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ABSTRACT Multimodal transfer learning aims to transform pretrained representations of diverse modalities
into a common domain space for effective multimodal fusion. However, conventional systems are typically
built on the assumption that all modalities exist, and the lack of modalities always leads to poor inference
performance. Furthermore, extracting pretrained embeddings for all modalities is computationally inefficient
for inference. In this work, to achieve high efficiency-performance multimodal transfer learning, we propose
VideoAdviser, a video knowledge distillation method to transfer multimodal knowledge of video-enhanced
prompts from a multimodal fundamental model (teacher) to a specific modal fundamental model (student).
With an intuition that the best learning performance comes with professional advisers and smart students,
we use a CLIP-based teacher model to provide expressive multimodal knowledge supervision signals to a
RoBERTa-based student model via optimizing a step-distillation objective loss—first step: the teacher distills
multimodal knowledge of video-enhanced prompts from classification logits to a regression logit—second
step: themultimodal knowledge is distilled from the regression logit of the teacher to the student.We evaluate
ourmethod in two challengingmultimodal tasks: video-level sentiment analysis (MOSI andMOSEI datasets)
and audio-visual retrieval (VEGAS dataset). The student (requiring only the text modality as input) achieves
an MAE score improvement of up to 12.3% for MOSI and MOSEI. Our method further enhances the state-
of-the-art method by 3.4% mAP score for VEGAS without additional computations for inference. These
results suggest the strengths of our method for achieving high efficiency-performance multimodal transfer
learning.

INDEX TERMS Multimodal transfer learning, knowledge distillation, fundamental model.

I. INTRODUCTION
Transfer learning is a promising methodology that focuses
on transferring pretrained representation domains to nearby
target domains [1]. For instance, finetuning a pretrained
language model on a small annotated dataset enables
high-performance text sentiment analysis [2]. Recent fun-
damental models on diverse modalities such as language
models (e.g., RoBERTa [3], GPT-3 [4]), visual models (e.g.,
ViT [5]), and multimodal models (e.g., CLIP [6], MEET [7])
have millions of parameters and can provide robust
modal representations. With such advancement, multimodal
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transfer learning aims to transform pretrained representa-
tions of diverse modalities into a common domain space
for effective multimodal fusion [8], [9]. It has been broadly
applied to multimodal tasks such as video-level sentiment
analysis [10], [11], [12], and audio/text-video retrieval tasks
[13], [14], [15], [16].

Existing works on multimodal transfer learning unify
adversarial learning to regularize the embedding distributions
between different modalities, leading to effective multimodal
fusion [14], [17], [18], [19], [20]. However, conventional
systems are typically built on the assumption that all modal-
ities exist, and the lack of modalities always leads to poor
inference performance. For instance, vision-language models
typically fail to achieve expected performance when given
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FIGURE 1. A conceptual diagram illustrates the difference between the
conventional system and our system: our system focuses on transferring
multimodal knowledge from a multimodal fundamental model (e.g., CLIP)
to a language fundamental model (e.g., RoBERTa-Large), and requires text
only to achieve high efficiency-performance inference. On the other hand,
the conventional system focuses on multimodal fusion and requires
complex modules (diverse modal encoders and a multimodal fusion
module) for inference.

only text data as input. Furthermore, extracting pretrained
embeddings for all modalities is computationally inefficient
for inference. Therefore, improving robust multimodal trans-
fer learning to achieve high efficiency-performance inference
is crucial for practical applications, which motivates this
work.

Knowledge distillation (KD) is first proposed for achiev-
ing an efficient student model by transforming embedded
knowledge in the predicted logits of the teacher model to a
smaller student model [21]. Recent works have expanded it to
multimodal transfer learning by distilling mutual information
from one modality to another [22], [23], [24], [25], [26].
However, these works always need to sacrifice the perfor-
mance of the teacher model, requiring the teacher model and
the student model distributed in neighboring domains (e.g.,
vision→vison, text→text).

In this paper, with an intuition that the best learning per-
formance comes with professional advisers and smart stu-
dents, to achieve high efficiency-performance multimodal
knowledge distillation, we propose VideoAdviser shown in
Figure 1, a video knowledge distillation method to transfer
multimodal knowledge from a strong multimodal fundamen-
tal model (teacher) to a powerful specific modal fundamental
model (student) via optimizing a step-distillation objective
loss. As CLIP is a multimodal fundamental model pretrained
with cross-modal contrastive learning on tremendous image-
text pairs [6], we employ it as the teacher model to obtain

multimodal knowledge of video-enhanced prompts by incor-
porating the video and text prompt representations. The
teacher model utilizes CLIP’s visual and text encoders to
obtain video and text prompt embeddings without freezing
the pretrained weights to preserve multimodal representa-
tion space learned by CLIP. By adapting transformer-based
modules on these embeddings and extracted frame-level
facial expression features, the teacher model acquires expres-
sive multimodal knowledge of video-enhanced prompts by
performing video and text prompt representations learning.
To sufficiently absorb distilled multimodal knowledge from
the teacher model, we employ a large-scale language model
RoBERTa [3] as the student model. Since RoBERTa is a
transformer-based architecture composed of huge parame-
ters, we finetune its full parameters to leverage RoBERTa’s
powerful architecture to achieve high-performance stu-
dent models for inference. In addition, we propose a
step-distillation objective loss to distill coarse-fine grained
multimodal knowledge to further improve the multimodal
knowledge distillation. Motivated by multiscale represen-
tation learning enabling the fusion of enriched coarse-fine
grained representations [27], [28], we consider that mul-
titask with different target granularities allows the model
to acquire representative knowledge at diverse granularities.
For instance, classification encourages the model to separate
the data point into multiple categorical classes representing
an interval of consecutive real values to acquire knowledge
at a coarse granularity. In contrast, regression enables the
model to distinguish the data point into continuous real values
instead of using classes to learn knowledge at a fine gran-
ularity. To this end, in the first step, the teacher model dis-
tills multimodal knowledge of video-enhanced prompts from
classification logits to a regression logit to unify knowledge
at both coarse and fine granularity; In the second step, the
unified multimodal knowledge is further distilled from the
teacher model to the student model.

We evaluate VideoAdviser in two challenging multimodal
tasks: video-level sentiment analysis (MOSI and MOSEI
datasets) and audio-visual retrieval (VEGAS dataset). The
RoBERTa-based student model requiring only text data as
input outperforms the state-of-the-art multimodal model’s
MAE score by 12.3% for MOSI and 2.4% for MOSEI. Our
method also enhances the state-of-the-art audio-visual cross-
modal model by 3.4% mAP score for VEGAS without addi-
tional computations for inference. Ablation studies further
demonstrate that our method is able to improve the state-
of-the-art method’s MAE score by over 3.0% with almost
half the parameters. These results suggest the strengths
of our method for achieving high efficiency-performance
multimodal transfer learning.

II. RELATED WORK
1) MULTIMODAL FUNDAMENTAL MODEL
CLIP [6] is a multimodal fundamental model that learns
transferable visual models from natural language supervision
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on a dataset of 400 million (image, text) pairs. It jointly trains
an image encoder and a text encoder using contrasting learn-
ing objectives to obtain a joint multimodal representation
space. Inspired by its remarkable zero-shot generation ability
for downstream image tasks, the work [29] proposes XCLIP
to expand pretrained CLIP on general video recognition by
finetuning it on video data using a video-specific prompting
module that enhances the video representation to the text
representation. The work [30] utilizes a pretrained CLIP for
open-vocabulary object detection by distilling visual knowl-
edge from cropped image regions. In this work, we adapt
a pretrained CLIP on distilling multimodal knowledge of
video-enhanced prompts from the teacher model to the stu-
dent model via a step-distillation objective loss.

2) KNOWLEDGE DISTILLATION BASED TRANSFER LEARNING
In addition to achieving a lightweight student model by min-
imizing the KL divergence between the probabilistic out-
puts of a teacher and student model [21], recent works on
knowledge distillation focus on transferring representational
knowledge from a teacher model to a student model [30],
[31], [32]. For instance, these works [33], [34] distill lin-
guistic knowledge from a text encoder to a visual encoder
by learning the mapping between modal representations.
The work [35] utilizes multiple text encoders to perform
cross-modal knowledge distillation for stronger text-video
retrieval. The work [36] distills expressive text representa-
tions from a generation model to the text encoder of CLIP
by minimizing text-text feature distance. However, these
works mostly focus on knowledge distillation in the common
modal domain or show limited performance in the cross-
modal domain. In contrast, to achieve expressive knowledge
distillation for multimodal transfer learning tasks, we pro-
pose a RoBERTa-based studentmodel to improvemultimodal
knowledge distillation by leveraging its powerful transformer
architecture.

3) VIDEO-LEVEL SENTIMENT ANALYSIS TASK
Recent works [2], [10], [11] on video-level sentiment analysis
tasks focus on improvingmodality fusion. The work [18] pro-
poses VAE-Based adversarial learning method to map multi-
modal representations to a joint domain space for improving
the modality fusion process. The work [12] achieves SOTA
performance onMOSI [37] andMOSEI [38] dataset by intro-
ducing a pretrained modality fusion module that fuses mul-
timodal representation from multi-level textual information
by injecting acoustic and visual signals into a text encoder.
However, all these works require preprocessed multimodal
embeddings as the input which is inefficient for inference.
In contrast, we employ a knowledge distillation approach
that requires only one specific modality leading to efficient
inference.

4) AUDIO-VISUAL RETRIEVAL TASK
Recent works on audio-visual retrieval tasks exploit super-
vised representation learning methods to generate new

features across modalities in a common space [13], [14], [15],
[16], [39], [40], [41], [42], such that the audio-visual features
can be measured directly. Inspired by the C-CCA [39] that
aims at finding linear transformations for each modality,
C-DCCA [40] tries to learn non-linear features in the com-
mon space by using deep learning methods. Deep learning
methods by using rank loss to optimize the predicted dis-
tances, such as TNN-C-CCA [13], and CCTL [16] mod-
els, which apply triplet losses as the objective functions to
achieve better results than other CCA-variant methods. The
EICS model [42] learns two different common spaces to cap-
ture modality-common and modality-specific features, which
achieves the SOTA results so far. In this paper, we enable our
method to enhance the extracted audio and visual representa-
tions of the SOTAmodel by distilling multimodal knowledge
from a CLIP-based teacher model.

III. PROBLEM SETTING
This work focuses on video-level sentiment analysis and
audio-visual retrieval tasks, respectively. For the video-level
sentiment analysis task, each data point consists of a video
M , the cropped sequential face images I , the divided speech
text Tspeech, and the class text Tclass, our goal is to predict the
sentiment intensity Zpred ∈ [−3, 3] by giving only speech
text Tspeech for inference. For the audio-visual retrieval task,
assume that 0 = {γi}

N
i=1 is a video collection, γi = {ai, vi},

where N indicates the data size, ai ∈ RD1 and vi ∈ RD2 are
audio and visual features from different feature spaces. Our
target aims at feeding them into a common space by mapping
functions f (x) and g(x) to generate new features f (ai) and
g(vi). As a result, each query ai for example will obtain a rank
list from another modality based on query-vj(i ̸= j) similarity.

IV. METHODOLOGY
In this section, we explain our methodVideoAdviser in detail.
As shown in Fig. 2, our method consists of a CLIP-based
model as the teacher (§ IV-A) and a RoBERTa-based model
as the student (§ IV-B). The teacher and student models
are jointly trained to achieve knowledge distillation across
modalities. The student model enables sentiment inten-
sity prediction by giving only a speech text for inference
(§ IV-C). We useF(·), V(·), P(·) and T (·) to denote the facial
expression encoder, visual encoder, prompt encoder, and text
encoder.

A. THE CLIP-BASED TEACHER MODEL
1) FACIAL EXPRESSION EMBEDDING
To enhance the visual representations of the teacher model for
sentiment intensity prediction, we first use OpenFace [43] to
crop face images {Ii}Ti=1 ∈ RP2×3 with each of size P × P
pixels from T sampled video frames, then, we extract frame-
level facial expression embedding v(f ) ∈ RT×D with a facial
expression encoder F(·) [44] that is pretrained on the VGG-
Face dataset [45]. Here, v(f ) is an 8-dimensional sequential
vector of length 64 [T = 64, D = 8]. More details of the
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FIGURE 2. Architecture of VideoAdviser using a CLIP-based model (the teacher) to distill multimodal knowledge of video-enhanced prompts to a
RoBERTa-based model (the student): the teacher model utilizes pretrained CLIP’s text and visual encoders, and a facial expression encoder to obtain
the sentiment class text embedding, the frame-level embedding, and the facial expression embedding. Then, the teacher model employs CCT, MIT, MLP,
and a video-specific prompting module, and minimizes a binary sentiment classification loss and a sentiment regression loss. Meanwhile, the student
model is finetuned on speech text by minimizing a sentiment regression loss and a step-distillation loss (the region in purple). During inference, the
speech text is used to enable sentiment intensity prediction. Here, CCT, MIT, and MLP stand for the cross-frame communication transformer,
multi-frame integration transformer, and multi-layer perceptron, respectively.

pretrained model on Albanie’s website.1

v(f ) = F({Ii}Ti=1) (1)

2) VISUAL EMBEDDING
To fully transfer the powerful generality of pretrained
CLIP [6] from image to video, we freeze the parameters of
pretrained CLIP visual encoder V(·) to obtain frame-level
visual embedding v(v) ∈ RT×D, where T denotes the num-
ber of sampled video frames and D is the dimension of
visual embedding. Following [29], given a video clip M ∈

RT×H×W×3 of T sampled video frames with H ×W pixels,
we use ViT-L/14 [5] to first divide t-th frame into N patches
{xt,i}Ni=1 ∈ RP2×3, where t ∈ T and N = HW/P2. Then, the
patches {xt,i}Ni=1 is mapped to v(v) = {v(v)t }

T
t=1 with a linear

transformation fm : RP2×3
→ R3P2×D.

v(v) = V(fm({xt }Tt=1)) (2)

3) TEXT PROMPT EMBEDDING
We employ the text encoder P(·) of pretrained CLIP to
obtain text prompt embedding v(p) ∈ RC×D of C senti-
ment classes by giving the sentiment class label Tclass ∈

{negative,positive}, where ‘‘positive’’ class includes 0. The
text prompt such as ‘‘A video with the {Tclass} face’’ is

1https://www.robots.ox.ac.uk/ albanie/mcn-models.html

generated with a text prompt generator fg and encoded as

v(p) = P(fg(Tclass)) (3)

We employ the cross-frame communication transformer
(CCT), multi-frame integration transformer (MIT), and
video-specific prompting modules to obtain expressive mul-
timodal sentiment knowledge. The CCT is a multi-layer
transformer with cross-frame attention introduced in [29]
to enable cross-frame information exchange. It is used to
obtain cross-frame visual representations by giving a mod-
ified visual embedding v̄(v) = {v̄(v)t }

T
t=1, where v̄(v)t =

[xclass, v
(v)
t ] + epos. xclass is a learnable frame representation

and epos is a position embedding of patches in a frame. The
MIT is a normal transformer layer constructed by standard
multi-head self-attention and feed-forward networks. Given
frame-level embeddings v(f ) and v̄(v), we finally obtain the
video representation V as follows:

V (f )
= AvgPool(MIT(v(f ))) (4)

V (v)
= AvgPool(MIT(CCT(v̄(v)))) (5)

V = fv([V (f )
||V (v)]) (6)

where fv : R2D
→ RD is a two-layer MLP. AvgPool denotes

an average pooling layer. ‘‘||’’ denotes a concatenation oper-
ator used to process facial expression-conditioned video rep-
resentation. We then transform the video representation V
to the video logit (see Fig. 2) with a two-layer MLP.
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Inspired by [29], the teacher model employs a video-
specific prompting module to enhance the prompt embedding
with cross-frame visual representations. The video-specific
prompting module applies a normal multi-hand attention [46]
to obtain the video-enhanced prompt representation v̄(p) ∈

RC×D (see Fig. 2) as

v̄(p) = v(p) + Multi_Hand_Attention(CCT(v̄(v))) (7)

Then, we compute dot product between video represen-
tation V and video-specific prompt representation v̄(p) =

{v̄(p)i }
C
i=1 to output the similarity score p = {pi}Ci=1 with a

softmax layer as

pi = softmax(v̄(p)i · V ) =
exp(v̄(p)i · V )∑
i∈C exp(v̄(p)i · V )

(8)

where C indicates the number of sentiment classes. We fur-
ther transform p into the video-enhanced prompt logit (see
Fig. 2) with a two-layer MLP.

B. THE RoBERTa-BASED STUDENT MODEL
To leverage the powerful transformer-based architec-
ture of fundamental language models, we structure a
RoBERTa-based student model [3] that consists of a text
encoder T (·) and a two-layer MLP. Given the speech text
Tspeech, the student model obtains text representation V (t)

with T (·), and output sentiment intensityZpred with the MLP
into the text logit (see Fig. 2) as

Zpred = logit(V (t)),V (t)
= T (Tspeech) (9)

where V (t)
∈ RD, and logit(·) : RD → R1 indicates the

two-layer MLP.

C. TRAINING OBJECTIVES
We simultaneously optimize the teacher and student models
by applying mean squared error (MSE) loss to obtain video
and text sentiment knowledge. Both teacher and student mod-
els minimize the L2 distance as follows:

L(r)
v = MSE(logit(V ),l(r))=

1
B

B∑
i=1

|| logit(V ) − l(r)||
2

(10)

L(r)
t = MSE(Zpred ,l(r))=

1
B

B∑
i=1

||Zpred − l(r)||
2

(11)

where B indicates batch size,L(r)
v indicates MSE between the

teacher model’s video logit and sentiment label l(r), and L(r)
t

indicates MSE between the student model’s text logit (Zpred )
and l(r). Here, logit(V ) is a two-layer MLP for transforming
video representation V into the video logit.

To learn the video-enhanced prompt representation to fuse
multimodal knowledge of video and class text, we use the
binary sentiment classification label l(c) (see Fig. 3) synthe-
sized from the sentiment label to optimize the teacher model

with a cross-entropy loss L(c)
v as

L(c)
v = −

C∑
i=1

l(c)i log(pi), (12)

We optimize a step-distillation objective loss to achieve
multimodal knowledge distillation from the teacher model to
the student model. The step-distillation objective loss con-
sists of a prompt-video distance minimization Lp→v and
a video-text distance minimization Lv→t , where Lp→v is
optimized to align coarse-grained classification knowledge in
the video-enhanced prompt logit and fine-grained regression
knowledge in the video logit, Lv→t is optimized to align
knowledge in the video logit of the teacher model and the text
logit of the student model. We apply MSE loss to perform the
step-distillation as follows:

Lp→v = MSE(logit(p), logit(V )) (13)

Lv→t = MSE(logit(V ),Zpred ) (14)

where logit(p) indicates the coarse-grained classification
knowledge in Eq. 12.
We finally have a joint loss L for training the teacher and

student models end-to-end as

L = αL(r)
v + βL(r)

t + γL(c)
v + δLp→v + ψLv→t (15)

where α, β, γ , δ, and ψ indicate the importance of each loss
value. They are empirically set as 1 : 10 : 1 : 10 : 1 to keep
all loss values on the same scale.

V. EXPERIMENT
In this section, we conducted empirical experiments on
video-level sentiment analysis and audio-visual retrieval
tasks to demonstrate the high efficiency-performance of our
method.

A. DATASET
MOSI [37] and MOSEI [38] are multimodal datasets col-
lected from online video for evaluating video-level sentiment
analysis tasks. We show the dataset size in Tab. 1. MOSEI
drops the data lacking modalities to fairly evaluate recent
modality fusion-based methods [20]. We compared the video
segment IDs of each data point for each modality and saved
only the data points associated with a common segment ID.
The modified MOSEI dataset was found to be more chal-
lenging than the original dataset as it lowered the strong
baseline MSE score by 4.9% (see Tab. 2). Both datasets are
annotated with a Likert scale in the range of [−3, 3], i.e.,
(-3: highly negative, -2: negative, -1: weakly negative, 0: neu-
tral, +1: weakly positive, +2: positive, +3: highly positive).
We further synthesize binary classification label, i.e., ([-3,0):
negative, [0,3]: non-negative) used for optimizing the teacher
model (§IV-A). The label distribution is illustrated in Fig. 3.
MOSEI is imbalanced and over 65% of data is distributed in
[−1, 1].
VEGAS dataset [47] is applied for the audio-visual

retrieval task, which contains 28,103 videos in total as shown
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TABLE 1. Dataset size. MOSEI uses the same dataset as [20].

FIGURE 3. Label distribution of (a) MOSI and (b) MOSEI. The synthesized
binary classification label is illustrated in different colors (the ‘‘negative’’
class in red color and the ‘‘non-negative’’ class in blue color).

in Tab. 1. Each video can be embedded as an audio feature
vector and a visual feature vector, and the audio-visual pair
shares the same single label. The label represents an audio
event (e.g., baby crying) of the human voice or natural sound.
The number of label classes is 10, and the length of each
audio-visual pair ranges from 2 to 10 seconds.

B. EVALUATION METRIC
We use the mean absolute error (MAE), accuracy (A7), accu-
racy (A2), and weight-F1 score for evaluating MOSI and
MOSEI. A7 denotes a 7-class and A2 denotes a binary accu-
racy metric. Since MOSI and MOSEI are regression prob-
lems, we consider MAE to be the most reasonable metric for
fair evaluations. In addition to the binary accuracy reported by

FIGURE 4. Architecture of VideoAdviser for audio-visual retrieval task
using a CLIP-based model (the teacher) to distill multimodal knowledge
of video-enhanced prompts to an EICS-based audio-visual model (the
student). The teacher model is finetuned for the audio event classification
to distill multimodal knowledge to the student model via the
step-distillation loss (the region in purple). We adopt 3-layer MLP with
128-dimensional hidden layers.

most of the previous works, we evaluate the 7-class accuracy
as did the SOTA method [12] to eliminate the effect of the
data imbalance. For the audio-visual retrieval task, we apply
the mean average precision (mAP) as previous works [16],
[42] to evaluate our model.

C. TRAINING SETTING
We train the teacher and the student models simultaneously
and use only the student model for inference. The text modal-
ity is used for evaluating MOSI and MOSEI. On the other
hand, as shown in Fig. 4, we utilize the teacher model to distill
multimodal knowledge for both visual and audio encoders of
the state-of-the-art model EICS [42] for audio-visual retrieval
tasks. Both visual and audio encoders are used as student
models to evaluate VEGAS. We show the hyperparameters
of VideoAdviser (§IV) for both tasks in detail in Tab. 3.

D. PERFORMANCE
1) EVALUATION OF VIDEO-LEVEL SENTIMENT ANALYSIS
We compared VideoAdviser with strong baseline methods
on the test set of MOSI and MOSEI in Tab. 2. Compared
with the state-of-the-art method UniMSE [12] that utilizes
the powerful architecture of a large-scale pretraining model
T5 [50] to improve the multimodal fusion by embedding
multimodal signals into an auxiliary layer of T5, VideoAd-
viser is a multimodal knowledge distillation-based method
that distills multimodal knowledge from a multimodal funda-
mental model CLIP [29] to a language model RoBERTa [3].
UniMSE was trained by integrating the training datasets of
MOSI, MOSEI, MELD [51], IEMOCAP [52] and multi-
modal signals are required for inference. In contrast, our
method was trained using the target dataset and requires only
text data for inference. VideoAdviser significantly improves
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TABLE 2. Comparison results for MOSI and MOSEI. Our model reduces the state-of-the-art UniMSE’s MAE score by 12.3% for MOSI, and VAE-AMDT’s MAE
by 2.4% for MOSEI. Here, (↓) indicates the lower the MAE, the better the performance, and (↑) indicates the vice-versa. (*) indicates the results produced
on the modified MOSEI dataset.

TABLE 3. The hyperparameters for training VideoAdviser. Here, ‘‘B’’
denotes the batch size, ‘‘Audio logit’’ denotes the output of the audio
encoder for VEGAS (see Fig. 4).

UniMSE’s MAE score by 12.3% for MOSI, and outperforms
a strong baseline method VAE-AMDT’sMAE score by 2.4%
for MOSEI. As we use the teacher model to offer auxil-
iary multimodal supervision signals to the student model,
by leveraging the strengths of the learned multimodal space
of the teacher model and the large-scale parameters of the
student model, we think our method is effective for achiev-
ing high-performance multimodal knowledge distillation via
minimizing the step-distillation objective loss (§IV-C).

2) EVALUATION OF AUDIO-VISUAL RETRIEVAL
We further evaluated our VideoAdviser on the VEGAS
dataset in Tab. 4. Compared to the state-of-the-art method

TABLE 4. The mAP comparison results with state-of-the-art models for
VEGAS. Here, ‘‘V’’ and ‘‘A’’ indicate ‘‘Video’’ and ‘‘Audio’’, respectively.

EICS [42] that builds two different common spaces to learn
the modality-common and modality-specific features, which
achieves an average mAP of 0.788. Our method utilizes the
distilled multimodal knowledge to enhance the performance
of EICS. As a result, it achieves an average mAP of 0.822 and
improves EICS [42] by 3.4%, suggesting the generality of our
method on audio-visual retrieval tasks.

E. EFFICIENCY
By comparing the number of parameters with state-of-the-art
models in Fig. 5, our proposed VideoAdviser requires only
a language model as the student that is able to achieve a
high efficiency-performance model for inference. The Stu-
dent (BERT [54]) achieved a compatible MAE score with
fewer parameters than previous BERT-based models. More-
over, these models always process visual and audio signals
for multimodal fusion, which might require more param-
eters and increase the computation cost. Compared with
the state-of-the-art model UniMSE that uses a pretrained
transformer-based language model T5 [50] to perform mul-
timodal fusion, our model, the student (ROBERTa-Base [3])
with nearly half of the parameters reduces MAE score of over
3.0 point, suggesting the high efficiency-performance of our
method. VideoAdviser was further improved over 9.0 point
by adopting a RoBERTa-Large model as the student model.
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TABLE 5. Efficiency comparison. VideoAdviser is able to train a high
efficiency-performance student model compared to state-of-the-art
methods for inference. The student (RoBERTa-Base) outperforms the
SOTA by over 3.0 point with nearly half the parameters.

TABLE 6. Ablation results show the effects of components of the teacher
model for multimodal knowledge distillation on MOSI dataset.

F. ANALYSIS
1) EFFECTIVENESS OF COMPONENTS OF THE TEACHER
MODEL
We studied the effects of two core components of the teacher
model (Facial expression encoder and video-specific prompt-
ing module) in Tab. 6. The results show that these two
components help improve the multimodal knowledge distil-
lation and boost the final performance of the student model.
We believe that the facial expression encoder provided extra
visual knowledge, and the video-specific prompting module
further associated visual knowledge with text prompt repre-
sentations encoded by the prompt encoder.

2) EFFECTIVENESS OF THE STUDENT MODEL
We studied the effects of VideoAdviser on different student
models in Tab. 7. We select two language models (BERT and
RoBERTa) that have frequently been used in recent works [2],
[10], [11], [20], [48]. By comparing the performance of lan-
guage models with and without adopting a teacher model,
the results demonstrate that our method improves a general
language model’s MAE score by over 6.0 point on average,
suggesting the efficacy and generality of our method with
different student models. We consider that the teacher model
offers auxiliary multimodal supervision to the student model
during training, the language model-based students are able

TABLE 7. Effects in different student models. Our method improves the
MAE score of pretrained language models by over 6.0 point on average.

TABLE 8. Ablation results show the effects of step-distillation on audio
and video modalities for VEGAS. Here, ‘‘w/ video distillation’’ indicates
that the step-distillation is only adopted for the visual modality of the
student model, ‘‘w/ audio distillation’’ indicates the other side, and ‘‘w/
audio and video distillation’’ indicates both sides (see Fig. 4).

to learn multimodal knowledge from the teacher with their
large-scale parameters.

We further trained a student model by freezing pretrained
parameters, which dramatically dropped theMAE score from
0.568 to 1.478. This result makes us believe that in order to
achieve expressive multimodal knowledge distillation across
modalities, it is essential to finetune full parameters to lever-
age the strengths of large-scale pretrained models with pow-
erful representational learning capabilities.

3) MODALITY EFFECTIVENESS
To confirm the robustness of VideoAdviser in multimodal
knowledge distillation not only for text modality but also
for diverse modalities such as visual and audio modalities,
we respectively studied the effects on visual and audiomodal-
ities for audio-visual retrieval tasks. As the results indicated
in Tab. 8, the proposed step-distillation works for both modal-
ities by boosting the baseline EICS model by over 1% mAP
score. By associating both sides, we finally improved the
baseline by 3.4%.

4) EFFECTIVENESS OF DATASET SIZE
In general, the larger the dataset, the better the performance.
We trained VideoAdviser with a combination of the MOSI
and MOSEI datasets to see if we can further improve the per-
formance. As the results indicated in Tab. 9, The model per-
forms much better than those trained on individual datasets
and suggests the efficacy of our approach for different dataset
sizes.
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FIGURE 5. Visualization of logistic knowledge distribution with and without the step-distillation objective loss. The top row plots the histograms of logit
by applying the step-distillation, and the bottom row indicates the vice-versa. The groudTruth indicates the label distribution, and text_logit indicates the
predicted regression score of the student model. Our method using the step-distillation (the top) demonstrates a distribution of regression scores close
to the groundTruth, affected by the knowledge distribution of the ‘‘video_logit’’ and ‘‘video_enhanced_prompt_logit’’.

TABLE 9. Results of VideoAdviser trained with a combination of MOSI
and MOSEI datasets. The model performs much better for both the MOSI
and MOSEI test sets. Here, (*) denotes the result of the model trained on
the individual dataset.

TABLE 10. Ablation results show the effects of the proposed
step-distillation loss for MOSI.

5) EFFECTIVENESS OF THE STEP-DISTILLATION LOSS
We ablatively studied the effects of our proposed
step-distillation loss for multimodal knowledge distillation
in Tab. 10. Without the first step—distilling multimodal
knowledge from a video-enhanced prompt logit to a video
logit (see Fig. 2), the learned multimodal space of CLIP
cannot be passed to the student model via the video logit,
resulting poor student model performance. On the other hand,
it improves the regular language model (w/o step-distillation)
4.2%MAE score and suggests the effectiveness of the second
step—distilling the knowledge of the video logit from the
teacher model to the student model. Moreover, by optimizing

the first and second steps, our proposed method outperforms
a cutting-edge contrastive representation distillation method
(CRD) [31] that proposed a contrastive-based objective for
transferring knowledge between deep networks. Compared
to the CRD which is designed to model mutual information
across dimensions of the knowledge representations, Our
proposed step-distillation applies MSE to mapping mutual
information across modalities via one-dimensional logits
(i.e., video-enhanced prompt logit, video logit, and text logit).
Our method performs better than CRD in transferring regres-
sion information for multimodal knowledge distillation.

In addition, we show comparison results of the proposed
step-distillation loss with three widely-known distillation
function KD [21], FitNet [55] and PKT [56] in Tab. 11.
KD and PKT are proposed to minimize the KL divergence
between the probabilistic outputs of a teacher and student
model. On the other hand, FitNet and our step-distillation
aim at minimizing the L2 distance for knowledge distillation.
Compared to KD, FitNet and PKT are one-step distillation
loss functions, whereas our step-distillation performs two-
step distillation, with the aim of transferring multimodal
knowledge across multiple scales. To achieve a fair com-
parison, we adapted these three approaches to our problem
setting of two-step distillation. As the results indicated in
Tab. 11, the step-distillation outperforms other approaches
and suggests its efficacy on multimodal knowledge distil-
lation. We noted that the PKT-based two-step distillation
achieves a compatible score with ours. We consider that
audio-visual tasks focus on distilling multimodal knowledge
of categorical audio events rather than fine-grained regres-
sional knowledge so that transferring probabilistic knowl-
edge of each category can also work well. Compared to KD
which utilized the softmax function to obtain probabilistic
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TABLE 11. Comparison results between widely-known knowledge
distillation loss and the proposed step-distillation loss for VEGAS.

TABLE 12. ASO scores of models with different distillation objectives
studied in Sec. V-F. For ‘‘VideoAdviser (ours) → baseline’’,
ϵmin = 0 indicates that VideoAdviser (ours) consistently outperform
baseline. Here, the baseline denotes VideoAdviser (ours) w/o
step-distillation.

knowledge, PKT adopted the cos-similarity function to bet-
ter obtain dimension-level correlation with the probabilistic
knowledge.

We further illustrate the logistic knowledge distribution
with and without the step-distillation loss in Fig. 5. Com-
pared to the ‘‘Text_logit w/o step-distillation’’ that plots
the histogram of regression scores without performing the
step-distillation, ‘‘Text_logit w/ step-distillation’’ is close
to the groundTruth label distribution. Especially the dis-
tribution in the range of [−1, 1] is strongly affected by
the teacher model. Because the ‘‘Video_logit w/o step-
distillation’’ distributes in the range of [−1.5, 2] and the
‘‘Video_enhanced_prompt_logit w/o step-distillation’’ dis-
tributes in the range of [−0.4, 0.2], by performing the
step-distillation, the predicted regression score produced
by the student model can be affected by the gap of
these different distributions, and demonstrate that our pro-
posed step-distillation is effective for multimodal knowledge
distillation.

G. SIGNIFICANCE TESTING
We tested the stability of the performance improvement
by VideoAdviser using the Almost Stochastic Order test
(ASO) [57], [58] as implemented by [59]. We compared
three models, VideoAdviser (ours), VideoAdviser w/o step-
distillation (baseline), and CRD based on five random seeds
each using ASO with a confidence level of α = 0.05. ASO
computes a score (ϵmin) indicated in Tab. 12 to represent how
far the first model is from being significantly better with
respect to the second. ϵmin = 0 represents truly stochastic
dominance and ϵmin < 0.5 represents almost stochastic
dominance.

VI. CONCLUSION
We proposed a novel multimodal knowledge distillation
method, VideoAdviser, which leverages the strengths of
learned multimodal space of the CLIP-based teacher model
and large-scale parameters of the RoBERTa-based student

model to perform multimodal knowledge transfer by opti-
mizing a step-distillation objective loss. In the evaluation
of two multimodal tasks, our method significantly outper-
forms SoTA methods up to 12.3% MAE score with a single
modal encoder used in inference for video-level sentiment
analysis, and 3.4% mAP for audio-visual retrieval tasks,
suggesting its strengths in high efficiency-performance.
Ablation studies further demonstrate the efficacy of our
proposed step-distillation objective loss in improving multi-
modal knowledge distillation. In the next step, we will adapt
meta-learning to further explore the capability of multimodal
transfer learning in a few-shot setting.

REFERENCES
[1] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He,

‘‘A comprehensive survey on transfer learning,’’ Proc. IEEE, vol. 109,
no. 1, pp. 43–76, Jan. 2021.

[2] D. Hazarika, R. Zimmermann, and S. Poria, ‘‘MISA: Modality-invariant
and -specific representations for multimodal sentiment analysis,’’ 2020,
arXiv:2005.03545.

[3] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, ‘‘RoBERTa: A robustly optimized BERT
pretraining approach,’’ 2019, arXiv:1907.11692.

[4] T. B. Brown et al., ‘‘Language models are few-shot learners,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 33, 2020, pp. 1877–1901.

[5] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, ‘‘An image is worth 16×16 words: Trans-
formers for image recognition at scale,’’ ICLR, 2021.

[6] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever,
‘‘Learning transferable visual models from natural language supervision,’’
in Proc. ICML, 2021.

[7] L. Nie, L. Qu, D. Meng, M. Zhang, Q. Tian, and A. D. Bimbo, ‘‘Search-
oriented micro-video captioning,’’ in Proc. 30th ACM Int. Conf. Multime-
dia, Oct. 2022, pp. 3234–3243.

[8] L. Zhen, P. Hu, Peng, R. S. M. Goh, and J. T. Zhou, ‘‘Deep multimodal
transfer learning for cross-modal retrieval,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 33, no. 2, pp. 798–810, Feb. 2022.

[9] S. Albanie, A. Nagrani, A. Vedaldi, and A. Zisserman, ‘‘Emotion recogni-
tion in speech using cross-modal transfer in the wild,’’ in Proc. 26th ACM
Int. Conf. Multimedia, Oct. 2018, pp. 292–301.

[10] W. Yu, H. Xu, Y. Ziqi, andW. Jiele, ‘‘Learning modality-specific represen-
tations with self-supervised multi-task learning for multimodal sentiment
analysis,’’ in Proc. AAAI, 2021.

[11] W. Han, H. Chen, and S. Poria, ‘‘Improving multimodal fusion with
hierarchical mutual information maximization for multimodal sentiment
analysis,’’ in Proc. Conf. Empirical Methods Natural Lang. Process., 2021,
pp. 9180–9192.

[12] G. Hu, T.-E. Lin, Y. Zhao, G. Lu, Y. Wu, and Y. Li, ‘‘UniMSE: Towards
unified multimodal sentiment analysis and emotion recognition,’’ in Proc.
EMNLP, 2022, pp. 7837–7851.

[13] D. Zeng, Y. Yu, and K. Oyama, ‘‘Deep triplet neural networks with cluster-
CCA for audio-visual cross-modal retrieval,’’ ACM Trans. Multimedia
Comput., Commun., Appl., vol. 16, no. 3, pp. 1–23, Aug. 2020.

[14] L. Zhen, P. Hu, X. Wang, and D. Peng, ‘‘Deep supervised cross-modal
retrieval,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 10386–10395.

[15] N. Han, J. Chen, C. Shi, Y. Zeng, G. Xiao, and H. Chen, ‘‘BiC-Net:
Learning efficient spatio-temporal relation for text-video retrieval,’’ 2021,
arXiv:2110.15609.

[16] D. Zeng, Y. Wang, J. Wu, and K. Ikeda, ‘‘Complete cross-triplet loss in
label space for audio-visual cross-modal retrieval,’’ in Proc. IEEE Int.
Symp. Multimedia (ISM), Dec. 2022, pp. 1–9.

[17] L. He, X. Xu, H. Lu, Y. Yang, F. Shen, and H. T. Shen, ‘‘Unsupervised
cross-modal retrieval through adversarial learning,’’ in Proc. IEEE Int.
Conf. Multimedia Expo (ICME), Jul. 2017, pp. 1153–1158.

[18] B. Wang, Y. Yang, X. Xu, A. Hanjalic, and H. T. Shen, ‘‘Adversarial cross-
modal retrieval,’’ in Proc. MM, 2017, pp. 154–162.

51238 VOLUME 11, 2023



Y. Wang et al.: VideoAdviser: Video Knowledge Distillation for Multimodal Transfer Learning

[19] J. Zhang, Y. Peng, and M. Yuan, ‘‘Unsupervised generative adversarial
cross-modal hashing,’’ in Proc. AAAI, 2017.

[20] Y. Wang, J. Wu, K. Furumai, S. Wada, and S. Kurihara, ‘‘VAE-based
adversarial multimodal domain transfer for video-level sentiment analy-
sis,’’ IEEE Access, vol. 10, pp. 51315–51324, 2022.

[21] G. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neural
network,’’ 2015, arXiv:1503.02531.

[22] S. Gupta, J. Hoffman, and J. Malik, ‘‘Cross modal distillation for supervi-
sion transfer,’’ inProc. IEEEConf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 2827–2836.

[23] F. M. Thoker and J. Gall, ‘‘Cross-modal knowledge distillation for action
recognition,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2019,
pp. 6–10.

[24] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and
Q. Liu, ‘‘TinyBERT: Distilling BERT for natural language understand-
ing,’’ in Proc. Findings Assoc. Comput. Linguistics, EMNLP, 2020,
pp. 4163–4174.

[25] L. Hou, Z. Huang, L. Shang, X. Jiang, X. Chen, and Q. Liu, ‘‘DynaBERT:
Dynamic BERT with adaptive width and depth,’’ in Proc. NeurIPS, 2020,
pp. 9782–9793.

[26] B. Pan, H. Cai, D. Huang, K. Lee, A. Gaidon, E. Adeli, and J. C. Niebles,
‘‘Spatio-temporal graph for video captioning with knowledge distilla-
tion,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 10867–10876.

[27] Z. Li, Y. Nie, K. Han, J. Guo, L. Xie, and Y. Wang, ‘‘A transformer-
based object detector with coarse-fine crossing representations,’’ in Proc.
NeurIPS, 2022.

[28] L. Jiao, J. Gao, X. Liu, F. Liu, S. Yang, and B. Hou, ‘‘Multiscale repre-
sentation learning for image classification: A survey,’’ IEEE Trans. Artif.
Intell., vol. 4, no. 1, pp. 23–43, Feb. 2023.

[29] B. Ni, H. Peng, M. Chen, S. Zhang, G. Meng, J. Fu, S. Xiang, and
H. Ling, ‘‘Expanding language-image pretrained models for general video
recognition,’’ in Proc. ECCV 2022.

[30] X. Gu, T.-Y. Lin, W. Kuo, and Y. Cui, ‘‘Open-vocabulary object detection
via vision and language knowledge distillation,’’ 2021, arXiv:2104.13921.

[31] L. Chen, D. Wang, Z. Gan, J. Liu, R. Henao, and L. Carin, ‘‘Wasserstein
contrastive representation distillation,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 1–6.

[32] L. Wang and K. Yoon, ‘‘Knowledge distillation and student–teacher learn-
ing for visual intelligence: A review and new outlooks,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 44, no. 6, pp. 3048–3068, Jun. 2022.

[33] Y. Wang, J. Wu, P. Heracleous, S. Wada, R. Kimura, and S. Kurihara,
‘‘Implicit knowledge injectable cross attention audiovisual model for
group emotion recognition,’’ in Proc. Int. Conf. Multimodal Interact.,
Oct. 2020, pp. 827–834.

[34] Y. Wang, J. Wu, J. Huang, G. Hattori, Y. Takishima, S. Wada, R. Kimura,
J. Chen, and S. Kurihara, ‘‘LDNN: Linguistic knowledge injectable deep
neural network for group cohesiveness understanding,’’ in Proc. Int. Conf.
Multimodal Interact., Oct. 2020, pp. 343–350.

[35] I. Croitoru, S. Bogolin, M. Leordeanu, H. Jin, A. Zisserman, S. Albanie,
and Y. Liu, ‘‘TeachText: CrossModal generalized distillation for text-video
retrieval,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 11563–11573.

[36] W. Dai, L. Hou, L. Shang, X. Jiang, Q. Liu, and P. Fung, ‘‘Enabling multi-
modal generation on CLIP via vision-language knowledge distillation,’’ in
Proc. Findings Assoc. Comput. Linguistics, ACL, 2022, pp. 2383–2395.

[37] A. Zadeh, R. Zellers, E. Pincus, and L.-P. Morency, ‘‘MOSI: Multimodal
corpus of sentiment intensity and subjectivity analysis in online opinion
videos,’’ 2016, arXiv:1606.06259.

[38] A. Bagher Zadeh, P. P. Liang, S. Poria, E. Cambria, and L.-P. Morency,
‘‘Multimodal language analysis in the wild: CMU-MOSEI dataset and
interpretable dynamic fusion graph,’’ in Proc. 56th Annu. Meeting Assoc.
Comput. Linguistics, 2018, pp. 2236–2246.

[39] N. Rasiwasia, D. Mahajan, V. Mahadevan, and G. Aggarwal, ‘‘Cluster
canonical correlation analysis,’’ in Proc. Int. Conf. Artif. Intell. Stat. (AIS-
TATS), vol. 33, 2014, pp. 823–831.

[40] D. Zeng, Y. Yu, and K. Oyama, ‘‘Audio-visual embedding for cross-modal
music video retrieval through supervised deep CCA,’’ in Proc. IEEE Int.
Symp. Multimedia (ISM), Dec. 2018, pp. 143–150.

[41] Z. Zheng, L. Zheng, M. Garrett, Y. Yang, M. Xu, and Y.-D. Shen, ‘‘Dual-
path convolutional image-text embeddings with instance loss,’’ ACM
Trans. Multimedia Comput., Commun., Appl., vol. 16, no. 2, pp. 1–23,
May 2020.

[42] D. Zeng, J. Wu, G. Hattori, R. Xu, and Y. Yu, ‘‘Learning explicit and
implicit dual common subspaces for audio-visual cross-modal retrieval,’’
ACM Trans. Multimedia Comput., Commun., Appl., vol. 19, no. 2s,
pp. 1–23, Jun. 2023.

[43] T. Baltrušaitis, P. Robinson, and L. Morency, ‘‘OpenFace: An open source
facial behavior analysis toolkit,’’ inProc. IEEEWinter Conf. Appl. Comput.
Vis. (WACV), Mar. 2016, pp. 1–10.

[44] S. Albanie and A. Vedaldi, ‘‘Learning grimaces by watching TV,’’ in Proc.
BMVC, 2016.

[45] O. M. Parkhi, A. Vedaldi, and A. Zisserman, ‘‘Deep face recognition,’’ in
Proc. BMVC, 2015.

[46] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. U. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc.
NeurIPS, 2017.

[47] Y. Zhou, Z. Wang, C. Fang, T. Bui, and T. L. Berg, ‘‘Visual to sound:
Generating natural sound for videos in the wild,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3550–3558.

[48] W. Rahman, M. K. Hasan, S. Lee, A. B. Zadeh, C. Mao, L.-P. Morency,
and E. Hoque, ‘‘Integrating multimodal information in large pretrained
transformers,’’ in Proc. 58th Annu. Meeting Assoc. Comput. Linguistics,
2020, pp. 2359–2369.

[49] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2015, arXiv:1412.6980.

[50] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,
W. Li, and P. J. Liu, ‘‘Exploring the limits of transfer learning with a unified
text-to-text transformer,’’ J. Mach. Learn. Res., vol. 21, no. 1, pp. 1–15,
2020.

[51] S. Poria, D. Hazarika, N.Majumder, G. Naik, E. Cambria, and R.Mihalcea,
‘‘MELD: A multimodal multi-party dataset for emotion recognition in
conversations,’’ in Proc. 57th Annu. Meeting Assoc. Comput. Linguistics,
2019, pp. 527–536.

[52] C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim,
J. N. Chang, S. Lee, and S. S. Narayanan, ‘‘IEMOCAP: Interactive emo-
tional dyadic motion capture database,’’ Lang. Resour. Eval., vol. 42, no. 4,
pp. 335–359, Dec. 2008.

[53] Y. Yu, S. Tang, K. Aizawa, and A. Aizawa, ‘‘Category-based deep CCA for
fine-grained venue discovery from multimodal data,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 4, pp. 1250–1258, Apr. 2019.

[54] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ in Proc.
NAACL, 2019, pp. 4171–4186.

[55] A. Romero, N. Ballas, S. Ebrahimi Kahou, A. Chassang, C. Gatta, and
Y. Bengio, ‘‘FitNets: Hints for thin deep nets,’’ 2014, arXiv:1412.6550.

[56] N. Passalis and A. Tefas, ‘‘Learning deep representations with probabilistic
knowledge transfer,’’ in Proc. ECCV, 2018.

[57] E. Del Barrio, J. A. Cuesta-Albertos, and C. Matrán, ‘‘An optimal trans-
portation approach for assessing almost stochastic order,’’ in The Mathe-
matics of the Uncertain. Cham, Switzerland: Springer, 2018, pp. 33–44.

[58] R. Dror, S. Shlomov, and R. Reichart, ‘‘Deep dominance—How to prop-
erly compare deep neural models,’’ in Proc. 57th Annu. Meeting Assoc.
Comput. Linguistics, 2019, pp. 2773–2785.

[59] D. Ulmer, C. Hardmeier, and J. Frellsen, ‘‘Deep-significance–easy and
meaningful statistical significance testing in the age of neural networks,’’
2022, arXiv:2204.06815.

YANAN WANG (Student Member, IEEE)
received the B.S. degree in engineering from
Aoyama Gakuin University, in 2015, and the M.S.
degree in engineering from The University of
Electro-Communications, Japan, in 2017. He is
currently pursuing the Ph.D. degree in engineering
with Keio University, Japan. He is an Associate
Research Engineer in multimodal modeling topics
with KDDI Research Inc. His research interests
include multimodal representation learning, emo-

tion recognition, knowledge graph, and graph representation learning. He is a
Student Member of JSAI. He is a regular member of IEICE and the Editorial
Committee of IEICE Human Communication Group.

VOLUME 11, 2023 51239



Y. Wang et al.: VideoAdviser: Video Knowledge Distillation for Multimodal Transfer Learning

DONGHUO ZENG received the M.Sc. degree
from the School of Computer Science and Tech-
nology, HIT, China, in 2017, and the Ph.D.
degree from the National Institute of Infor-
matics, SOKENDAI, Tokyo, Japan, in 2020.
He is an AI Researcher of KDDI Research
Inc., Tokyo/Saitama, Japan. His research inter-
ests include audio-visual learning and video
captioning.

SHINYA WADA received the B.E. and M.E.
degrees from Kyushu University, in 2005 and
2007, respectively. He is currently a Senior Man-
ager of the Multimodal Modeling Laboratory,
KDDI Research Inc. His research interests include
multimodal representation learning, human activ-
ity recognition, and time-series analysis. He is a
member of IEICE.

SATOSHI KURIHARA (Member, IEEE) received
the B.E., M.E., and Ph.D. degrees in computer sci-
ence from Keio University, Tokyo, Japan, in 1990,
1992, and 2000, respectively. In 1992, he joined
the Basic Research Division, Nippon Telegraph
and Telephone Corporation (NTT). In 2004,
he joined the Graduate School of Information Sci-
ence and Technology/the Institute of Scientific
and Industrial Research, Osaka University, Osaka,
Japan. In 2013, he joined the Graduate School of

Information Systems, The University of Electro-Communications. In 2018,
he joined the Faculty of Science and Technology, Keio University, as a Pro-
fessor. Since April 2021, he has been the Director of the Center of Advanced
Research for Human-AI Symbiosis Society. His current research interests
include multi-agent systems, ubiquitous computing, and complex network
research. He is a member of ACM, AAAI, the Information Processing
Society of Japan (IPSJ), the Japan Society of Artificial Intelligence (JSAI),
the Institute of Electronics, Information, and Communication Engineers
(IEICE), the Society for Economic Science with Heterogeneous Interacting
Agents (ESHIA), and the Japan Society of Software Science and Technology
(JSSST).

51240 VOLUME 11, 2023


