in all combinations performed, also highlighting
the significant decrease in accuracy when raising the addi-
tive noise level for the same combination of training and
test subsets, evidencing the sensitivity of this model when
dealing with noisy signals. It is also possible to observe
that the SqueezeNet and EfficientNet architectures present
similar accuracies in the noise addition combinations, with
reduced loss of accuracy when raising the level of the SNR,
highlighting the robustness of these deep networks when
handling noisy speech signals. In the experiments carried
out with MFCC, the EfficientNet network, trained and tested
with additive noise for an SNR at 5 dB, presented the best
performance with an accuracy of 89.8%.

Table 2 presents the results of classification referring
to the Mel Spectrogram as input. The LeNet-5 architec-
ture still presents the lowest results in all combinations
performed. However, when comparing them with previous
MEFCC results, it is possible to observe an increase in accu-
racy for all combinations of training and test subsets. This
observation is also valid for the SqueezeNet and EfficientNet
architectures, which in addition to presenting similar results,
it was also possible to observe the robustness of these deep
models in terms of adding babble noise at different inten-
sities when trained and tested with another time-frequency
representation. In absolute terms, the noiseless training and
test scenario on the SqueezeNet network performed better,
with 94.9% accuracy. By way of comparison, the three mod-
els with highest accuracy scores obtained with the Google
Speech Commands V2 12 (i.e., the reduced dataset for
12 commands) are respectively the Broadcasting-residual
network (BC-ResNet-8) with accuracy equal to 98.7% [54],
the KWT-3 model, based on Transformer architecture, with

53230

98.56% [55], and the Wav2KWS model with 98.5% [56].
These models use different strategies of speech representation
(e.g., the latent representation based on wav2vec 2.0 [57]
employed as input in the Wav2KWS model) and not all have
size and/or memory restrictions as is the case of KWT-3 and
Wav2KWS models. In addition, Peter et al. [58] compared an
end-to-end keyword spotting model with its trained bit-width
quantized version obtaining respectively accuracy equal to
95.55% and 93.76% for a dataset with 10 commands.

In the condition of training without noise and testing with
noise, both the SqueezeNet and the EfficientNet models did
not show a significant decrease in terms of accuracy for
MEFCC and the Mel Spectrogram inputs, demonstrating that
these models are robust in the presence of babble noise.
On the other hand, the LeNet-5 model showed considerable
degradation in the accuracy results.

The results of the combination of training with noise and
testing without noise demonstrated the generalization capac-
ity of the trained models since the models were able to retain
features from the keywords even under noisy conditions.
Furthermore, it intuits the possibility of using babble noise
as data augmentation.

Table 3 presents a comparative analysis of the models
regarding the number of parameters, inference time, and
the size of networks considering as input the Mel Spec-
trogram (i.e., models with greater number of weights and
biases).

The SqueezeNet architecture presents good results in terms
of the number of parameters, model size, and accuracy,
obtaining 94.9% in accuracy with only 727 k parameters and
size of the model equal to 2.9 MB. Although the number of
parameters of LeNet-5 is smaller when compared to the other
models, the LeNet-5 presented low accuracy. The accuracy
of SqueezeNet is slightly greater than the accuracy of the
EfficientNet, 94.5%. Although the number of parameters of
the EfficientNet is 6.87 times greater than the SqueezeNet,
the inference time for both models is similar. This is expected
since the models of the EfficientNet family are designed to
focus on increasing accuracy performance while minimizing
the overall number of operations required [15], [59]. Con-
sidering file size and accuracy as decision-making metrics
for the choice of deep keyword spotting models, among the
selected one, SqueezeNet can be considered the best compro-
mise model.

Figure 4 illustrates the confusion matrix of the SqueezeNet
architecture trained and tested without babble noise and with
Mel Spectrogram as input. In this condition, the accuracy
achieved 94.9%. From the confusion matrix, the keywords
“up”, “yes”, and ‘“‘cat” present the best values of true
positive rate (TPR), 97.4%, 96.4%, and 96.4%, respectively.
Otherwise, the keywords “stop”, “dog”, “bird”, “go”’, and
“no” present a TPR of 95.9%, 91.4%, 96.2%, 93.5%, and
93.6%, respectively. The SqueezeNet model presented incor-
rect predictions in “cat” and “up”’, “dog” and “‘stop”’, and
“go” and “‘no”, this latter pair with very similar-sounding
words. This same result can also be verified for the other

VOLUME 11, 2023

P. H. Pereira et al.: Evaluating Robustness to Noise and Compression of Deep Neural Networks for KWS IEEEACC@SS

Mel spectrogram - Original signal

+0 dB

-5dB

-10 dB

-15 dB

-20 dB

-25 dB

-30 dB

-35 dB

-40 dB

Time (s)

MFCC - Original signal
22 200

O 4 100
O = = —
& 10 =
6 ' . 0
2 Fi—
9 MFCC - Signal with addition of babble noise (SNR = 5 dB) -100
1 =200
O 14
O L]
£
E 10 =300

R -
. | FEp m————]

MFCC - Signal with addition of babble noise (SNR = 10 dB)

- —-600

mE— 700

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

FIGURE 3. Representations of the Mel spectrogram and MFCC without and with babble noise (SNR equal to 5 and 10 dB) for an utterance of the

keyword “stop” by a male speaker.

TABLE 1. Classification accuracy for training and test data with and without babble noise, considering the MFCC as input of the models. The column “No
noise/No noise” presents the accuracy of the model trained and tested without babble noise, whereas, for example, the column “10 dB SNR/No noise”

describes the accuracy of the models trained on data at SNR level of 10 dB and

tested on data without babble noise.

Training/ | No noise/ | No noise/ No noise/ 5dBSNR/ | 10dB SNR/ | 5dB SNR/ | 10 dB SNR/
Deep Test | Nonoise | 5dBSNR | 10dB SNR No noise No noise 5dB SNR 10 dB SNR
learning model
LeNet-5 78.5% 65.5% 62.7% 52.3% 48.6% 72.3% 67.6%
SqueezeNet 83.4% 84.2% 83.9% 82.8% 81.3% 88.8% 86.5%
EfficientNet-B0 87.1% 85.4% 85.7% 89.2% 87.3% 89.8% 89.1%

TABLE 2. Classification accuracy for training and test data with and without babble noise, considering the Mel spectrogram as input of the models. The

description of the columns follows as presented in Table 1.

Training/ | No noise/ | No noise/ No noise/

5dB SNR/ | 10dB SNR/ | 5dB SNR/ | 10dB SNR/

Deep Test | Nonoise | 5dBSNR | 10dB SNR No noise No noise 5dB SNR 10 dB SNR
learning model
LeNet-5 76.5% 66.4% 62.2% 65.7% 64.7% 78.7% 66.8%
SqueezeNet 94.9% 91.5% 90.1% 90.8% 89.7% 92.1% 91.9%
EfficientNet-B0 94.5% 90.7% 89.3% 92.1% 91.2% 91.3% 90.1%

models and conditions assessed and depicts a typical limi-
tation of the classification models.

Considering that the best compromise results were
obtained with SqueezeNet, the pruning and quantization tech-
niques were evaluated using this model.

B. COMPRESSION OF THE SQUEEZENET MODEL

In general, deep neural networks have a large number of
weights and biases with values very close to zero. In these
cases, these connections contribute little to the model’s infer-
ence. Fig. 5 exemplifies the frequency distribution of the
weights and biases of the SqueezeNet architecture before
and after the pruning (unstructured pruning of 80% of
parameters). From the total number of weights and biases
(i.e., 726,280), 723,627 are between —0.3 and 0.3, that is,
0.3% of the parameters have absolute values greater than
0.3. The largest and smallest values found are 4.44542 and
—1.4677583, respectively.

VOLUME 11, 2023

The first pruning technique applied was the structure one,
using LnStructured method from PyTorch, which prune entire
(currently unpruned) channels in a tensor based on their
Li-norm. As pointed out in Section IV, after pruning, a fine
adjustment of the network was performed, retraining the
model for additional 5 epochs.

Table 4 presents the number of non-zero parameters, the
size of the model (after compressed by the gzip algorithm),
and the results of accuracy for tests varying pruning from 0%
(original model) to 95%. By pruning up to 50% of the network
channels, the accuracy after the fine adjustment undergoes a
small deterioration of about 1.4% when compared to the net-
work without pruning. When pruning 60% of the parameters,
however, the accuracy drops dramatically to 15.6%. At the
same time, it was possible to observe that approximately half
of the non-zero parameters preserved the prediction condition
satisfactorily.

The second pruning technique applied was the unstruc-
tured one, using Llunstructured method from PyTorch.

53231

IEEE Access

P. H. Pereira et al.: Evaluating Robustness to Noise and Compression of Deep Neural Networks for KWS

TABLE 3. Comparative analysis of the models LeNet-5, SqueezeNet, and EfficientNet-B0 in terms of number of parameters, size (MB), inference time, and
accuracy, considering Mel spectrogram as input of the models and training and test datasets without babble noise. Inference time (mean =+ standard
deviation) obtained with the input of one sample and models loaded only in the Central Processing Unit (CPU).

Deep learning model Number of File size | Inference time (ms) | Accuracy
parameters
LeNet-5 ~680 k 2.7MB 0.96 £ 0.22 76.5%
SqueezeNet ~727k 2.9MB 26.89 +3.72 94.9%
EfficientNet-B0 ~5M | 21.0 MB 23.99 + 3.38 94.5%
TABLE 4. Structured pruning of the SqueezeNet model. Number of
cat L 2 & A 0 oA non-zero parameters and accuracy of the model after pruning entire
0.5% | 11% 1% L7% 0% 1.9% layers and channels based on their L, -norm. The original model is
indicated as 0%. For the pruned conditions, accuracy is the mean
stop 394 1 0 0 2 0 2 achieved across 5 different trained models.
95.9% 0% 0% 0.5% 0% 0.5%
Channels | Number of non-zero | File size | Accuracy after
. 5 1 3 0 runed arameters Z fine-tunin
do 12% | 02% | 0.7% | 0% P P (e2ip) ¢
0% 727k 2.6 MB 94.9%
2 o 10% 655k 2.4 MB 94.4%
& bird | 1 : i P ;) o 209 580k | 2.2MB 95.4%
O P 05% | 02% | 1.4% |MIPYM 0.5% 0% o : a7
5 30% 510k 2.0 MB 94.7%
«S‘ 2 1 3 40% 436 k 1.8 MB 94.6%
O 0 yso | 02% | 41% 50% 365 k 1.5 MB 93.5%
60% 293k 1.3 MB 15.6%
0 0 1 70% 218k 1.1 MB 15.2%
yes 0% 0% 0.5% 80% 148k | 0.79 MB 15.3%
90% 73k | 0.36 MB 15.2%
0 1 9 95% 37k | 0.36 MB 15.2%
0% | 02% | 0.9%
TABLE 5. Unstructured pruning of the SqueezeNet model. Number of
up B A A : 0 Al non-zero parameters and accuracy of the model after pruning units of
05% | 17% | 0.9% | 11% | 0.7% 0% 9747 weights and biases by zeroing out the ones with the lowest L;-norm. The
: ; - o os u original model is indicated as 0%. For the pruned conditions, accuracy is
cat stop dog bird & i 1o v the mean achieved across 5 different trained models.

Target Class

FIGURE 4. Confusion matrix with absolute values and relative
percentages to evaluate the performance of the SqueezeNet model (best
compromise model) trained and tested without babble noise and with
Mel Spectrogram as input. The rows hereby indicate the output class,
corresponding to the SqueezeNet output, whereas the columns indicate
the target (i.e., real class).

This pruning technique operates on the units of each tensor
zeroing out those with the lowest Lj-norm. With a similar
approach to the previous one, experiments varying prun-
ing from 0% (original model) to 95% in the proportion of
parameters were considered. As previously described, a fine
adjustment of the network was performed after pruning,
retraining the model for additional 5 epochs. Table 5 presents
the number of non-zero parameters of the model, the size of
the compressed model, and the accuracy obtained.

Pruning up to 80% of the network parameters causes a
small deterioration in the accuracy of the model of around
0.4% when compared to the network without pruning. It is
interesting to highlight an increase in the accuracy in cases
of pruning rate equal to 10%, 20%, 30%, and 50% reaching
more than 95%, suggesting an improvement in the general-
ization capacity of these models, however, this fact requires
further experiments to validate this hypothesis. When pruning
90% of the parameters, the accuracy drops by about 7.2%
when compared to the original model. Thus, one can observe
that 10% of the parameters, about 75 k non-zero weights
and biases preserve the network prediction satisfactorily.

53232

Parameters | Number of non-zero | Filesize | Accuracy after
pruned parameters (gzip) fine-tuning
0% 727k 2.6 MB 94.9%
10% 654 k 2.5 MB 95.1%
20% 581k 2.3 MB 95.0%
30% 509 k 2.1 MB 95.3%
40% 437k 1.8 MB 94.7%
50% 364 k 1.6 MB 95.4%
60% 292k 1.4 MB 94.8%
70% 220k 1.1 MB 94.5%
80% 147k | 0.84 MB 94.6%
90% 75k | 0.39 MB 87.7%
95% 39k | 0.39 MB 21.3%

Otherwise, the accuracy dropped out to 21.3% when 95%
of the parameters were pruned, demonstrating the limits of
this procedure. Fig. 6(b) comparatively illustrates the accu-
racy results with the structured and unstructured pruning
approaches.

Figure 6(a) presents the results of the gzip compression
applied in the SqueezeNet model after unstructured and struc-
tured pruning. A linear behavior between the percentage of
pruning and the model size obtained with gzip compression
can be observed for both unstructured and structured pruning
techniques from 0% (i.e., SqueezeNet model without pruning
and after compression) to 90%. The compressed models with
structured pruning are a little smaller, but in the pruning
conditions of 40% and 70%, they presented equivalent sizes.
For the case of structured pruning of 50%, the size obtained
was 1.5 MB, that is, a reduction of 42.3% when compared

VOLUME 11, 2023

P. H. Pereira et al.: Evaluating Robustness to Noise and Compression of Deep Neural Networks for KWS

IEEE Access

Original distribution of weights and biases values

[=2}
f=}
=3
f=}

ot
[l
[=3
f=}

4000

2000

1000

Frequency (Number of parameters)
g
(=3
(=)

—-0.3 —-0.2 -0.1 0.0 0.1 0.2 0.3
‘Weights and biases values

Frequency (Number of parameters)

Distribution of weights and biases values after pruning

f=2}
j==l
f=4
f=}

5000

4000

3000

2000

1000

0 A_L-‘

—0.3 —0.2 —0.1 0.0 0.1 0.2 0.3
Weights and biases values

FIGURE 5. Histograms of the weights and biases obtained after training the SqueezeNet network (original distribution of weights and biases values) and
after pruning of 80% of parameters (unstructured pruning and fine-tuning). Histograms constructed using a number of bins equal to 1000 in the range of

—0.3 to 0.3.

with the 2.6 MB of the original model, described in Fig. 6
with 0% of pruning. For the case of unstructured pruning of
80%, the size obtained was 0.84 MB, that is, a reduction of
67.7% when compared with the 2.6 MB of the original model.
It is worth mentioning that the original size of the model is
2.9 MB and the size obtained after gzip is equal to 2.6 MB.

To analyze the behavior of SqueezeNet with quantization,
the technique of PTQ was evaluated. As previously described,
PTQ involves not only converting the parameters from fp32 to
int8 but also using the training data in batches on the network
and computing the distributions resulting from the different
activations. Specifically, this is done by inserting observer
modules at different points that record this data. These dis-
tributions are used to determine how different activations
should be quantized during inference. A simple technique
would simply be to divide the entire range of activations into
256 levels. This additional step allows passing quantized val-
ues between operations instead of converting these values to
float—and then back to int—between each operation, result-
ing in a significant speed up. Three observers provided in
PyTorch were evaluated: the MinMaxObserver, which com-
putes the quantization parameters based on tensor min/max
statistics; the MovingAverageMinMaxObserver, based on the
moving averages of min/max of the incoming tensors; and
HistogramObserver, that searches for the min/max values
ensuring the minimization of the quantization error with
respect to the floating point model. Empirically, the His-
togramObserver showed better results in preliminary tests,
and, therefore, was employed in the experiments.

Tables 6 and 7 present the comparison of model size and
accuracy after applying the quantization in structured and
unstructured pruned models, respectively. There is a consid-
erable reduction of 73.4% in the size of the models (original
to quantized) with the use of quantization as pointed out
in Fig. 7(a). However, for a pruning rate of 30%, accuracy
decreases considerably from 94.9% to 76.4% in the structured

VOLUME 11, 2023

TABLE 6. File size (original and after gzip compression) and accuracy of
the structured pruned SqueezeNet before and after the PTQ. For the
quantized and pruned conditions, accuracy is the mean achieved across
5 different trained models.

SqueezeNet model File size File s1ze Accuracy
(8zip)
0% Original (fp32) 2.9 MB 2.6 MB 94.9%
Quantized (0% pruned) 0.77MB | 0.56 MB 76.4%
Quantized (10% pruned) | 0.77 MB | 0.56 MB 73.6%
Quantized (20% pruned) | 0.77 MB | 0.54 MB 68.7%
Quantized (30% pruned) | 0.77MB | 0.51 MB 68.4%
Quantized (40% pruned) | 0.77 MB | 0.47 MB 54.6%
Quantized (50% pruned) | 0.77 MB | 0.43 MB 57.7%
Quantized (60% pruned) | 0.77 MB | 0.38 MB 15.3%
Quantized (70% pruned) | 0.77MB | 0.31 MB 15.6%
Quantized (80% pruned) | 0.77MB | 0.24 MB 15.4%
Quantized (90% pruned) | 0.77 MB | 0.10 MB 15.2%
Quantized (95% pruned) | 0.77 MB | 0.09 MB 15.2%

pruning and from 94.9% to 73.4% in the unstructured prun-
ing (i.e., a reduction of approximately 19.5% and 22.6%,
respectively) as can also be seen in Fig. 7(b). Comparing
the results obtained in Tables 5 and 7, for an unstructured
pruning with a rate equal to 80% it was possible to achieve
an accuracy of 94.6%, even though, after quantization, the
accuracy drops to 57.3%, demonstrating the limitations of the
quantization. In general, the accuracy was negatively affected
by the quantization.

Figure 7(a) also describes how the size of the models after
compressed by the gzip algorithm monotonically decreases
achieving, for example, 0.09 MB for the case of quantiza-
tion of the SqueezeNet model structured pruned with a rate
equal 95%.

Different from Fig. 6(b), in which the accuracy remained
approximately constant up to a pruning rate of 90% for the
case of unstructured pruning and up to 50% for structured
pruning, in Fig. 7(b), for both pruning methods, there is a
decrease in accuracy for all the quantized and pruned models
when compared to the original model only quantized (i.e.,
quantized and 0% pruned).

53233

IEEE Access

P. H. Pereira et al.: Evaluating Robustness to Noise and Compression of Deep Neural Networks for KWS

—8— Unstructured pruning (gzip)

Structured pruning (gzip)

2.6 : l l

2.4 4 i +

2.2 :
2 20

File size

.0 T T T T
0% 10% 20% 30% 40% 50% 60% T0% 80% 90% 100%
Pruned parameters (%)

(a)

100% -
———— e T =k

90% =
80%
70%

\
\\
60%
|
|
|
1

50%
40%
30%

Accuracy

20% 1 I Unstructured pruning (gzip)
10% Structured pruning (gzip)
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Pruned parameters (%)

(b)

FIGURE 6. Evaluation of (a) File size (gzip) and (b) Accuracy versus percentage of pruned parameters of the SqueezeNet model obtained after the
unstructured (solid blue line) and structured (dashed orange line) pruning. Error bars are within one standard deviation around the mean.

2.6 1 =~ Unstructured pruning (gzip)

2.4 1

2.2 1
Original (fp32)
model

Structured pruning (gzip)

File size (MB
5

- 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Quantized and pruned parameters (%)

(a)

100%
I

90% Original (fp32)

80% 1 model

T Unstructured pruning (gzip)
Structured pruning (gzip)

0% e
50% x\\
40% \
30%
Nt

20% 1
10%

Accuracy

0%

0% 10% 20% 30% 40% 50% 60% T0% 80% 90% 100%
Quantized and pruned parameters (%)

(b)

FIGURE 7. Evaluation of File size (gzip) and (b) Accuracy versus percentage of quantized and pruned parameters of the SqueezeNet model obtained
after the unstructured (solid blue line) and structured (dashed orange line) pruning. By way of comparison, the results of file size and accuracy obtained
with the original model are also indicated at 0%. Error bars are within one standard deviation around the mean.

TABLE 7. File size (original and after gzip compression) and accuracy of
the unstructured pruned SqueezeNet before and after the PTQ. For the
quantized and pruned conditions, accuracy is the mean achieved across
5 different trained models.

SqueezeNet model File size File s1ze Accuracy
(8zip)
0% Original (fp32) 2.9MB 2.6 MB 94.9%
Quantized (0% pruned) 0.77MB | 0.56 MB 73.4%
Quantized (10% pruned) | 0.77 MB | 0.55 MB 71.2%
Quantized (20% pruned) | 0.77 MB | 0.54 MB 65.6%
Quantized (30% pruned) | 0.77MB | 0.51 MB 68.7%
Quantized (40% pruned) | 0.77 MB | 0.48 MB 63.2%
Quantized (50% pruned) | 0.77 MB | 0.43 MB 64.8%
Quantized (60% pruned) | 0.77 MB | 0.38 MB 62.4%
Quantized (70% pruned) | 0.77 MB | 0.32 MB 63.4%
Quantized (80% pruned) | 0.77 MB | 0.24 MB 57.3%
Quantized (90% pruned) | 0.77MB | 0.11 MB 21.2%
Quantized (95% pruned) | 0.77 MB | 0.10 MB 20.7%

Table 8 presents the inference time for the original
SqueezeNet, 80% unstructured pruned SqueezeNet, and 80%
unstructured pruned SqueezeNet with additional PTQ. The
selection of these models was not arbitrary. They represent
approximately the values computed for the other pruning
and quantization cases tested. In summary, due to caveats
of the pruning functions of the PyTorch library, the same
inference times are obtained for other pruning rates (approx-
imately 24 ms) and other quantization and pruned conditions
(approximately 9 ms). Based on the results described in the

53234

TABLE 8. Inference time (s) measured for the original (dense)
SqueezeNet model, unstructured pruned (80%) SqueezeNet, and
unstructured pruned (80%) SqueezeNet with PTQ. Inference time (mean
+ standard deviation) obtained with the input of one sample and models
loaded only in the CPU.

SqueezeNet model Inference time (ms)
Original (fp32) 26.89 £+ 3.72
80% pruned 24.47 £+ 1.46
Quantized (80% pruned) 9.12 £ 1.19

Table 8, there is a small improvement in inference time with
the pruned model when compared to the original one, due
to the strategy of assigning zeros to the parameters of the
model performed by PyTorch. Otherwise, PTQ speeds up
the inference time by 66% when compared to the original
model, demonstrating a tradeoff of the quantization algorithm
since, while the quantization decreases the model size and the
inference time, the accuracy is partially affected.

VI. CONCLUSION

Voice-controlled devices are dependent on models that are
implementable in real time and work even in noisy envi-
ronments. This work presents initially an evaluation of
the robustness to noise of the LeNet-5, SqueezeNet, and
EfficientNet-BO models, applied in the KWS task. We have
tested 8 classes from Google’s Speech Commands dataset
with additive babble noise at SNR levels of 5 and 10 dB.
Experiments have also been conducted on clean speech.

VOLUME 11, 2023

P. H. Pereira et al.: Evaluating Robustness to Noise and Compression of Deep Neural Networks for KWS

IEEE Access

SqueezeNet and EfficientNet-BO models did not show a
significant decrease in accuracy in the presence of babble
noise, demonstrating that these models preserve the ability
to recognize keywords even in noisy environments. Based on
the models and conditions presented throughout the article,
the results indicate the SqueezeNet architecture as the best
compromise model, which combined good accuracy with a
small number of parameters (i.e., size). Based on this model,
we have assessed some pruning and quantization techniques.
As demonstrated with the SqueezeNet architecture, a reduc-
tion of 80% of the parameters by unstructured pruning tech-
nique did not affect significantly the accuracy of the model,
decreasing from 94.9% to 94.6%. Although PTQ improved
the performance of SqueezeNet in terms of size and inference
time, the algorithm negatively affected the performance of the
model in terms of accuracy, which suggests a limitation of the
quantization strategy. Therefore, as shown in the results, the
pruning technique allows greater compression of the mod-
els along with insignificant loss of accuracy. However, this
approach is still limited to the few hardware and/or software
resources for optimization and simplification of models or
algorithms to speed up the calculation of sparse matrices.
On the other hand, PTQ significantly reduces the size of the
models, however, adversely affecting their accuracy. Strate-
gies for optimizing the calculation of integer and/or rational
fixed-point parameters have been widely explored in digital
signal processors, which makes the quantization technique a
possible strategy for embedded systems. Finally, both tech-
niques still require more research to boost the use of deep
learning models in embedded systems.

REFERENCES

[1] S.Leem,I. Yoo, and D. Yook, ‘“Multitask learning of deep neural network-
based keyword spotting for IoT devices,” IEEE Trans. Consum. Electron.,
vol. 65, no. 2, pp. 188-194, May 2019.

[2] 1. Lépez-Espejo, Z. Tan, J. H. L. Hansen, and J. Jensen, “Deep spoken
keyword spotting: An overview,” IEEE Access, vol. 10, pp. 4169-4199,
2022.

[3]1 G. Cerutti, L. Cavigelli, R. Andri, M. Magno, E. Farella, and L. Benini,
“Sub-mW keyword spotting on an MCU: Analog binary feature extraction
and binary neural networks,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 69, no. 5, pp. 2002-2012, May 2022.

[4] W. Shan, M. Yang, T. Wang, Y. Lu, H. Cai, L. Zhu, J. Xu, C. Wu, L. Shi,
and J. Yang, “A 510-nW wake-up keyword-spotting chip using serial-FFT-
based MFCC and binarized depthwise separable CNN in 28-nm CMOS,”
IEEE J. Solid-State Circuits, vol. 56, no. 1, pp. 151-164, Jan. 2021.

[5] Y. Gong, Y. Li, X. Ding, H. Yang, Z. Zhang, X. Zhang, W. Ge,
Z. Wang, and B. Liu, “QCNN inspired reconfigurable keyword spotting
processor with hybrid data-weight reuse methods,” IEEE Access, vol. 8,
pp. 205878-205893, 2020.

[6] T. Heittola, A. Mesaros, and T. Virtanen, ““Acoustic scene classification in
DCASE 2020 challenge: Generalization across devices and low complexity
solutions,” 2020, arXiv:2005.14623.

[7] 1. Martin-Morat6, F. Paissan, A. Ancilotto, T. Heittola, A. Mesaros,
E. Farella, A. Brutti, and T. Virtanen, ‘“Low-complexity acoustic scene
classification in DCASE 2022 challenge,” 2022, arXiv:2206.03835.

[8] C. Bucilua, R. Caruana, and A. Niculescu-Mizil, “Model Compression,”
in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Min-
ing. New York, NY, USA: Association for Computing Machinery, 2006,
pp. 535-541.

[9] D. Kim, K. Ko, D. K. Han, and H. Ko, “Discriminatory and orthogonal
feature learning for noise robust keyword spotting,” IEEE Signal Process.
Lett., vol. 29, pp. 1913-1917, 2022.

VOLUME 11, 2023

(10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]
(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

1. Lopez-Espejo, Z. Tan, and J. Jensen, ““‘A novel loss function and training
strategy for noise-robust keyword spotting,” IEEE/ACM Trans. Audio,
Speech, Language Process., vol. 29, pp. 2254-2266, 2021.

A. Mohanty, A. Frischknecht, C. Gerum, and O. Bringmann, “Behavior of
keyword spotting networks under noisy conditions,” in Artificial Neural
Networks and Machine Learning ICANN, 1. Farkas, P. Masulli, S. Otte,
and S. Wermter, Eds. Cham, Switzerland: Springer, 2021, pp. 369-378.
H.-J. Park, P. Zhu, I. L. Moreno, and N. Subrahmanya, “Noisy student-
teacher training for robust keyword spotting,” in Proc. Interspeech,
Aug. 2021, pp. 331-335.

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and <0.5MB model size,” 2016, arXiv:1602.07360.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for con-
volutional neural networks,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 6105-6114.

H. Sakoe and S. Chiba, “Dynamic-programming approach to continuous
speech recognition,” in Proc. Int. Congr. Acoust., 1971, pp. 65-69.

C. Kim and K.-D. Seo, “Robust DTW-based recognition algorithm for
hand-held consumer devices,” IEEE Trans. Consum. Electron., vol. 51,
no. 2, pp. 699-709, May 2005.

L. R. Rabiner, “A tutorial on hidden Markov models and selected appli-
cations in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257-286,
Feb. 1989.

P. Busia, G. Deriu, L. Rinelli, C. Chesta, L. Raffo, and P. Meloni, ““Target-
aware neural architecture search and deployment for keyword spotting,”
IEEE Access, vol. 10, pp. 40687-40700, 2022.

D. B. de Souza, K. J. Bakri, F. d. S. Ferreira, and J. Inacio, “Multitaper-mel
spectrograms for keyword spotting,” IEEE Signal Process. Lett., vol. 29,
pp. 2028-2032, 2022.

G. Chen, C. Parada, and G. Heigold, “Small-footprint keyword spotting
using deep neural networks,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2014, pp. 4087-4091.

T. N. Sainath and C. Parada, ‘“Convolutional neural networks for small-
footprint keyword spotting,” in Proc. Interspeech, Sep. 2015, pp. 1-5.

G. Tucker, M. Wu, M. Sun, S. Panchapagesan, G. Fu, and S. Vitaladevuni,
“Model compression applied to small-footprint keyword spotting,” in
Proc. Interspeech, Sep. 2016, pp. 1878-1882.

Y. Zhang, N. Suda, L. Lai, and V. Chandra, ““Hello edge: Keyword spotting
on microcontrollers,” 2018, arXiv:1711.07128.

P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” 2018, arXiv:1804.03209.

S. Majumdar and B. Ginsburg, ‘“MatchboxNet: 1D time-channel separable
convolutional neural network architecture for speech commands recogni-
tion,” 2020, arXiv:2004.08531.

S. Mittermaier, L. Kiirzinger, B. Waschneck, and G. Rigoll, “Small-
footprint keyword spotting on raw audio data with sinc-convolutions,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
May 2020, pp. 7454-7458.

R.L. Rabiner and W. R. Schafer, Theory and Applications of Digital Speech
Processing. Upper Saddle River, NJ, USA: Pearson, 2011.

S. S. Stevens, J. Volkmann, and E. B. Newman, “A scale for the measure-
ment of the psychological magnitude pitch,” J. Acoust. Soc. Amer., vol. 8,
no. 3, pp. 185-190, Jan. 1937.

Z. K. Abdul and A. K. Al-Talabani, “Mel frequency cepstral coefficient
and its applications: A review,” IEEE Access, vol. 10, pp. 122136-122158,
2022.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1-9.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ‘“Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 2261-2269.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x 16 words: Trans-
formers for image recognition at scale,” 2020, arXiv:2010.11929.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

53235

IEEE Access

P. H. Pereira et al.: Evaluating Robustness to Noise and Compression of Deep Neural Networks for KWS

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]
[52]

[53]

[54]

[55]

[56]

[57]

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016. [Online]. Available:
http://www.deeplearningbook.org

B. Choi, J.-H. Lee, and D.-H. Kim, “Solving local minima problem
with large number of hidden nodes on two-layered feed-forward artificial
neural networks,” Neurocomputing, vol. 71, nos. 16—18, pp. 3640-3643,
Oct. 2008.

T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “‘Pruning and quanti-
zation for deep neural network acceleration: A survey,” Neurocomputing,
vol. 461, pp. 370-403, Oct. 2021.

D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag, “What is the state of
neural network pruning,” Mar. 2020, arXiv:2003.03033.

A. Gholami, S. Kim, Z. Dong, Z. Yao, W. Michael Mahoney, and
K. Keutzer, “A survey of quantization methods for efficient neural network
inference,” Jun. 2021, arXiv:2103.13630.

S. Subramanian. (Feb. 8, 2022). Practical Quantization in
PyTorch. PyTorch. Accessed: May 30, 2023. [Online]. Available:
https://pytorch.org/blog/quantization-in-practice/

R. Krishnamoorthi, J. Reed, M. Ni, C. Gottbrath, and S. Weidman.
(Mar. 26, 2020). Introduction to Quantization on PyTorch. PyTorch.
Accessed: May 30, 2023. [Online]. Available: https://pytorch.org/
blog/introduction-to-quantization-on-pytorch/

R. Krishnamoorthi, ‘“‘Quantizing deep convolutional networks for efficient
inference: A whitepaper,” 2018, arXiv:1806.08342.

A. Varga and H. J. M. Steeneken, “Assessment for automatic speech
recognition: II. NOISEX-92: A database and an experiment to study the
effect of additive noise on speech recognition systems,” Speech Commun.,
vol. 12, no. 3, pp. 247-251, Jul. 1993.

N. Krishnamurthy and J. H. L. Hansen, “Babble noise: Modeling, analysis,
and applications,” IEEE Trans. Audio, Speech, Language Process., vol. 17,
no. 7, pp. 1394-1407, Sep. 2009.

A. Hagen, D. A. Connors, and B. L. Pellom, “The analysis and design
of architecture systems for speech recognition on modern handheld-
computing devices,” in Proc. 1st IEEE/ACM/IFIP Int. Conf. Hardw./Softw.
Codesign Syst. Synth. (CODES+1SSS), 2003, pp. 65-70.

B. McFee, C. Raffel, D. Liang, D. Ellis, M. McVicar, E. Battenberg, and
O. Nieto, “Librosa: Audio and music signal analysis in Python,” in Proc.
14th Python Sci. Conf., 2015, pp. 18-25.

A. Tharwat, “Classification assessment methods,” Appl. Comput. Infor-
mat., vol. 17, no. 1, pp. 168-192, Jan. 2021.

C. Zhu, K. Huang, S. Yang, Z. Zhu, H. Zhang, and H. Shen, “An efficient
hardware accelerator for structured sparse convolutional neural networks
on FPGAs,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28,
no. 9, pp. 1953-1965, Sep. 2020.

X. Zhou, Z. Du, S. Zhang, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo,
T. Chen, and Y. Chen, “Addressing sparsity in deep neural networks,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 10,
pp. 1858-1871, Oct. 2019.

P. Deutsch, DEFLATE Compressed Data Format Specification Version 1.3,
document RFC 1951, 1996, pp. 1-17.

J. Ziv and A. Lempel, ““A universal algorithm for sequential data compres-
sion,” IEEE Trans. Inf. Theory, vol. IT-23, no. 3, pp. 337-343, May 1977.
D. Huffman, “A method for the construction of minimum-redundancy
codes,” Proc. IRE, vol. 40, no. 9, pp. 1098-1101, Sep. 1952.

A. Bragagnolo and C. A. Barbano, “Simplify: A Python library for
optimizing pruned neural networks,” SoftwareX, vol. 17, Jan. 2022,
Art. no. 100907.

B. Kim, S. Chang, J. Lee, and D. Sung, “Broadcasted residual learn-
ing for efficient keyword spotting,” in Proc. Interspeech, Aug. 2021,
pp. 4538-4542.

A. Berg, M. O’Connor, and M. T. Cruz, “Keyword transformer: A self-
attention model for keyword spotting,” in Proc. Interspeech, Aug. 2021,
pp. 4249-4253.

D. Seo, H. Oh, and Y. Jung, “Wav2KWS: Transfer learning from
speech representations for keyword spotting,” IEEE Access, vol. 9,
pp. 80682-80691, 2021.

A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “Wav2Vec 2.0: A
framework for self-supervised learning of speech representations,” in Proc.
34th Int. Conf. Neural Inf. Process. Syst., Red Hook, NY, USA: Curran
Associates, 2020, pp. 2449-2460.

53236

[58] D. Peter, W. Roth, and F. Pernkopf, ““End-to-end keyword spotting using
neural architecture search and quantization,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), May 2022, pp. 3423-3427.

[59] D.Masters, A. Labatie, Z. Eaton-Rosen, and C. Luschi, “Making efficient-
Net more efficient: Exploring batch-independent normalization, group
convolutions and reduced resolution training,” 2021, arXiv:2106.03640.

PEDRO H. PEREIRA received the B.Sc. degree
in electronics engineering from the Sao Carlos
School of Engineering, University of Sao Paulo,
Brazil, in 2017, with a sandwich year at the Uni-
versity of Limerick, Ireland.

He was a Data Scientist with IBM from 2017
to 2022. He is currently an Associate Researcher
with the Escola Politécnica, University of Sdo
Paulo, and a Lead Data Scientist with Dell Tech-
nologies. His research interests include machine
learning, digital signal processing, and embedded systems.

WESLEY BECCARO received the B.Sc., M.Sc.,
and Ph.D. degrees in electrical engineering from
Escola Politécnica, University of Sdo Paulo,
in 2008, 2012, and 2017, respectively.

His research interests include digital signal
processing, machine learning, instrumentation,
embedded systems, and fuel qualification. He has
authored or coauthored over 50 journals and con-
ference articles in these areas.

MIGUEL A. RAMIREZ (Life Senior Member,
IEEE) received the B.S. degree in electronics engi-
neering from Instituto Tecnoldgico de Aerondu-
tica, Brazil, in 1980, the degree in electronic design
engineering from the Philips International Insti-
tute, The Netherlands, in 1981, and the M.S. and
Ph.D. degrees in electrical engineering and the
Habilitation degree in signal processing from the
University of Sdo Paulo, Brazil, in 1992, 1997, and
2006, respectively.

He was the Engineering Development Group Leader for Interac-
tive Voice Response Systems (IVRs) with Itautec Informdtica, Brazil,
from 1982 to 1990. In 2008, he was a Visiting Researcher in time-frequency
speech analysis and coding with the Royal Institute of Technology, Sweden.
He is currently an Associate Professor with Escola Politécnica, University of
Sdo Paulo, where he is also a member of the Signal Processing Laboratory.
He has authored or coauthored four book chapters and over 70 journals
and conference papers in these areas. His research interests include the
applications of novel signal processing and machine learning algorithms to
signal compression and prediction, speech analysis, coding and recognition,
speaker identification, and audio analysis and coding. He is a member of the
Brazilian Telecommunications Society (SBrT).

VOLUME 11, 2023

