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ABSTRACT This paper presents a deep neural network (DNN)-based slip ratio estimator fused with an
invariant extended Kalman filter (IEKF) for lugged-wheel robot localization using an inertial sensor and
an encoder. Among various sensors used in wheeled mobile robot (WMR) localization, inertial sensors
and encoders are most commonly used because these sensors are inexpensive and have low computational
requirements. However, inertial sensors and encoders can cause large drifts in localization due to inherent
sensor characteristics and wheel slippage, respectively. Most studies on wheel slippage have primarily
focused on rubber tires, and using this slip ratio model for WMRs with lugged-wheels operating in outdoor
environments can result in significant estimation errors in slip ratios. This paper develops a DNN-based
slip ratio estimator and IEKF for WMR localization that is robust to wheel slippage even in rugged outdoor
environments. The performance of the proposed localization is demonstrated through experiments using
outdoor datasets where WMRs with lugged-wheels experience various slip conditions. Experiments are
conducted in wet and dry conditions on a sloped grass field. Results show that the proposed localization
method reduces accumulated localization errors by 53.5% compared to integration-based localization and
by 13.5% compared to IEKF-based localization.

INDEX TERMS Deep learning, encoder, inertial sensor, localization, slip ratio.

I. INTRODUCTION
Encoders, which measure the angular velocity of wheels, are
generally used in wheeled mobile robots (WMRs) for robot
control and localization [1], [2], [3]. In an ideal condition,
encoders can estimate WMR poses with simple kinematic
models, but various factors can cause drift errors in reality [4].
Among these factors, wheel slippage is the critical problem
that can cause both instantaneous and continuous pose errors
in WMR localization. To reduce these errors, other sensors,
such as inertial sensors or cameras, should be used with
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encoders as the data of these sensors are less affected by
wheel slippage [5], [6].

A plethora of research has been conducted to estimate
wheel slippage. One popular approach is using cameras to
observe the surrounding information of the robot to esti-
mate the wheel slippage [5], [7], [8], [9]. The information
is used to estimate the velocity of the WMR [5], [7] or
classify the terrain characteristics [8], [9], but these methods
are limited by heavy computational costs and performance
being dependent on luminance and environmental features.
Alternatively, inertial sensors have been utilized for wheel
slippage estimation [6], [10], [11], [12], [13], but these meth-
ods may be affected by sensor accuracy and drift errors.
To overcome these limitations, some studies have employed
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machine learning for wheel slippage estimation [10], [11], but
estimated wheel slippage was not accurate enough for WMR
localization as it only had three defined classes: low slip,
moderate slip, and high slip. Another approach is combining
localization with robot control by frequently stopping the
robot to initialize the accumulated errors [12], [13], but this
method limits the degree of freedom in navigation. Since
these studies do not concern the characteristic of the wheels
of WMR, we propose the WMR localization that comprises
the slip ratio estimator designed through the motion analysis
of the wheels.

To address wheel slippage in a slippery environment,
lugged-wheels are generally used as they can generate
more tractive force than rubber tires in rough deformable
terrains. Many studies have been conducted to deal with
these slippery environments by analyzing the relation-
ship between wheels and terrains [14], [15], [16], [17].
Various factors, such as wheel-terrain interaction models
based on normal force, drawbar pull, torque, and shear
stress [15], [16], [17], [18], [19], parameter specification of
a lug [20], and terrain types [21], have been analyzed. These
analyses were evaluated by discrete element method simula-
tions or experiments. However, these studies focus primarily
on improving the control performance of WMRs rather than
the localization performance. Therefore, we analyzed the
motion of the lugged-wheel, which experiences the various
phenomena of slippage (slipping, spinning, and skidding),
to estimate the slip ratio of the lugged-wheel using inertial
sensors and encoders for WMR localization.

This paper presents a deep neural network (DNN)-based
slip ratio estimator for the lugged-wheel robot localization
using an inertial sensor and an encoder. The DNN-based
slip ratio estimator, which comprises a CNN, a FC layer,
and a smoothing filter, uses sequential data from an inertial
sensor and an encoder to estimate the slip ratio of wheels.
To limit the range of estimated slip ratios, the range of slip
ratios is divided by the total number of classes, and the
split range is assigned to each class. The smoothing filter is
used to learn the relationship between consecutive classes.
The estimated slip ratio is used as a pseudo measurement
of the invariant extended Kalman filter (IEKF)-based local-
ization to estimate the robot pose. The performance of the
proposed localization is demonstrated through experiments
using outdoor datasets where the robot experiences various
slip conditions. The main contribution of this paper is as
follows:

• The motion of the lugged-wheel is analyzed using the
Euler-Lagrange equation to validate the usage of inertial
sensors and encoders for calculating slip ratio.

• Instead of calculating the slip ratio, the DNN-based slip
ratio estimator is designed to analyze the pattern of
sensors to estimate the slip ratio.

• TheDNN-based slip ratio estimator reduces the accumu-
lated error by limiting the range of estimated slip ratios
and eliminating the previously estimated results in the
input.

The rest of the paper is organized as follows: Section II
presents the related work. Section III presents the analysis of
the lugged-wheel motion. Section IV presents the structure of
the proposed method. Section V discusses the experimental
setup and result. Finally, Section VI presents the conclusion.

II. RELATED WORK
For localization, various sensors, such as light detection
and ranging (LiDAR) sensors, cameras, inertial sensors, and
encoders, are widely used [22], [23], [24], [25], [26]. Among
these sensors, inertial sensors and encoders are generally used
for WMRs because these sensors are inexpensive compared
to other sensors and have low computational requirements.
However, inertial sensors and encoders are usually used with
additional sensors in robot localization because of their low
performance [27], [28], [29], [30], [31]. In the localization
technique, accumulated localization errors should be reduced
to achieve high performance. For LiDAR sensors and cam-
eras, consecutive frames of sensor data depend on each
other as these sensors measure surrounding environments.
Therefore, the localization method based on these sensors
can reduce the accumulated error by optimizing robot poses
using data from the surrounding environment. In contrast,
for inertial sensors and encoders, all frames of sensor data
are independent, as these sensors measure the instantaneous
movement of robots. Therefore, the accumulated localization
error based on inertial sensors and encoders highly depends
on sensor noises.

Recently, DNN has been used in many research areas,
including localization [4], [32], [33], [34], [35], [36], [37],
[38], [39], [40], [41]. Some localization research uses only
inertial sensors and encoders by using DNN to reduce sensor
noise. These studies can be separated into two methods. The
first method is fusing DNN and model-based localization
such as EKF [37], [38]. The DNN is usually used to solve the
problem difficult for model-based localization. The second
method is end-to-end DNN-based localization [4], [39], [40].
Only DNN structures are used to estimate robot poses. Vari-
ous kinds of networks, such as a convolutional neural network
(CNN), recurrent neural network (RNN), and long short-
term memory (LSTM), can be used for localization. Among
these networks, CNNs can be used to estimate the noise of
sequential data [38], [41]. In this paper, the proposed method
fuses the DNN with IEKF, and DNN is designed to estimate
the wheel slippage which is difficult to calculate with the
kinematic model. The CNN is used to analyze the slip pattern
and reduce the sensor noise of inertial sensors and encoders.

III. ANALYSIS OF LUGGED-WHEEL MOTION
In the localization based on inertial sensors and encoders,
robot poses are estimated by the integration. To accurately
estimate robot poses, sensors need to either have a high
data rate or measure the average data over the sampling
time rather than instantaneous data. Likewise, the average
slip ratio should be calculated to estimate robot poses accu-
rately. In this section, we demonstrate the analysis of the
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FIGURE 1. Ideal and non-ideal displacement in wheel deformation and
terrain deformation. The displacement difference due to slippage is
exaggeratedly represented.

lugged-wheel motion to validate the usage of inertial sensors
and encoders for calculating the average slip ratio.

The wheel slippage is defined as the difference between
the circumferential velocity of the wheel and the actual robot
velocity. The slip ratio, which represents the degree of wheel
slippage, is calculated to estimate the wheel slippage as the
slip ratio and encoder data can be directly used to calculate
the robot velocity. The following equation is used to calculate
the slip ratio [4], [5], [6], [12], [13], [21]:

λ =


rω − v
rω

, rω ≥ v

−
v− rω
v

, rω < v
(1)

where λ is the slip ratio, v is the velocity of the robot, r is
the radius of the wheel, and ω is the angular velocity of
the wheel. The slip ratio is primarily influenced by three
factors which are wheel deformation, terrain deformation,
and sliding betweenwheel and terrain. The deformation of the
wheel and the terrain, shown in Figure 1, causes the change in
the effective radius of the wheel, whereas the sliding between

FIGURE 2. The model and variable of the lugged-wheel motion.

the wheel and the terrain causes the difference between wheel
velocity and robot velocity.

Generally, (1) is used to calculate the slip ratio of rubber
tires. Among the factors that cause wheel slippage, the slip
ratio of rubber tires is primarily caused by the deformation of
wheels. Since the deformation of rubber tires does not change
instantaneously, (1) is appropriate to estimate the average slip
ratio of tires when inertial sensors and encoders are used.

Unlike rubber tires, the slip ratio of a lugged-wheel is
primarily caused by the deformation of the terrain and the
sliding between the wheel and the terrain. The sliding can be
described in two cases (wheel spin and skid). The wheel spin
occurs when the wheel spins out from the ground during fast
acceleration. The wheel skid occurs when the wheel slides on
the ground during fast braking. Since the complex interaction
of these factors can cause the instantaneous change in the slip
ratio of the lugged-wheel, (1) is inappropriate for estimating
the average slip ratio with inertial sensors and encoders.
Therefore, the lugged-wheel motion is analyzed using the
Euler-Lagrange equation to design the slip model for the
lugged-wheel and verify that the slip model can estimate
the average slip ratio of robots using an inertial sensor and
an encoder.

A. DYNAMIC MODEL OF LUGGED-WHEEL
The Euler-Lagrange equations are a system of second-order
ordinary differential equations derived using Lagrange’s
equation, L = T∗-V , where T is kinetic energy and V is
potential energy [42]. In this section, the Euler-Lagrange
equation is used to find the differential equation of the robot
and wheel, which are the acceleration of the robot and the
angular acceleration of the wheel for the simulation. The
coordinates and variables for the analysis of the lugged-wheel
motion are shown in Figure 2. As the lugged-wheel motion
has three different cases, these are independently analyzed
to find the corresponding Euler-Lagrange equation of the
robot’s and wheel’s motion. These cases are detailed as fol-
lows. First is a no-slip case when the actual robot velocity
is equal to the circumferential velocity of wheels. Second
is a wheel slippage case when the actual robot velocity is
not equal to the circumferential velocity of wheels. The third
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FIGURE 3. The force and torque acting on the lugged-wheel and robot for
(a): case 1,2 and (b): case 3.

occurs when two lugs touch the ground at the same time. For
the remaining paper, a no-slip case, a slip case, and a two-
lugs case represent these three cases, respectively. The robot
and the external force acting on the lugged-wheel are shown
in Figure 3. Figure 3 (a) shows the external force of two
cases, the no-slip case and the slip case, whereas Figure 3 (b)
shows the external force of the two-lugs case. The generalized
coordinates of the lugged-wheel motion are x and θ . The x
is the displacement of the robot in a longitudinal direction.
The θ is the angle between the lug and the ground. These
coordinates can be expressed as follows:

ξi = x, θ,−
π

n
≤ θ <

π

n
(2)

For the no-slip case, the external force acting on the robot
can be expressed as follows:

4θ = Tmotor − Fr cos θ + Nr sin θ (3)

where Tmotor is the torque of motors, F is the friction between
the lug and the ground, r is the radius of the lugged-wheel,

and N is the normal force. The kinetic and potential energies
of the system are expressed as follows:

T ∗
=

1
2
(mr + mwh)

(
r θ̇
)2

+
1
2
Iwhθ̇2 (4)

V = (mr + mwh) gr cos (θ − φ) (5)

where mr and mwh are the mass of the robot and the lugged-
wheel, Iwh is the moment of inertia of the lugged-wheel,
g is the gravity, and φ is the slope of the ground. As the
actual robot velocity is equal to the circumferential velocity
of wheels for the no-slip case, the derivative calculation in
the Euler-Lagrange equation is derived only for one coor-
dinate, θ . The differential equation of the θ is expressed as
follows:

θ̈ =
1(

Iwh + (mr + mwh) r2
) ((mr + mwh) gr sin (θ − φ)

+Tmotor − Fr cos θ + Nr sin θ) (6)

For the slip case, the external force acting on the robot can
be expressed as (3) and the following additional equation:

4x = F (7)

The kinetic and potential energies of the system are expressed
as follows:

T ∗
=

1
2
(mr + mwh) ẋ2 +

1
2
(mr + mwh)

(
r θ̇ sin θ

)2
+

1
2
Iwhθ̇2 (8)

V = (mr + mwh) gr cos θ cosφ + (mr + mwh) gx sinφ
(9)

As the actual robot velocity is not equal to the circumferential
velocity of wheels for the slip case, the derivative calculation
in the Euler-Lagrange equation is derived for coordinates,
x and θ . The differential equation of the x and θ can be derived
as follows:

ẍ =
1

(mr + mwh)
(F − (mr + mwh) g sinφ) (10)

θ̈ =
1(

Iwh + (mr + mwh) r2 sin2 θ
)(

− (mr + mwh) r2θ̇2 sin θ cos θ

+ (mr + mwh) gr sin θ cosφ + Tmotor
−Fr cos θ + Nr sin θ) (11)

For the two-lugs case, the external force acting on the robot
can be expressed as follows:

4x = F1 + F2 (12)

4θ = Tmotor − F1r cos θ − F2r cos
(
θ −

π

2

)
+ N1r sin θ + N2r sin

(
θ −

π

2

)
(13)

The kinetic and potential energies of the two-lugs case are
equal to (8) and (9), and the differential equation of the x and
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FIGURE 4. Velocity of the robot and the lugged-wheel for simulation.

θ can be derived as follows:

ẍ =
1

(mr + mwh)
(F1 + F2 − (mr + mwh) g sinφ) (14)

θ̈ =
1(

Iwh + (mr + mwh) r2 sin2 θ
)(

− (mr + mwh) r2θ̇2 sin θ cos θ

+ (mr + mwh) gr sin θ cosφ + Tmotor − F1r cos θ

−F2r cos
(
θ −

π

n

)
+ N1r sin θ + N2r sin

(
θ −

π

n

))
(15)

B. SIMULATION OF LUGGED-WHEEL MOTION
In Section III-A, the Euler-Lagrange equation is used to
determine the acceleration of the robot and the angular accel-
eration of the wheel for three different cases. Subsequently,
these values are used to calculate the robot’s velocity and
the wheel’s angular velocity of the next frame, with a frame
duration of 1 microsecond. By repeatedly calculating these

states, the simulation of lugged-wheel motion is conducted to
evaluate the suitability of using inertial sensors and encoders
for calculating the slip ratio of the lugged-wheel.

For the simulation, several parameters were specified,
including the wheel radius, the lug length, the number of lugs,
the mass of the robot, the mass of the wheel, and the torque
of the wheel. The values for the wheel radius, the lug length,
the number of lugs, and the mass of the robot are determined
based on the robot platform for the experiment in Section V.
The mass of the wheel is set to a value proportional to the
mass of the robot with a ratio of 1:6. The constant torque of
the wheel is heuristically set to converge the velocity of the
robot to 0.5 m/s. The focus of the simulation is to analyze the
spin and skid of the wheels, which have a greater slip ratio
compared to the slip of wheels. So, the simulation does not
consider the deformation of wheels and terrain. To evaluate
the slip ratio of the wheel, it is necessary to compare the
velocity of the robot with the circumferential velocity of
the wheel calculated using the angular velocity of the wheel.
The circumferential velocity of wheels is called the velocity
of the wheel for the remaining paper. Figure 4 shows the sim-
ulation result. Spin occurs when the robot velocity is slower
than the velocity of the wheel, whereas skid occurs when
the robot velocity is faster than the velocity of the wheel.
As shown in Figure 4 (a), spin and skid occur periodically.
The frequency of this period is equal to the frequency of each
lug touching the ground. As shown in Figure 4 (b), spin, skid,
and no-slip conditions occur during a short time. As a result,
the slip ratio of the robot changes significantly in an instant.

To improve robot localization, it is necessary to calculate
the average slip ratio of the wheels to reduce pose errors when
using encoders. To accurately calculate the average slip ratio,
the overall slip ratio of the wheels for a single periodic pattern
needs to be observed. Figure 4 (b) shows the one periodic
pattern of the velocities of the robot and wheel. This pattern
can be divided into three parts: a spin part, a skid part, and
a no-slip part. The times, t0 ∼ t3, are the boundary of each
region. The average velocity of the robot can be expressed as
follows:

v̄ =
Dspin + Dskid + Dno−slip

t3 − t0

=

∫ t1
t0
v (t) dt +

∫ t2
t1
v (t) dt +

∫ t3
t2
v (t) dt

t3 − t0
(16)

where D is the displacement of the robot. Let the spin ratio
and skid ratio of each part be expressed as follows:

λspin = 1 −

∫ t1
t0
v (t) dt∫ t1

t0
rω (t) dt

(17)

λskid =

∫ t2
t1
v (t) dt∫ t2

t1
rω (t) dt

− 1 (18)

where the spin ratio is the slip ratio of the spin part, and
the skid ratio is the slip ratio of the skid part. Let the aver-
age angular velocity of the lugged-wheel for each part be
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FIGURE 5. Overall structure of proposed localization.

expressed as follows:

ω̄spin = ω̄ +1spin, ω̄skid = ω̄ −1skid , ω̄no−slip

= ω̄ +1no−slip, (19)

the average velocity of the robot can be expressed as in (20),
shown at the bottom of the page.

Hence, the average slip ratio can be expressed as follows:

v̄ ≈

(
1 − λ̄

)
rω̄, λ̄ =

(
(t1 − t0)
t3 − t0

λspin −
(t2 − t1)
t3 − t0

λskid

)
(21)

To calculate the average slip ratio of the robot, the spin ratio
and skid ratio should be calculated. Additionally, the dura-
tion of the spin, skid, and no-slip parts should be measured
according to (21). Each part should be measured at least
two times by sensors to approximately estimate the spin and
skid according to the Nyquist-Shannon sampling theorem.
However, this data rate may be insufficient to measure the
duration of each part. Furthermore, the frequency of this
cycle and the duration of each region can vary depending on
various factors, such as the angular velocity of wheels and
characteristics of deformable terrain. Therefore, it is difficult
to calculate the average slip ratio of the robot accurately.

IV. PROPOSED LOCALIZATION METHOD
A. OVERALL STRUCTURE
This paper proposes the inertial sensor- and encoder-based
robot localization using a DNN-based slip ratio estimator.
The overall structure of the robot localization is shown in
Figure 5. The robot localization comprises the IEKF and
the DNN-based slip ratio estimator. Inertial sensor data are

used as input data to the prediction step of the IEKF and the
DNN-based slip ratio estimator, and encoder data are used as
input data to the update step of the IEKF and the DNN-based
slip ratio estimator. The DNN-based slip ratio estimator is
used to estimate the slip ratio by analyzing the sensor data
pattern instead of calculating the slip ratio. To analyze the
sensor data pattern, the nth number of sequential data is used
for the input. The IEKF is used to estimate the velocity and
orientation of the robot. The update step of the IEKF uses
pseudo measurements which are the estimated velocity, the
roll, and the pitch of the robot. The estimated velocity is
calculated by the slip ratio and encoder data. The roll and
pitch of the robot are estimated by the accelerometer. Finally,
the velocity and orientation of the robot of the IEKF state are
used to calculate the robot pose.

B. STRUCTURE OF IEKF
The proposed method estimates the robot localization based
on IEKF using inertial sensors and encoders. The state and
prediction step of the IEKF are inspired by the localization
method of IEKF [6], [43], [44], and the pseudo-measurement
of the IEKF is inspired by the paper of Brossard [38]. Figure 6
shows the coordinate system, which contains world and robot
frames. We define a world frame, W(OXYZ), and a robot
frame, R(oxyz). Lie group geometry transforms the rotation
matrix from a three-axis orientation.

The inertial sensor comprises an accelerometer and gyro-
scope, which measure the three-axis acceleration and three-
axis angular velocity of robots. The orientation of robots
in the world frame can be calculated using angular veloc-
ities, and the velocity of robots in the world frame can be

v̄ =

(
1 −

(t1 − t0)
t3 − t0

λspin +
(t2 − t1)
t3 − t0

λskid

)
rω̄

+

((
1 − λspin

)
r1spin (t1 − t0)−

(
1 + λskid

)
r1skid (t2 − t1)+ r1no−slip (t3 − t2)

t3 − t0

)

≈

(
1 −

(t1 − t0)
t3 − t0

λspin +
(t2 − t1)
t3 − t0

λskid

)
rω̄,

ω̄ ≫ 1spin,1skid , 1no−slip (20)
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FIGURE 6. Coordinate system where OXYZ represents the world frame
and oxyz represents the lugged-wheel robot frame.

calculated using accelerations and orientation of robots with
the following kinematic motion equations:

vW ,k = vW ,k−1 +1t
(
RW
R,k−1aR,k + g

)
+ wk (22)

RW
R,k = RW

R,k · e1tωR,k+wk (23)

where v is the velocity of the robot,R is the rotation matrix of
the robot. The a and ω are three-axis acceleration and three-
axis angular velocity measured by the inertial sensor, respec-
tively. The1t is the time interval betweenmeasurements. The
w represents zero-mean Gaussian noises. The rotation matrix
of the robot in the Lie group can be expressed as the three-
axis orientation of the robot in Lie algebra with the following
equations:

RW
R = eθW , θW =

[
φW θW ψW

]T (24)

where φ, θ , and ψ are the roll, pitch, and yaw of robots. The
three-axis acceleration, a, and three-axis angular velocity, ω,
are inertial sensor data, which can be represented as follows:

uk =
[
aTk ω

T
k

]T
=
[
ax ay az ωx ωy ωz

]T (25)

The pseudo-measurements are used in the update step
of IEKF instead of observation measurements. The pseudo-
measurements comprise five inputs which are the three-axis
velocity of robot in the robot frame and the roll, pitch of
the robot in the world frame. The directions of three-axis
velocity are longitudinal, lateral, and vertical in the robot
frame. The longitudinal velocity is estimated by the slip ratio
and encoder data, while the lateral and vertical velocities are
set to zero. The roll and pitch of the robot are calculated using
the accelerometer by estimating the direction of gravity. The
measurement model is expressed as follows:

h
(
xk|k−1

)
=


(
RW
R,k|k−1

)T
vW ,k|k−1

φW ,k
θW ,k

 (26)

We define the state of IEKF as follows:

x =
{
vW RW

R

}
(27)

To estimate the velocity and orientation of the robot, the
prediction step (x̂k|k−1) and update step (x̂k|k ) of IEKF for the
system, (22), (23), and (26), are recursively used as follows:

x̂k|k−1 = x̂k−1|k−1 +1t · f
(
x̂k−1|k−1,uk

)
(28)

Pk|k−1 = Fk
(
Pk−1|k−1 + GkQkGT

k

)
FTk (29)

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + V
)−1

(30)

x̂k|k = x̂k|k−1 + Kk
[
yk − h

(
x̂k|k−1

)]
(31)

Pk|k = (I6 − KkHk)Pk|k−1 (32)

where F and G are the Jacobians of the motion model, f ,
with respect to states, x, and inputs, u. V is the covariance of
pseudo-measurement units.Q is the covariance of the inertial
sensor:

ek = yk − h
(
Xk|k−1

)
(33)

Q0 =

[
σ 2
1 I3 · · ·

· · · σ 2
2 I3

]
(34)

Qk = γ eTk ekQ0 + Q0 (35)

where e is the error of measurement, σ is the covariance of the
accelerometer and gyroscope, and γ is the heuristic parameter
for the measurement unit. The calculation ofQ is inspired by
the paper [6]. The covariance of pseudo-measurement is set
heuristically using the experimental result of outdoor datasets
mentioned in Section V. After the update step, the additional
calculation is executed to estimate the position of the robot.

pW ,k = pW ,k−1 +1t v̂W ,k|k (36)

where p is the position of the robot in the world frame.
In the IEKF, pseudo-measurements are used to reduce

errors in the states. For inertial sensor- and encoder-based
localization, the most important pseudo-measurement is the
longitudinal velocity of the robot, which can have significant
localization errors due to wheel slippage. Therefore, it is
important to estimate the slip ratio accurately. As inertial sen-
sors are not affected by wheel slippage, while encoders are,
the slip ratio can be calculated using the following equation:

λ = 1 −
vR,k|k−1,lon

ωencoderr
(37)

where v is the longitudinal velocity of the robot after the pre-
diction step in the robot frame, ωencoder is the encoder data,
and r is the wheel radius. However, accurately calculating
the slip ratio can be challenging, as mentioned in section III.
Additionally, the slip ratio calculation involves the previously
estimated velocity, which can result in accumulated errors.
To address this, we propose a DNN-based slip ratio estimator.
The proposed estimator analyzes sensor data patterns to esti-
mate the slip ratio, and its inputs do not include the previously
estimated velocity to prevent the accumulation of errors.
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FIGURE 7. Overall structure of DNN-based slip ratio estimator.

C. DNN-BASED SLIP RATIO ESTIMATOR
We proposed the DNN-based slip ratio estimator for accurate
slip ratio estimation. Two points are considered to design
the structure of the DNN-based slip ratio estimator. Firstly,
the DNN-based slip ratio estimator is designed to learn pat-
terns of sensor data, which depends on the average slip ratio
because it is difficult to calculate the average slip ratio of
robots accurately, as mentioned in Section III. Secondly, the
DNN-based slip ratio estimator is designed to eliminate the
effect of previous states to reduce the accumulated error
because the proposed network does not rely on learning a
kinematic model for calculating the slip ratio. Therefore,
to estimate the average slip ratio of robots by analysis,
a DNN-based slip ratio estimator uses sequential data of
three-axis acceleration and three-axis angular velocity of the
inertial sensor, and two-axis angular velocity of the encoder.
The input data length is set to balance between two factors.
First, the data length should be long enough to allow the
DNN to analyze the pattern and predict the accurate slip
ratio. Second, the data length should be short enough to
avoid including the acceleration and deceleration of the robot
within a single sequence of data. This is important to prevent
the network from learning the robot’s trajectory rather than
the slip ratio. The DNN-based slip ratio estimator comprises
three parts to estimate the average slip ratio, which are 1D
CNNs, fully connected (FC) layers, and a smoothing filter,
as shown in Figure 7.

The input data of the DNN-based slip ratio estimator are
the sequential data of the inertial sensor and encoder. As the
purpose of the DNN-based slip ratio estimator is to estimate
the average slip ratio of the robot rather than the instantaneous
slip ratio, the sequential data are used to analyze the sensor
data pattern. The 1D CNN is used to analyze the data pattern
of the inertial sensor and encoder as it is specialized to extract

TABLE 1. Detail of the CNN.

TABLE 2. Detail of the FC layer.

the feature of sequential data. Table 1 presents the detail of the
1D CNN.

xcnn = CNN
(
aIMU ,t−N , · · · , aIMU ,t ,

ωIMU ,t−N , · · · , ωIMU ,t , ωencoder,t−N , · · · , ωencoder,t
)

(38)

The FC layer is used to estimate the average slip ratio of
the robot by classification. RNN and LSTM are commonly
used for pose-related results [39], [40], but the DNN-based
slip ratio estimator does not use these networks for two
reasons. Firstly, these networks are used to learn kinematics.
Secondly, these networks use previous states to estimate the
next state. As the purpose of the proposed network is not to
learn kinematics and not to use previous states, the proposed
network only uses FC layers to estimate the slip ratio. For the
output of the FC layer, the classification is used as it can limit
the range of the estimated slip ratio to reduce the accumulated
error and match the analyzed sensor patterns to the belonging
slip ratio. The detail of the FC layer is shown in Table 2.

y = softmax (CNN (FC (xcnn))) (39)

Using classification does not ensure that errors are esti-
mated near the target slip ratio, as each class is learned
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FIGURE 8. Lugged-wheel robots and lugged-wheel.

FIGURE 9. Outdoor environments for training datasets.

independently. To prevent this problem, a smoothing filter
and smoothing labeling are used to learn the relationship
between consecutive classes. For the smoothing filter, a fixed
seven kernel size 1D CNN is used. For smoothing labeling,
the target data of the class are scored 0.7 and 0.15 to the
corresponding and surrounding classes, respectively. The fol-
lowings are the equation to calculate the corresponding index
of the slip ratio and the slip ratio of the index:

i =
⌊(

λ − 0.005 + 0.5
)
× 100

⌋
(40)

λ = (i− 49)× 0.01 (41)

The slip ratio, which represents the degree of wheel slip-
page as mentioned earlier, is set from −0.5 to 0.5. The
total number of classes is 100, and the resolution of the slip
ratio is 0.01.

The entire network is implemented using PyTorch.
We trained our network using the AdamW optimizer, set-
ting the initial learning rate to 10−4 and weight decay to
10−510−5. The training was conducted for 200 epochs with
a batch size of 128. NVIDIA GeForce RTX 2080 Ti was
used for training. The dropout rate was set to 0.2 for the
transformer module.

V. EXPERIMENTS
In this section, there are two types of experiments are
conducted. First is an indoor experiment to validate the

FIGURE 10. Outdoor environments for testing datasets.

simulation of lugged-wheel motion using a motion capture
system. Second is an outdoor experiment to evaluate the
proposed method. As the proposed method includes the DNN
to estimate the slip ratio, the training methodology, valida-
tion, and experimental results of outdoor experiments are
explained in each subsection.

Section V is organized as follows: Subsection A presents
the overall experimental setup for both indoor and outdoor
experiments. Subsection B presents the validation result of
the simulation based on indoor experiments. Subsection C
presents the training methodology. Subsection D presents
the validation result of outdoor experiments. Subsection E
presents the experimental results. Subsection F presents the
computing time of the proposed method compared to others.
Finally, subsection G presents the future work of the proposed
method.
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FIGURE 11. Experimental result for velocity of the wheel and robot.

A. EXPERIMENTAL SETUP
We formulate various datasets to evaluate simulation results
and the proposed method. All experiments are performed on
the desktop computer using self-generated datasets. For the
outdoor lugged-wheel robot, two commercial lawnmowers
(L7, LG Electronics) are used, shown in Figure 8. In the rest
of this paper, the terms ‘‘robot no. 1’’ and ‘‘robot no. 2’’ are
used to refer to two distinct lawnmowers, respectively. The
sensors used for the experiment are the MPU-6050 (com-
mercial inertial sensor), which specifications are presented
in [45], and the built-in encoder, which has a resolution of
0.025 ms−1. The data rate of the inertial sensor and encoder
is 80Hz and 50Hz, respectively.

To evaluate simulation results, the indoor datasets are gen-
erated using a motion capture system (Vicon). Two types
of floors, a tile and a carpet, are used for indoor datasets.
Each condition is repeated four times, so eight datasets are

generated to evaluate simulation results. The motion capture
system is used to generate the ground truth velocity of the
robot. Infrared reflective markers are placed on the robot, and
these markers are tracked by the motion capture system with
a high accuracy of less than 0.5 mm error.

To train the DNN-based slip ratio estimator, we formulate
three dataset types in a sloped outdoor grass environment.
Each type has different conditions, so the robot experiences
different slip conditions. The first dataset type is generated
using robot no. 1 when the grass is dry in the winter. The
second dataset type is generated using robot no. 1 when the
grass is wet after rain in the winter. The third dataset type is
generated using robot no. 2 when the grass is dry in the fall.
The outdoor environment for the winter and fall is shown in
Figure 9. For each dataset type, four places are chosen with
different slopes so that the robot experiences different slip
conditions. The robot moves 10 m × 10 m square trajectory.
Each condition is repeated four times, so forty-eight datasets
are generated for training.

To evaluate the performance of the DNN-based slip ratio
estimator, we formulate three dataset types. Two more places
are chosen to avoid the place for the training datasets. The
testing datasets have three trajectories which are 10m× 10m
square, 10 m × 10 m zigzag pattern, and 40 m straight line.
Each condition is repeated four times, so twelve datasets are
generated to evaluate the performance. The outdoor environ-
ment for each place of testing datasets is shown in Figure 10.

The proposed method is compared with two other localiza-
tion methods using an inertial sensor and an encoder. The first
method is integration-based localization. The other method
is IEKF-based localization using a calculated slip ratio. The
structure of IEKF is explained in Section IV-B, which is
inspired by [6], [38], [43], and [44], and the slip ratio is cal-
culated by (37). The performance of the localization methods
is compared using a closed-loop error which is the distance
between the beginning and end poses of the trajectory. For the
closed-loop error, we control the robot to place it back to the
beginning pose at the end of the datasets.

B. VALIDATION OF SIMULATION
In Section III, we use the analysis and simulation of the
lugged-wheel motion to evaluate the validity of calculating
the short-term average slip ratio. We conclude that it is hard
to calculate the short-term average slip ratio because the
high data rate of sensors is required to calculate the spin
ratio and skid ratio for accurate estimation. This experiment
is conducted to support simulation results. The data rate of
the Vicon and encoder sensor is 100Hz and 50Hz, respec-
tively. Figure 11 shows the graph of experimental results.
The blue line represents the circumferential velocity of the
encoder, whereas the orange line represents the robot velocity
measured by the motion capture system. Figure 11 (a) is
the experimental result on a tile, while Figure 11 (b) is the
experimental result on a carpet. The graph shows that the
velocity of both the wheel and robot is measured irregularly
for whole datasets. This means that the data rate of 100Hz
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is insufficient to calculate the short-term average slip ratio
accurately.

C. TRAINING METHODOLOGY
For training, we formulate forty-eight datasets in the three
outdoor environments, explained before. These datasets can
be classified into three types depending on the ground con-
ditions. Table 3 provides the detail of the training datasets.
Dataset no. 1 is a group that uses the robot no. 1 on dry grass
in the winter. Dataset no. 2 is a group that uses the robot no. 1
onwet grass in thewinter. To satisfy thewet condition, dataset
no. 2 is generated one day after 13.4 mm of rain. Dataset no. 3
is a group that uses the robot no. 2 on dry grass in the fall.
Each group has different conditions so that the DNN-based
slip ratio estimator can learn various slip ratios on various
conditions.

To train the proposed network, we plan a specific scheme
to evaluate the presence of overfitting. Usually, some of
the training datasets are randomly chosen for validation.
However, we plan six scenarios to train the DNN-based slip
ratio estimator as each group of datasets contains sufficient
data to train the proposed network. Each group comprises
sixteen datasets, and each dataset contains about ten thousand
sequence data composed of three-axis acceleration, three-axis
angular velocity, and two-axis wheel speeds. Table 4 provides
the detail of the scenario. For each scenario, a different com-
bination of training and validation datasets is used, so training
datasets do not include all conditions. This is done to test
the generalizability of the proposed DNN-based slip ratio
estimator to see if it can accurately estimate the slip ratio in
untrained conditions with similar sensors and robots.

For target data of training datasets, the slip ratio of the
IEKF-based localization is calculated and customized. The
slip ratio of the IEKF-based localization is the instantaneous
data calculated by the inertial sensor and encoder. As the
purpose of using DNN is to estimate the short-term average
slip ratio of the robot rather than the instantaneous slip ratio,
a low pass filter is applied to the slip ratio of the IEKF-based
localization to eliminate the rapid change in the calculated
slip ratio. The lag of the low pass filter is corrected by
heuristically compensating the time, which is shifting the
timemanually. Figure 12 shows an example of the customized
slip ratio compared to the calculated slip ratio of the IEKF-
based localization.

D. VALIDATION RESULTS
The closed-loop error is calculated to validate the training
results of the DNN-based slip ratio estimator. For each sce-
nario, the training and validation datasets have different con-
ditions. We doubt the DNN-based slip ratio estimator being
mistrained in two cases. The first case is that the DNN- based
slip ratio estimator only works for the robot used in training.
Two different robots are used to generate the datasets to check
the first case. The second case is that the estimated slip ratio
depends on the slope of the ground because the DNN-based
slip ratio estimator can learn the slope of the ground, not the

TABLE 3. The detail of training datasets.

TABLE 4. The detail of the scenario.

slip ratio, from the sensor data. To check the second case,
three different ground conditions, drywinter grass, wet winter
grass, and dry fall grass, are chosen to generate different slip
ratios on the same slope of ground for datasets. Figure 13
shows an example of the validation result for dataset no. 2-13.
In Figure 13 (a), the slip ratio of three types is shown: the
slip ratio calculated by the IEKF-based localization, the slip
ratio estimated by the DNN-based slip ratio estimator, and
the customized slip ratio. The slip ratio estimated by the
DNN-based slip ratio estimator is closer to the customized
slip ratio than that calculated by the IEKF-based localization,
indicating that the proposedDNN-based slip ratio estimator is
able to effectively analyze the sensor data pattern to estimate
the short-term average slip ratio. Figure 13 (b) shows the tra-
jectory of the integration-based localization, the IEKF-based
localization, and the proposed method for dataset no. 2-13.
Table 5 provides validation results of all training scenarios.
As shown in Table 5, the overall validation results of the
proposed method are better than that of the integration-based
localization. These are similar to or better than that of the
IEKF-based localization. Validation results prove that the
trained DNN-based slip ratio is not belonging to any cases.

Among validation results, the closed-loop error of scenario
no. 6 for slope no. 4 is larger than that of the IEKF-based
localization. Scenario no. 6 uses dataset no. 3 for training and
dataset no. 1 and 2 for validation. Even though a different
robot is used to generate dataset no. 3, validation results of
slope no. 1-3 is similar to or better than that of the IEKF-
based localization, which is similar to other scenarios. Using
a different robot is not the reason for the larger error. As vali-
dation results for the datasets of slope no. 4 have larger errors,
the slope of the ground is the main cause of the closed-loop
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FIGURE 12. Example of slip ratio of IEKF-based localization and
customized slip ratio.

error. Slope no. 4 has the biggest inclined angle of the ground,
leading to the largest slip ratio. Among the various grass
conditions, the short-term average slip ratio of the robot is
increasing according to the following order: dry fall grass,
dry winter grass, and wet winter grass. Figure 14 shows the
slip ratio of the IEKF-based localization for dataset no. 2-13
and 3-13 to show the slip ratio of the robot on wet winter
grass and dry fall grass. For scenario no. 6, the slip ratio of
dataset no. 3 for slope no. 4 is used for training, which has
a lower slip ratio than other datasets. To accurately estimate
the slip ratio of dataset no. 1, 2 for slope no. 4, the trained
DNN-based slip ratio estimator should estimate the slip ratio
beyond the trained range of slip ratio. As a result, closed-loop
errors of dataset no. 1, 2 for slope no. 4 are bigger than that
of the IEKF-based localization. This shows that the proposed
network can only accurately estimate the trained range of slip
ratio.

E. EXPERIMENTAL RESULTS
The closed-loop error is calculated to evaluate the perfor-
mance of the proposed method for testing datasets. The test-
ing dataset is generated using robot no. 2 on dry fall grass
in a different place from the training datasets. Some datasets
have different trajectories from the training datasets. Table 6
provides the experimental results of the testing datasets.
Figure 15 shows the robot trajectories of the integration-based
localization, the IEKF-based localization, and the proposed
method for dataset no. 4-1, 4-3, 4-5, 4-7, 4-9, and 4-12. The
closed-loop error of the proposed method of scenario no. 3 is
lower than that of other methods because scenario no. 3 uses
both robots and experiences as many different slip conditions
as possible. The closed-loop error of the proposed method
reduces the accumulated error of the integration-based local-
ization by 53.5% and the IEKF-based localization by 13.5%.
Specifically, the closed-loop error of the proposed method for
square and zigzag pattern trajectories is similar to or lower

FIGURE 13. Example of validation result. (a) Slip ratio of IEKF-based
localization, DNN-based slip ratio estimator, and customized slip ratio for
dataset no. 2-13. (b) Trajectories of integration-based localization,
IEKF-based localization, and proposed method for dataset no. 2-13.

than that of the IEKF-based localization. In contrast, the
closed-loop error of the proposed method for a straight-line
trajectory is lower than that of the IEKF-based localization.

The DNN-based slip ratio estimator prevents accumulated
errors because of its structure. Experimental results of the
DNN-based slip ratio estimator do not have the accumu-
lated error as the input to networks does not contain the
previously estimated state. In contrast, as the IEKF-based
localization calculated the slip ratio based on the previous
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TABLE 5. Validation results.

FIGURE 14. Slip ratio of IEKF-based localization for dataset
no. 2-13 and 3-13.

velocity of the robot, the calculated slip ratio has the accu-
mulated error. However, the accumulated error is initialized
when the robot is stopped. As the accumulated error does

not significantly affect the performance of datasets containing
10 m length movement, we formulate the datasets with long-
distance movement, 40 m straight-line trajectory, to analyze
the accumulated error of the proposed method. To emphasize
the effect of the accumulated error, the robot is not stopped
when going away, and the robot is frequently stopped when
returning, as shown in Figure 16. The slip ratio calculated by
the IEKF-based localization and estimated by theDNN-based
slip ratio estimator appear similar in Figure 16, but Table 6
shows that the closed-loop error of the proposed method for
a straight-line trajectory reduces the accumulated error of the
IEKF-based localization by 13.4%, In contrast, the closed-
loop error of the proposed method for square and zigzag
pattern trajectories only reduces the accumulated error of the
IEKF-based localization by 3.8%. These results show that
the DNN-based slip ratio estimator effectively prevents the
accumulated error.

F. COMPUTING TIME
The disadvantage of using DNN is an increase in the run-
time of the algorithm. To evaluate the computing time, the
runtime of the integration-based localization, the IEKF-based
localization, and the proposedmethod is measured using Intel
Xeon for CPU and NVIDIA GeForce RTX 2080 Ti for GPU.
Table 7 provides the runtime of each localization method in
microseconds for processing each input of the dataset. The
runtime of the proposed method is measured twice, once
using the CPU and once using the GPU. The runtime of the
proposed method using the CPU is 1.2 kHz, which is greater
than the data rate of sensors, but the computing time of the
proposed method increases about 20.7 times compared to
IEKF-based localization.

G. FUTURE WORK
In future work, there are two approaches to be further inves-
tigated. The first is investigating the effect of using mul-
tiple inertial sensors for further improvement. The second
is investigating the potential of using simulated datasets to
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FIGURE 15. Trajectories of integration-based localization, IEKF-based localization, and proposed method for dataset
no. 4-1, 4-3, 4-5, 4-7, 4-9, and 4-12.

substitute for real-world datasets in the training of the
proposed network.

The proposed method estimates the slip ratio by analyzing
sensor data patterns. While this method shows promising
results compared to the integration-based localization and

the IEKF-based localization, using multiple inertial sensors
located in various positions could potentially improve its
performance by providing more information. However, this
approach can lead to longer computational times as input
data are increased. In future work, we can investigate the
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TABLE 6. Experimental results.

TABLE 7. Computing time.

FIGURE 16. Example of slip ratio of IEKF-based localization and
DNN-based slip ratio estimator for dataset no. 4-9.

trade-off between performance and computational time when
using multiple sensors, which can provide insights into the
benefits and limitations of this approach.

The proposed slip ratio estimator is trained using real-
world datasets, which can be time-consuming and costly to
generate for practical applications. To address this issue, one
potential approach is to use simulated datasets as a substitute

for real-world datasets. By substituting a portion of the
real-world datasets with simulated datasets, significant effort
and cost can be saved. In future work, we can investigate
the use of simulated datasets to train the proposed slip ratio
estimator. We can also investigate the trade-off between the
ratio of real-world datasets and simulated datasets used in
the training process. Additionally, it is important to evaluate
the performance of the slip ratio estimator using simulated
datasets and to compare it with the performance using real-
world datasets.

VI. CONCLUSION
This paper proposed a DNN-based slip ratio estimator with
IEKF for the localization of WMRs with lugged-wheels.
Only an inertial sensor and an encoder were used. Instead
of using the conventional slip model for lugged-wheels to
estimate the slip ratio, the motion of lugged-wheels was ana-
lyzed using the Euler-Lagrange equation and concluded that
data rates of the inertial sensor and encoder are insufficient
to calculate the wheel slippage. The DNN-based slip ratio
estimator, which is composed of a CNN, a FC layer, and
a smoothing filter, was proposed to analyze the pattern of
sensors to estimate the slip ratio. The estimated slip ratio was
used as a pseudo measurement of the IEKF-based localiza-
tion to estimate the robot pose. Dataset-based experiments
were performed to evaluate the performance of the proposed
localization, and results showed that the proposed method
reduces the accumulated localization error of the integration-
based localization by 53.5% and the IEKF-based localization
by 13.5%. In future work, we plan to explore the poten-
tial benefits of using multiple inertial sensors positioned in
various locations to improve the performance of the DNN-
based slip ratio estimator, while considering the computa-
tional costs associated with processing the increased input
data. Additionally, we will investigate the use of simulated
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datasets as a substitute for real-world datasets in training
the proposed network, which could reduce the time and cost
requirements of generating real-world datasets for practical
applications.
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