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ABSTRACT The presence of various maize plant leaf diseases has significantly decreased both the quality
and quantity of crop production. In order to take the appropriate steps to prevent the occurrence of plant
leaf diseases, it is essential to track and recognize such infections during the planting period. However,
correct recognition of numerous maize diseases is difficult to achieve because the currently employed
automated solutions are operationally complicated or only effective on samples with plain backgrounds.
While real-world scenarios are suffering from huge sample distortions like the effect of noise, clutter in
the background, and blurring of the leaf regions that increase the complexity of the recognition procedure.
To alleviate the above-listed problems, a deep learning (DL) approach called theMaizeNet is proposed for the
correct localization and classification of various maize crop leaf disorders. We have presented an improved
Faster-RCNN approach that utilizes the ResNet-50 model with spatial-channel attention as its base network
for the computation of deep keypoints which are then localized and categorized into various classes. The
proposed work is tested on a standard database named Corn Disease and Severity that contains samples from
three different classes of maize plant diseases which are captured under diverse conditions such as complex
background, brightness, and color and size variations. TheMaizeNet model attains an average accuracy score
of 97.89% along with mAP value of 0.94, which is showing the effectiveness of our approach for locating
and classifying the numerous types of maize leaf infections.

INDEX TERMS Attention, classification, deep learning, faster-RCNN, localization, Maize disease, ResNet.

I. INTRODUCTION
Maize is an essential cereal crop farmed all over the globe.
Among the other grain crops, maize has the largest world-
wide production, playing an essential part in ensuring food
security, feedstock, and energy supply with a growing global
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population [1]. Maize plays a crucial role as a primary
supplier of raw materials for various industrial goods. The
extensive use of maize as a primary food source for both
humans and animals has resulted in its significant importance.
However, despite its high yield potential, the maize plant is
vulnerable to numerous illnesses that can result in an annual
loss of 6%-10% [2], [3]. Maize diseases are mainly caused by
various viruses, viroid, fungi, and bacteria. Typical symptoms
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of infection include discoloration, rot, scab, blight, necrosis,
wilt, and deformities, which are used to locate and spot foliar
diseases in maize. The most prevalent fungal foliar infec-
tions in maize cultivation include northern corn leaf blight
(NLB), southern corn leaf blight (SLB), and gray leaf spot
(GLS) [4]. Currently, for farmers without specialized knowl-
edge, the precise diagnosis of maize leaf diseases is a vital
assurance for maize productivity. Traditional maize disease
identification process involves manual inspection of leaves
and depends on the knowledge of plant pathology and the
experience of agricultural specialists. Misinterpretation of the
disease typically results in ineffective pesticide treatments,
which not only pollute the environment but also increase the
toxic effects on maize. Thus, rapid and accurate methods are
required to monitor the maize crop and treat the infections.

Recently, digital technologies including remote sensing,
global positioning, and geographic information systems, are
widely adopted for plant disease monitoring and forecast-
ing [5], [6]. With the extensive growth in the area of arti-
ficial intelligence, automated methods based on computer
vision and machine learning (ML) algorithms are progres-
sively replacing traditional plant disease diagnostic method-
ologies [7]. In recent years, several digital image-based
automated plant disease identification methods are intro-
duced as a potential alternative to manual inspection [8].
Initially, ML methods with hand-engineered features were
adopted in agriculture to improve decision-making capabil-
ity. Prior work includes various approaches such as gray
level co-occurrence matrix (GLCM) [9], local binary patterns
(LBP) [10], scale-invariant feature transform (SIFT) [11],
and histogram of oriented gradient (HOG) [12], etc., as fea-
ture descriptor for the representation of the images. These
approaches extract visual characteristics like shape, hue,
structure, and other statistical traits and thus provide a sim-
plified representation of the plant disease [13]. The extracted
features are then utilized to train MLmodels such as decision
tree (DT) [14], support vector machine (SVM) [15], [16],
and artificial neural network (ANN) [17] framework to per-
form the categorization of leaf diseases. Despite their ease
of use and minimum data requirements, hand-coding feature
computation methods entail significant processing time and
necessitate human expertise.

Deep learning (DL)-based systems, a subset of ML tech-
niques have recently gained popularity due to their supe-
rior ability to identify patterns and perform classification.
DL methods such as convolution neural networks (CNN),
recurrent neural networks [18], and deep belief networks [19]
have been widely employed for different tasks including the
agriculture domain such as predicting the yield quantity, plant
recognition, and crop disease diagnosis [20], etc. Among oth-
ers, CNNs are one themost popular approach due to their abil-
ity to adaptively learn spatial hierarchies and extract semantic
representations from the input samples. The CNN frame-
work is empowered to automatically extract important sample
information from the training data without the intervention

of human experts and thus allow improved decision-making.
Due to such efficacy of the DL approaches, there are widely
employed in the area of agriculture. Therefore, in recent
works, DLs are extensively applied for various crop disease
recognition and classification such as potato [21], apple [22],
grape [23], rice [24], tomato [25], [26], cucumber [27] includ-
ing maize [28], [29], [30], [31], [32]. In a significant num-
ber of studies, new CNN architectures such as ResNet [30],
AlexNet [33], and DenseNet [28], [34], with transfer learning
are used to detect crop diseases. Few studies [35], [36], [37],
[38], [39] suggested novel CNN architectures for the detec-
tion and classification of crop disorders. These approaches
can yield accurate results with minimal preprocessing and
computing costs. Additionally, DL-based algorithms outper-
form other techniques by making use of topological informa-
tion from the input images and are robust to modifications
like rotation, scaling, and translation. Furthermore, with pre-
trained frameworks, these algorithms achieve high accuracy
in the maize disease identification [28], [29], [30]. Most of
the existing methods perform maize disease categorization
at the image level, which is captured under controlled lab
settings and thus has a high risk of false-positives. As, the
dataset generated in a controlled environment is developed
with ideal situations like with constant background settings
and lack of sample artifacts like noise, blur, etc. Therefore,
approaches trained on such data samples when evaluated on
images captured in more real-world settings usually result in
misclassification with an increased number of false positives.
It is critical to locate maize disease spots in field images
to attain improved sensitivity (recall-rate). The simultaneous
localization and fine-grained classification of maize disease
spots can assist agricultural specialists or users in the provi-
sion of other critical data like the dimension and region of the
lesions, which can also aid in the assessment of the severity of
the disease at a higher level and plan treatment accordingly.

At present, DL-based object identification models are con-
tinually being developed. State-of-the-art frameworks such as
SSD [40], YOLO [41], and Faster-RCNN [42] show robust
performance in real-time object localization and classifi-
cation. Limited studies have been undertaken to perform
the complex agricultural operation of both localization and
fine-grained categorization in the context of plant disease
identification [43], [44], [45]. In [46], Region-based CNN
is utilized to govern the precise position and group of
the maize disease and achieved satisfactory results. Despite
the effectiveness of DL methods, the accurate classifica-
tion/identification of maize disease using field images is still
a challenging task. The researchers have to deal with a num-
ber of significant problems while developing a robust model
such as data preparation, handling inter/intra class variations,
and adverse lighting conditions, including distortion and
occlusion [47]. The presence of complex background distur-
bance also prevents accurate disease identification plants in
the real world. Since the background can be quite complicated
and obstruct items of interest, fine-grained characteristics
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of multi-class plant disease might be difficult to identify.
Moreover, efficient models with lower computing costs and
faster inference speeds are highly in demand for real-time
agricultural applications.

In this work, to address the above-mentioned problems,
we proposed a DL-based framework namely MaizeNet to
perform the complex task of localization and classifica-
tion of maize disease from field images. Our MaizeNet
model is based on the Faster-RCNN network [42] that has
shown improved results on various object recognition tasks.
We incorporated an improved feature extraction network with
an attention mechanism to compute fine-grained character-
istics of multiple maize diseases from input samples. The
modified backbone network improves the network’s ability to
extract salient characteristics in the presence of complicated
backgrounds and changing environmental conditions. The
model simultaneously performs both detection and classifica-
tion using an end-to-end training strategy and shows effective
performance in real environment settings. The distinctive
contributions of our framework are as follows:

1) We proposed a Faster RCNN-based framework namely
MaizeNet with improved feature computation CNN
network architecture for accurate maize leaf disease
localization and classification.

2) We added spatial and channel attention mechanisms
that learned inter-channel relationships and spatial
positioning to extract more robust disease representa-
tion from samples having noisy backgrounds and real
environment settings.

3) Better detection and classification of disease regions
of maize plant leaves due to the high recall ability of
the proposed approach because of the inclusion of the
Convolutional Block Attention Module (CBAM).

4) We performed huge experimentation on an online
accessible database to indicate the efficacy of our
approach. The results demonstrate an effective per-
formance of the proposed approach under challenging
settings such as the presence of cluttered background,
variation in lighting, and distortions.

The manuscript is arranged as follows: Section II examines
previous studies related to identifying diseases in plants,
specifically maize crop diseases. In Section III, the adopted
methodology and detailed architecture of the proposed frame-
work are explained. Section IV presents the details of the
selected dataset, implementation, and experimental setup,
along with the obtained results and discussion. Lastly,
we concluded our work and suggested some future directions
in Section V.

II. RELATED WORK
Several methods have been introduced by scientists to
locate, classify, and compute the related attributes of various
plant abnormalities. For this reason, both the DL and ML
approaches are heavily adopted by researchers. In this sec-
tion, we have provided an analysis of the existing works used
for the categorization of corn leaf abnormalities. Initially,

conventionalML approaches are adopted for corn leaf disease
classification. These techniques use hand-coded keypoints
computation approaches along with a classifier to execute
the classification task. One such framework was discussed
in [16], where the researchers extracted structural keypoints
employing a histogram along with the GLCM method to
get the feature description of the input images. Then, the
SVM approach was adopted to perform the corn diseases
categorization task. The work [16] employs the PlantVillage
dataset and attains an accuracy of 83.70%. Zhang et al. [48]
performed the maize plant disease classification by employ-
ing the genetic algorithm to autonomously adjust the ker-
nel method and penalty factor of the SVM classifier. The
work [48] gains a classification score of 90.25% over a cus-
tom dataset. Further, in [49] an ML approach the Bayesian
technique was used to develop a skilled diagnostic model
to trace and categorize the corn plant disorders by com-
puting the relevant signs. The work attains an accuracy
value of 90% over a custom dataset. Zhang et al. [50] used
a segmentation-based method for performing the categoriza-
tion of maize diseases. For this reason, initially, the area
of interest was located by using a segmentation method.
Then, the keypoints were extracted based on the textural
description of the disease area. Finally, the KNN classifier
was used to accomplish the classification task to categorize
the given samples into five related categories. The work [50]
reports an average accuracy value of 90.30% on a custom
dataset. In [51], the authors introduced an adaptive weighting
multi-classifier fusion method to recognize the various cate-
gories of corn leaf abnormalities. The work categorizes given
samples into seven related classes. The method [51] attains
an accuracy value of 94.71% on a custom dataset. Another
work [52] used a custom dataset to classify the numerous corn
leaf diseases via using the SVM classifier with an average
accuracy score of 83.2% on a custom dataset. Qi et al. [53]
also presented a work to recognize the maize plant diseases
where the retinex method was adopted to enhance the visual
appearance of the samples. Next, an automotive thresholding
technique in R-G gray plane was utilized to capture the struc-
tural information of the sample i.e., diseased region, chromi-
nance characteristics and invariant moments, etc. In the next
step, the principal component analysis (PCA) was adopted to
minimize the feature space. Finally, the categorization task
was achieved by employing the SVM classifier by catego-
rizing the samples into three related classes i.e., Common
Rust (CR), SLB, and curvularia lunata, respectively. The
work [53] has reported an average accuracy value of 90.74%
on a custom dataset. The above-performed analysis shows
that even though various ML approaches have been proposed
in the literature for classifying maize leaf diseases, however,
the existing ML approaches are unable to fully capture the
structural information of the samples due to their limited
discriminative ability.

The robustness and better recall power of the DL
approaches have insisted the researchers to test them in the
area of the maize plant infections categorization. One such
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approach was discussed in [29] where a DL model namely
the Inceptionv3 was adopted to classify the normal and
infected images of the maize plant. Firstly, the augmentation
approach was utilized to enhance the diversity of the input
samples. Then, the Inceptionv3 model was used to calculate
the related keypoints and accomplish the categorization job.
The work [29] attains an accuracy score of 95.99% over a
custom dataset. In [30], several DL frameworks i.e., VGG-16,
ResNet-50, and InceptionV3 were tested for recognizing the
numerous types of corn leaf infections. The work used the
idea of transfer learning alongwith the Bayesian hyperparam-
eter optimization to boost the categorization accuracy of the
selected models. The work attained an average accuracy rate
of 93% for images from the PlantVillage dataset, however,
at the cost of increased model complexity. In [54], the work
presented an improved LeNet CNN framework comprising
a small kernel size for classifying the abnormalities of the
corn plant leaves. The technique [54] has reported an average
accuracy value of 97.89% on the PlantVillage dataset. In [28],
a DL approach namely the DenseNet-121 was analyzed for
maize plant disease classification with an accuracy rate of
98.45% on the PlantVillage dataset. Whereas, in [55], the
EfficientNet-b0 framework was adopted to recognize the
abnormalities of the corn plant leaves. This work is profi-
cient in maize plant leaf abnormality classification with an
accuracy value of 98% on a custom dataset, however, requires
the evaluation on a complex data sample. Zhang et al. [56]
proposed an optimized GoogLeNet framework to categorize
the samples into nine different classes ofmaize abnormalities.
The work analyzed various combinations of pooling layers,
and activation methods, along with the dropout approaches
to reduce the framework parameters. The work exhibits an
average accuracy score of 98.9%; however, the work has
employed only a total of 500 images for model training
and testing which are collected from different sources, such
as the Plant Village and Google websites. Therefore, the
approach requires the evaluation on a more diverse dataset
with a large collection of samples to show its significance.
In [57], an improved AlexNet DL approach was presented
with expanded and multistage convolution to accomplish
the maize plant leaf disease categorization. The work also
adopted several preprocessing operations along with the data
augmentation phase to eliminate the appearance and diversity
of the input samples. This approach has attained an average
accuracy score of 98.62% on a custom dataset.

Another approach employing the concept of the
multi-activation function (MAF) was presented in [2] where
the MAF has used a module in the combination of different
activation approaches i.e. ReLU, LeakyReLU, and Tanh, etc.,
to optimize the classification behavior of the used frame-
works. First, several sample pre-processing steps accompany-
ing the DCGAN were adopted to improve the appearance of
the input images. Next, different types of DL approaches i.e.,
AlexNet, VGG-19, ResNet-50, and DenseNet-161 were used
by merging the MAF unit. The work has attained the highest

classification accuracy of 97.41% for the ResNet-50 model
on a data sample collected from two experimental sites; how-
ever, the classification results degrade for the noisy images.
In [58], the B0-based EfficientNet and DenseNet-121 models
were utilized to generate a dense feature set for the identi-
fication of maize crop leaves illness. The model combined
the computed features for a more accurate representation of
the sample before proceeding with the categorization process
with an accuracy rate of 98.56%. However, the model was
evaluated on samples obtained from the PlanVillage database,
and its applicability to real-world scenarios is limited.
Zeng et al. [59] proposed a framework named the SKPSNet-
50 to identify various maize leaf abnormalities. A nominated
kernel module with the swish activation method was used
to improve the conventional ResNet50 approach to enhance
the keypoints computation ability. This work [59] attains an
accuracy score of 92.9% to classify six different types of
corn abnormalities on a custom dataset. Ahmad et al. [60]
used transfer learning to train five pre-trained DL models to
recognize corn disease from images. The models used were
InceptionV3, ResNet50, VGG16, DenseNet169, and Xcep-
tionNet. DenseNet169 outperformed the other models with
an accuracy of 81.60%. Li et al. [61] proposed an improved
YOLO-v5 model employing the concept of multi-scale key-
points fusion to locate the infectious regions of the maize
plant. A pixel pyramid pooling accompanying the coordinate
attention approach was proposed in the base network to
enhance the keypoints calculation and categorization results.
The work performs well for unseen cases with a mAP of
0.48 on the Kaggle maize leaf disease dataset, however,
the performance drops for small diseased regions. In [4],
numerous DL approaches like VGG with base 16 and 19,
AlexNet, and GoogleNet have tested various combinations
of loss methods Softmax, and CosFace to locate the healthy
samples from the NLB disease-affected samples. The work
has acquired an accuracy score of 99.94% for the GoogleNet
model on a custom dataset. Singh et al. [62] also utilized the
AlexNet model to classify maize leaf disease using PlantVil-
lage dataset images. The method achieved a 99.16% accuracy
rate after training themodel using 100 epochs on the PlantVil-
lage dataset. However, the work requires the evaluation on a
complicated dataset to better elaborate the robustness of the
approach. The attention mechanism (AM) has shown remark-
able performance to optimize the feature computation ability
of different models. One such framework [31] introduced
a model called LDSNet (lightweight dense-scale network)
that utilized dense expanded convolutional blocks and coor-
dinated AM technique to identify various corn diseases. The
study findings showed an average accuracy rate of 95.40% on
the PlantVillage dataset. Yin et al. [63] proposed an enhanced
GoogleNet structure to locate the diseased areas of the corn
plant leaf. An expended inception block was introduced in the
conventional model to optimize the keypoints computation
power. Then, the channel AM strategy was used to high-
light the significance of inter-channel connections among
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the calculated features. The work has shown the highest
accuracy of 97.12% on a custom dataset. In [64], super-
pixels were generated using the SLIC segmentation method,
which are then used as input to the CNN to obtain features
and perform classification based on the extracted features.
This method [64] achieved the highest accuracy of 97.77%
using DenseNet121 and a sigma score of 5. In [65], the
authors proposed a two-stage semantic segmentation method
to estimate the severity of corn leaf disease lesions. The
first stage segments the entire leaf portion from the image,
while the second stage focuses on identifying and segmenting
the disease spots. This method [65] showed an accuracy
of 92.37% using a combination of UNet and DeepLabv3+
segmentation approaches.

Moreover, a DL approach was discussed in [32] where a
method named the Mobile-DANet was used for corn plant
leaf disease categorization. The framework consists of the
DenseNet model as the base network containing depthwise
separable convolution and the AM blocks. The technique
has reported accuracy results of 98.50% on the open maize
dataset. Chen et al. [66] proposed a lightweight corn disease
identification model namely DFCANet. The method con-
sists of two main components: the dual feature fusion with
coordinate attention and the down-sampling modules This
method achieved an average recognition accuracy of 98.47%,
demonstrating its effectiveness in corn disease identification.
Qian et al. [1] introduced a vision transformer approach to
recognize different maize leaf abnormalities. First, a CNN
framework was employed to compute the keypoints set which
were later encoded into a token matrix. The encoder model
of the vision transformer utilized a multi-head self-attention
approach in the subsequent stage to evaluate the relationship
between tokens. The work improves the maize plant disease
classification results with an accuracy value of 93.90% on
the PlantVillage dataset; however, the results highly depend
on the dimension of the token representation, leading to the
weakening of the semantic connection among adjacent areas.
He et al. [46] proposed the Faster-RCNN approach with the
VGG-16 model as the backbone to locate and classify the
diseased area of the corn plant leaves. The approach exhibits
enhanced classification results, however, it uses a hand-coded
engineering approach to locate the affected areas which is a
time-consuming activity. The work attains an accuracy rate
of 97.03% on the PlantVillage dataset.

The examined literature shows that several efforts have
been attempted to identify and categorize corn diseases using
different ML and DL models. The accuracy of classifying
maize diseases has greatly increased; however, these tech-
niques perform well when used with images that have a
clear and static background setting for classifying maize
diseases. The effectiveness of current methods is dependent
on external factors and suffers when used on photos with clut-
tered backgrounds that have many visual disturbances, like
blurring, distortion, and unbalanced lighting levels. These
considerations restrict the practicability of the many corn
leaf disease categorizations approaches. Hence, because of

the generalization, computation, and process time challenges,
still there exists a potential for improvement in the maize
plant leaf disease classification performance.

III. MATERIALS AND METHODS
In the proposed work, a DL model namely MaizeNet is
presented to identify and categorize the various maize plant
leaf abnormalities. More clearly, a customized Faster-RCNN
model is presented with the ResNet-50 CNN approach as the
base framework. At the start, we generated the annotations of
the inspectedmaize plant images to specifically determine the
diseased portion of the dataset images. In the next phase, the
generated annotations and images are given to the ResNet50-
based Faster-RCNN model. In the MaizeNet model, a reli-
able set of sample features are computed by the ResNet50
model on which the classification and regression layer of
the Faster-RCNN model accomplishes the maize plant leaf
disease localization and classification task. A detailed visual
depiction of the introduced approach is given in Fig. 1, while
the performed steps are elaborated in Algorithm 1.

Algorithm 1 Steps Followed by the MaizeNet for Maize
Plant Leaves Abnormalities Localization and Categorization

START
INPUT: TM, Annotation
OUTPUT: Localized RoI, the category of maize plant leaf diseased
region, MaizeNet

TM: Total maize images with various abnormalities.
Annotation: Rectangular box localizing the diseased region
of maize plant leaves.
Localized RoI: Predicted bounding box specifying the
diseased portion.
nMaizeNet: ResNet50-based Faster-RCNN model.

//Data preparation
SampleDimension← [ j h]
// Estimation of the bounding box
Ä← CalculatingAnchors (TM, Annotation)

// training phase
//Functions
1. ResFRCNN(): employed to measure the keypoints with
ResNet50 network
2. IdentifyMazieLeafAffectedArea(): employed to specify the
affected samples regions
3. EvaluatFramework(): employed to accomplish the model
training

// RESNET-34-based-FasterRCNN approach
MaizeNet← ResFRCNN (SampleDimension, Ä)
[ TrainingPart, TestPart← Database distribution
For each sample c in→ TrainingPart

Compute RESNET50 features→ tm
End
Utilize tm images MaizeNet training:, and calculate time
£oclizeA← IdentifyMazieLeafAffectedArea (tm)
Ap← EvaluatFramework (RESNET50, £oclizeA)

// test phase
For each image C in→ TestPart

a) βC← Compute features via employing the trained
model MaizeNet
b) [Rectangularbox, ConfidenceScore, ClassLabel]←
Predict (βC)
c) show samples with Rectangularbox,
ConfidenceScore, and ClassLabel

End
Exit
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FIGURE 1. A pictorial illustration of the proposed MaizeNet model.

FIGURE 2. Samples from the database showing images belonging to
various maize disease classes: (a) GLS, (b) NLB, and (c) NLS.

A. DATASET
The samples utilized in this work for evaluating the proposed
MaizeNet method are derived from the online available Corn
Disease and Severity (CD&S) [67] database. This dataset is
obtained by the Agronomy Center for Research and Educa-
tion at Purdue University. The images were captured using
mobile devices under varying environmental conditions in the
field. It comprises a total of 2112 raw samples of resolution
3000 × 3000. The images belong to 3 common maize leaf
diseases including NLB, Northern leaf spot (NLS), and GLS
classes. A total of 511 samples belong to NLB, 562 samples
to NLS, and 524 samples to GLS class. The overall samples
in the CD&S dataset are diverse in terms of background
conditions containing dead leaves, soil, andweeds and having
varying illumination settings, whichmake it suitable for train-
ing the model and performing maize disease localization and
categorization in the field. Fig. 2 shows the sample images of
the dataset belonging to three different maize disease classes.
It can be seen from the figure that the disease spots have
varying shapes, sizes, and appearances that may resemble
the items in the background, making the accurate detection
of disease more difficult in the field. These samples are also
challenging in terms of lighting, color, shadow, and intensity
variations. We distributed the database into 7:3 for the train-
ing and testing process.

B. ANNOTATION GENERATION
For the effective training of the MaizeNet, it is mandatory
to precisely determine the diseased areas of the maize plant

leaves. For this reason, we used the annotations provided for
the dataset created with the help of the LabelImg [42] tool.
This tool generates a bounding box around the infected area
along with the associated class, from where the computed
coordinate’s values are stored in a CSV file. The generated
file is then passed for MaizeNet training.

C. FASTER-RCNN
In the proposed work, a DL technique namely the
Faster-RCNN is employed to automatically locate and clas-
sify a number of maize plant leaf diseases. The major reason
to choose the Faster-RCNNmodel over other object detection
approaches is that it makes use of convolve filters, which
enables it to assess the sample’s architecture and construct
a trustworthy selection of keypoints from it. The RCNN and
Fast-RCNN approaches are operationally more complicated,
thus we chose the Faster-RCNN paradigm instead for clas-
sifying maize plant leaf diseases. Additionally, RCNN and
Fast-RCNN models use manual methods for feature calcula-
tion, such as EdgeBox [68] or selective search [69], which
makes it impossible to acquire a nominative set of visual
keypoints. The Regional Proposal Network (RPN), a distinct
component, is introduced in the Faster-RCNN method to
effectively address the shortcomings of the RCNN and the
Fast-RCNN techniques by the automatic feature computation
from the given sample.

There are two key problems associated with the detec-
tion and recognition of agricultural leaf illnesses in rec-
ognizing the ROIs from the input samples: i) determining
the precise infected area from leaves because the affected
and normal regions share a great deal of color resemblance.
ii) the class corresponding to every designated spot (Fig. 3).
The chosen architecture, Faster-RCNN, is better suited to
address the aforementioned issues. The RPN component of
Faster-RCNN leverages the details of infected part magni-
tude, color, and structure and assures a greater recall capa-
bility by employing a few chosen windows, which improves
its ROI localization ability and results in the correct classifi-
cation of the suspected samples.

D. MaizeNet
In this work, a customized Faster-RCNN model trained
on the maize plant leaves is presented that can accurately
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FIGURE 3. Sample diseased images from the dataset having a
resemblance with healthy leaf.

localize and effectively classify its various abnormalities
and is designated as MaizeNet. The classic Faster-RCNN
model utilized either VGG16 or ResNet101 approaches as
its backbone network for calculating the deep keypoints of
the input samples. However, the huge proportion of network
parameters in each of these approaches raises the compu-
tation expense of the Faster-RCNN. Furthermore, the base
architecture of the Faster-RCNN with the VGG16 approach
is suffering from the vanishing gradient issue, whereas the
ResNet101-based Faster-RCNN model is suffering from a
huge computing burden and model overfitting problem as
well. To tackle the issues of the existing framework, we have
proposed a custom version of the Faster-RCNN model that
employs the ResNet-50 and the Convolutional Block Atten-
tion (CBA) modules for feature extraction from the maize
plant leaves. The ResNet-50 technique has a computational
benefit as compared to the backbone architectures since it
contains fewer hyperparameters. The MaizeNet framework
uses four steps named feature extractor, region proposal net-
works (RPN), ROI pooling, and categorization to identify and
categorize numerous Maize crop leaf illnesses.

1) FEATURES EXTRACTION
In the Faster-RCNN model, a backbone network is used to
extract semantic and meaningful representations from the
input sample. The extracted representations are then used by
the detection head to localize regions of interest and perform
categorization. The overall performance of the detection head
depends on the learned feature representations [70]. The base
model is frequently a CNN approach originally designed for
image classification tasks. In existing works, the baseline
Faster-RCNN is used with a variety of backbone feature
extraction networks such as VGG16, and ResNet101 [71].
According to the study [72], CNN models are more prone to
learning irrelevant features in the presence of complex back-
grounds during training rather than focusing on important
features. Recently, the attentionmechanism in CNNnetworks
is incorporated to enhance the focus on target representa-
tion learning capabilities from the input during training [73].
Here, we have employed the attention unit in the base CNN
to improve the feature representation learning of maize dis-
ease spots from the image. This ultimately improves the
proposed Faster RCNN model’s capability to classify maize
infections in the presence of complicated backgrounds and
real-world complexities. The attention mechanism is based
on a Convolutional Block Attention Module (CBAM) [74]

TABLE 1. Original and modified architecture details of ResNet-50
backbone network.

that adaptively performs feature refinement by learning the
inter-channel relations and space-wise positional characteris-
tics. In particular, the CBAM block performs a multiplication
of the input keypoints map and the attention maps that are
generated by inferring them sequentially along the channel
and spatial dimensions from the intermediate feature map.

The suggested backbone architecture comprises a
ResNet-50 CNN [75] and a CBAM attention block. The
ResNet is a popular CNN architecture that uses identity short-
cut connection along with residual links across convolutional
layers and achieves high accuracy. Typically, in dense CNN
models, all layers pass their computed value into the coming
layer, allowing it to calculate more enriching keypoints [76].
However, as the network depth increases, the convergence
results get worse due to the gradient disappearance problem.
The ResNet architecture contains multiple residual blocks
that allow bypassing a few convolution layers during training
without affecting performance. The result of the convolution
layers is combined with the computed value of the shortcut
connections, which decreases the training degradation fre-
quently seen in really deeper networks and overcomes the
constraint of adding additional layers. The overall architec-
ture of the ResNet model can be viewed as a group of multiple
shallow CNN nets, where distinct architectures are connected
together through shortcut connections, and the optimal results
are achieved by averaging the outcome of each network.
Table 1 displays the detailed layer-wise configuration of the
MaizeNet backbone CNN network comprising ResNet-50
with an added attention mechanism. It comprises 48 convo-
lutional layers that are grouped into 5 stages having multiple
residual blocks laid on top of each other. The residual block
is composed of 3 × 3 convolutional layers, a normalization
layer, ReLU activation, and a skip connection. The stacked
layers in the residual block offer quick connections that
perform identity mapping to accomplish residual mapping.

We added the attention block in the network to filter out
the important components from the input in advance so they
may be used as the input for the next network. It assists
the network to concentrate on disease-affected portions while
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limiting unnecessary background information and increasing
detection performance in real-world cases like varied color,
lighting, and intensity. In particular, the CBAM unit con-
secutively infers the attention map alongside the spatial and
channel dimension using the intermediate keypoints map and
multiplies the input feature map with the computed attention
map to attain adaptive keypoints improvement. The added
attention block is lightweight and adds a negligible overhead
in the backbone CNN.Moreover, to prevent the loss of impor-
tant attributes because of down-sampling, we replaced the
initial convolution layer with a 7 × 7 filter size with three
stacked 3 × 3 convolution layers. In addition, the channel
for replaced convolution layers is set to 64 to reduce the
computational cost.

2) REGION PROPOSAL NETWORKS (RPN)
The RPN module uses a feature map achieved from the last
layer of the CNN network as an input and generates region
proposals. Typically, a sliding window is used to generate a
defined number of anchors (bounding boxes) taking various
scales and aspect ratios on each pixel. To reduce the candidate
boxes and obtain the region of interest (ROIs), a bounding
box regressor and classification head are applied to determine
whether a suspected location belongs to a diseased spot or a
background region.

3) ROI POOLING
The RoI pooling layer computes the fixed-sized feature vec-
tors for obtained ROIs from the RPN module. The feature
map from the base framework and the proposed region pro-
posals from the RPN module is processed by the RoI pooling
layer to compute proposal feature maps.

4) CLASSIFICATION
Lastly, the attained feature vectors are passed through fully
connected layers to perform localization and categorization
by producing a bounding box for the maize disease-infected
regions and its category.

IV. EXPERIMENTAL VALIDATION AND ANALYSIS
This part presents the details of the implementation settings.
and various experiments carried out to check the results of the
proposed MaizeNet approach. We thoroughly investigated
the effectiveness of the MaizeNet approach in terms of maize
disease localization and categorization and compared it with
other networks utilizing the maize leaf illness data sample.

A. IMPLEMENTATION DETAILS
The suggestedMaizeNet framework is executed using Python
with TensorFlow and Keras libraries. We employed the
pre-trained model on the MS-COCO database, which was
then further trained using transfer learning on the maize
disease database. The network is trained by employing vary-
ing batch sizes, learning rates, and the number of epochs
with Stochastic Gradient Descent (SGD) training optimizer
to obtain the optimal results. The final parameter settings on

TABLE 2. Training hyper-parameter settings for the presented framework.

which the model attained optimal results are given in Table 2.
The Intersection over Union (IoU) value is used to determine
the bounding box overlap between the predicted and ground
truth and is set as 0.5, which means if the value is greater than
the set threshold, the prediction is considered positive.

B. EVALUATION PARAMETERS
In this study, the performance of the suggested framework
for maize disease identification and classification is quan-
titatively and qualitatively evaluated using several essential
metrics for each experiment. We computed the values of met-
rics such as precision score (PS), recall score (RS), accuracy
(Acc), F1-score (FS), IoU score, and mean average precision
(mAP) score for each class. These indicators are computed as
follows:

PS =
TP

TP+ FP
(1)

RS =
TP

TP+ FN
(2)

Acc =
TP+ TN

TP+ TN + FP+ FN
(3)

FS =
PS ∗ RS
PS + RS

× 2 (4)

Here TP denotes the true positive score, representing total
positive samples with correctly classified target disease class.
The FP is a false positive score, representing the total neg-
ative samples having positive predictions. The FN denotes
false negative, showing the number of positive samples with
wrongly estimated disease class. Lastly, the TN indicates true
negative, representing the samples that the model correctly
predicted the negative class. The IoU is the combined ratio
of the intersected area of the predicted and ground-truth
bounding box in pixels computed for each class i using (5).
Whereas, mAP is the average of average precision (AP) score
for each i computed at different IoU threshold values.

IoU =
TPi

FPi + FN i + TPi
(5)

mAP =
1
n

∑n

i=1
APi (6)

C. ASSESSMENT OF THE PRESENTED FRAMEWORK
In this experiment, we evaluated the localization and classi-
fication performance of the proposed MaizeNet framework
for the identification of maize disease regions and their cat-
egorization. We performed the experiments using the dataset
described in Section III-A.
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FIGURE 4. Visual results showing localized and classified disease regions
from samples using the proposed MaizeNet model.

1) RECOGNITION PERFORMANCE
The accurate recognition of infected leaf areas is essential
to correctly categorize the maize disease using an automated
approach. Therefore, we evaluated the localization effective-
ness of theMaizeNet framework usingmaize disease-affected
images from the employed dataset. The proposed attention-
based Faster-RCNNmethod uses ResNet-50with an attention
block to extract the deep features from the training images.
The obtained localization results are shown in Fig. 4. It can
be seen from the reported visual results that the MaizeNet
approach can effectively locate target disease spots hav-
ing varying appearances including shape, color, size, and
position. Moreover, Fig. 4 shows that even in the presence
of background noise and unwanted objects, such as dirt,
corn stalks, and weeds the disease regions are accurately
detected and localized. Additionally, despite having varying
lighting, orientation, and acquisition angles, our method can
effectively perform maize disease recognition. We computed
the mAP and mean IoU to estimate the overall localization
effectiveness of our approach. These metrics demonstrate
the effectiveness of the approach for the detection of target
object. We determined the mAP for each category at the IoU
threshold value set to 0.5. This implies that when the overlap
score between the predicted and ground truth bounding box
is greater than the specified IoU value, the prediction result
is considered positive. Our technique achieved mAP value
of 0.946 and a mean IoU score of 0.913. The identifica-
tion probability of most ROIs using our technique is more
than 93.14%. These findings demonstrate that our MaizeNet

FIGURE 5. Sample visual results of false detection using the proposed
MaizeNet model.

TABLE 3. Quantitative evaluation of the proposed MaizeNet model for
each class.

framework can precisely locate the infected regions using a
location box and outputs the identification probability. The
integration of attention mechanism in the network facili-
tated the detection head in recognizing disease spots with
high accuracy, even in the presence of noisy backgrounds
such as maize stalks, soil, leaf overlap, and varying lighting
conditions.

Although our proposed model achieved high identifica-
tion accuracy for detecting disease-affected regions of maize
plants, however, its performance was affected by some envi-
ronmental complexities, resulting in false or missed detec-
tions. Visual results of such instances are shown in Fig. 5.
These misclassifications can be attributed to factors such as
the presence of intense light variations, background noise,
and high inter-class similarities. Additionally, in some cases,
disease symptoms were not clearly visible/differentiable due
to low severity levels (early stage) or similarity to other
diseases.

2) CLASSIFICATION RESULTS
The exact categorization of various disease lesions is crucial
to perform the automated identification of maize diseases
using real-time field Images. In this section, we reported the
categorization results of the introduced MaizeNet framework
over 3 common maize diseases by computing metrics i.e.,
precision, recall, f1-score, and accuracy. Table 3 shows the
details of the numeric evaluation results of the MaizeNet
approach on each class using the test data. The average
recognition ability of the approach for maize disease attained
in terms of PS, RS, and F1-score is 0.980, 0.977, and 0.979,
respectively. The presented method shows an overall catego-
rization accuracy of 97.91% for all classes. Among all, the
highest accuracy is obtained for the categorization of GLS
class of value 98.20%. The recognition accuracy for NLB and
NLS disease categories is 97.62% and 97.91%.
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FIGURE 6. Box-plot showing the overall results obtained using the
proposed MaizeNet model on the maize disease dataset.

FIGURE 7. Confusion matrix showing categorization results of the
proposed MaizeNet approach.

To better understand the performance of our approach,
we have presented a boxplot for the computed evaluation
parameters in Fig. 6. The boxplot displays the distribution
of model categorization output across the database into four
quartiles, median, maximum, minimum, and outlier values.
The presented results clearly show that our method can accu-
rately recognize and categorize maize leaf diseases in real
environment conditions such as noisy background, variation
in lighting, and distortions.

To further examine the class-wise recognition perfor-
mance, we created a confusion matrix to present the details of
appropriately and inaccurately categorized samples for each
group. Fig. 7 shows the summarized class-wise categorization
results of the proposed MaizeNet method against ground
truth. The diagonal elements correspond to the percentage
of accurate predictions made by the model for each class of
test data, while the non-diagonal elements indicate incorrect
predictions. From Fig. 7, it can be perceived that our approach
correctly categorized the disease classes and attained the
true-positive rate of 97.91%, 97.34%, and 97.35% for NLB,
GLS, and NLS classes. There were a few misidentifica-
tions between NLS and GLS classes. The model sometimes
identified the NLS class as GLS and vice versa. This might

FIGURE 8. Grad-cam visualization results of the proposed approach for
maize disease identification (a) without attention (b) with attention.

be attributed to the resemblance of the visual perception of
these classes that led to incorrect predictions by the trained
model. Overall, based on the reported results on the test
set, the suggested framework is effective at differentiating
between different categories of maize disease lesions and thus
can be applied to perform identification in the actual field
environment.

3) HEATMAP ANALYSIS
To analyze the effect of integration of attention module into
the model, we performed a heatmap analysis to visualize the
areas of an input image that contributed most to a particular
class prediction by the network. We employed Grad-CAM
to examine the relevance of specific features in an image.
Grad- CAM calculates the gradients of the output class score
with respect to the feature maps generated by the last con-
volutional layer of the network. The results of the analysis
are presented in Fig. 8, which shows that our model with
attention module learned to concentrate on significant visual
features that contribute to accurate categorization outcome.
The attention module assists the network to better emphasize
the disease lesion area and disregards the background in real-
scene images. The presented results of our heat map analysis
have shown that the model can effectively recognize maize
disease lesions from a visual perspective.

D. COMPARATIVE ANALYSIS WITH DIFFERENT FEATURE
EXTRACTION NETWORKS
To perform the automated identification and classification
of maize diseases using real-time field images, the model
should be able to accurately differentiate between various
disease categories in real environment conditions such as the
presence of noisy background, different light conditions, and
shadows. The extraction of finer-grained characteristics is
crucial to accurately detect and recognize the disease in the
presence of these factors. We accomplished an investigation
to compare the capability of theMaizeNet framework to learn
features in comparison with other CNNs as feature extraction
for the purpose of maize disease spots localization and clas-
sification. For this purpose, other CNN models were taken
into consideration such as Alexnet [77], GoogleNet [78],
VGGNet [76], ResNet [75], EffcientNet-B0 [79], Inception-
ResNetV2 [80] and ConvNeXt [81]. We used transfer learn-
ing to train these models and enhance generalization on
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FIGURE 9. Accuracy of proposed MaizeNet approach using different CNN
models.

unseen data. We initialized these networks using weights
obtained on ImageNet [82] and trained them using the
maize disease database. The approaches were trained for
35 epochs using mini-batch sizes of 8. We compared the
efficacy of these networks in classifying maize disease
and evaluated their computational efficiency. Table 4 shows
the obtained accuracies of the introduced MaizeNet based
on the Faster-RCNN model with different base CNN net-
works on the maize disease database and respective train-
ing parameters. These comparative results are also visually
illustrated in Fig. 9. The results demonstrate that the pro-
posed model outperforms other CNN architectures, including
AlexNet, VGG-19, GoogleNet, ResNet variants (18, 34, 50,
101), EfficientNet-B0, InceptionResNetV2, and ConvNeXt,
on both test and train samples, achieving an overall accu-
racy of 97.89% with the addition of an attention mecha-
nism. Among other CNN architectures, the AlexNet attained
the lowest overall accuracy of 82.12% on test samples for
recognizing maize disease. While the other models such as
VGG-19, GoogleNet, EfficientNet, InceptionResNetV2 and
ConvNeXt attained an average accuracy of 81.34%, 73.12%,
93.43%, 83.62%, and 89.97% respectively. Furthermore, the
ResNet50 outperformed other ResNet variants, achieving the
highest accuracy of 91.58% for identifying maize disease
lesions, while ResNet18, 34, and 101 attained accuracies
of 75.04%, 82.35%, and 86.42%, respectively. By further
adding an attention mechanism to ResNet50, our frame-
work achieved an overall accuracy of 97.89%, resulting in
a 6.31% increase in accuracy for the recognition of maize
abnormalities compared to the baseline model. These results
validate that the proposed framework precisely extracts the
maize disease-related characteristics during training and thus
accurately recognizes them from the samples. Moreover,
despite the similar visual appearances of disease spots with
the surrounding environment such as dead leaves and soil,
our approach can correctly differentiate between them.While
the competitive models were unable to effectively learn

TABLE 4. The performance comparison of MaizeNet framework using
different CNN networks.

fine-level characteristics from the samples due to background
complexity. This shows that the added attention mechanism
assists the network in adaptively learning finer-grained dis-
ease attributes through simulating an inter-channel and space-
wise position relationship of features.

Table 4 also presents the computational complexity of the
MaizeNet model and baseline CNNs in terms of trainable
network parameters. The proposedmodel has 23.91M param-
eters that are less in comparison to peer networks except for
GoogleNet. The GoogleNet CNN has 7.8M parameters, how-
ever, it may not be able to effectively capture disease-specific
patterns under complex backgrounds and varying conditions
such as noise, luminosity, shape, color, and location from
the samples which resulted in lower classification accuracy.
Whereas, the MaizeNet framework effectively learns the
characteristics of diseases under complex field conditions
and showed improved detection accuracy. The addition of the
attention module in ResNet50-FasterRCNN has significantly
enhanced the localization and classification outcomes for
maize disease while marginally increasing the number of
parameters. Based on these results, we can infer that our
framework is computationally efficient and robust for clas-
sifying and detecting infected maize leaves.

E. COMPARATIVE ANALYSIS WITH OTHER DETECTION
TECHNIQUES
In this part, we presented the evaluation of the introduced
MaizeNet framework with other object identification algo-
rithms. This experiment aims to demonstrate the superiority
of the presented approach for maize disease detection and
categorization. For this purpose, we considered the stan-
dard Faster R-CNN algorithm and other popular one-stage
object detection algorithms such as the single-shot detector
(SSD) [40] and You Only Look Once (YOLO) [41]. We used
the same dataset as described in Section III-A for the train-
ing and assessment of these techniques. The networks were
trained for 35 epochs with a mini-batch size of 8 and an SGD
optimizer. The learning rate was set at 0.001 and a dropout
value of 0.6.We reported the results in terms ofmAP, which is
the standard metric used to analyze the performance of object
detection algorithms for localization and classification tasks.
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TABLE 5. Comparative results with different object detection techniques.

For each category, the mAP is computed as an average of AP
of detection when IOU = 0.5.
Table 5 shows the results obtained by evaluating these

models for the maize disease recognition task. From Table 5,
it is clear that the presented approach acquired the highest
mAP value of 0.94. Whereas, the other approaches such
as SSD and YOLOv3 algorithm showed a mAP value of
0.71 and 0.87, respectively. Moreover, the comparative evalu-
ation shows that the standard Faster-RCNN algorithm is also
unable to accurately recognize maize disease regions from
input samples and obtained a mAP value of 0.89. Compared
to these algorithms, our method showed a 5% higher mAP
than standard Faster R-CNN and it also outperformed the
SSD and YOLO algorithms. These results suggest that the
comparative methods are unable to accurately locate the dis-
ease regions in maize leaves from the noisy background. This
ineffectiveness in detecting the infected areas, particularly
small and obscured ones, leads to a decrease in the overall
identification accuracy. Furthermore, we have examined the
inference time of these algorithms, i.e., the time required
to process an input sample in order to detect the diseased
regions. To compute the inference time, we used the test
samples from the dataset and computed the average infer-
ence time for an input taken by the model to produce the
output. The proposed MaizeNet model has a detection time
of 0.26s, which is faster than that of SSD. The identification
time of our approach is at least 0.07s slower as compared
to YOLO and standard Faster-RCNN, however, the identifi-
cation accuracy of our approach is significantly higher than
these methods. These reported results show that MaizeNet
framework is effective for the localization and classification
of maize disease regions from the input samples. In our
method, the added attention mechanism led the network to
learn the different transformations effectively along spatial
and channel dimensions and improved the feature informa-
tion of the target regions. It also enhanced the information
of small targets along with overlapped and occluded areas.
This assisted the detection framework to identify the target
region of interest more precisely, which ultimately improved
the overall detection accuracy of the diseased spots in the
presence of complex natural conditions.

F. COMPARATIVE ANALYSIS WITH OTHER LATEST
METHODS
Here, we presented an assessment of the accuracy of our
method for categorizing maize leaf disease with the results
from previous studies that used the same dataset i.e., CD&S.

TABLE 6. Comparison with existing methods over the CD&S database.

Table 6 illustrates a comparison of the presented method
to the average accuracies obtained using existing methods.
In [60], transfer learning was used for training five different
pre-trained DL approaches such as InceptionV3, ResNet50,
VGG16, DenseNet169, and XceptionNet to recognize corn
disease from images. This study assessed the generalizability
of employed models under different conditions. The results
showed that the DenseNet169 approach performed better
than the other 5 frameworks with the highest generalization
accuracy of 81.60%. Similarly, in [66], the authors presented
a CNN model namely DFCANet comprising deep separa-
ble convolution for the classification of maize disease. The
method includes dual feature fusion with coordinate attention
and down-sampling modules to compute disease represen-
tative feature set. This method achieved an average recog-
nition accuracy of 98.47%. In [64], Simple Linear Iterative
Clustering (SLIC) segmentation method was initially utilized
to generate super-pixels for images belonging to different
diseases that served as training data for different DL models
such as VGG16, DenseNet121, ResNet50, and XceptionNet.
These models were then utilized to classify infectious disease
spots on maize leaves into respective classes. The maximum
accuracy of 97.77% during testing was obtained using the
DenseNet121 network having a sigma score of five and divid-
ing each image into five segments. The work in [65] proposed
a two-stage semantic segmentation method based on UNet,
SegNet and DeepLabv3+ model to estimate the severity of
corn leaf disease lesions. In the first stage, the complete leaf
portion is separated using these networks, while the second
stage focuses on identifying and segmenting the disease spots
within the previously segmented leaf. The proposed method
achieved an overall accuracy of 92.37% using UNet and
DeepLabv3+ networks. The methods presented in [60] and
[66] performed image-level classification that can result in
incorrect predictions due to a complex background environ-
ment. Moreover, the presence of multiple disease diseases in
a sample can result in high false classification for real-world
scenarios. On the other hand, the approach presented in [64]
and [65] initially performs a segmentation step, which can be
computationally complex. In contrast, our method performs
both the localization and recognition ofmaize lesions, achiev-
ing an accuracy of 97.89% on the same dataset. The reported
result demonstrates the robustness of our proposed model for
detecting maize diseases in the field when compared to other
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methods. This is because our method effectively computes
the fine-level disease characteristics along spatial and channel
dimensions from the input. As a result, the detection network
accurately locates the target region of interest, ultimately
improving the overall detection accuracy of diseased spots in
complex environmental conditions.

V. CONCLUSION
This work has presented a DL approach called the
MaizeNet to localize and categorize various types of maize
plant leaf diseases. Clearly, an improved Faster-RCNN
approach is presented that utilizes the ResNet-50 model with
spatial-channel attention as its keypoints extractor. The work
is evaluated using a standard dataset named CD&S to show
its effectiveness. This dataset contains images with several
sample distortions like noise, blurring, color, light, and size
variations. An extensive experimental analysis with the help
of different standard evaluation parameters is performed to
indicate the efficacy of the introduced work. We have assured
through both the pictorial and quantitative results that the
MaizeNet model is proficient in locating and categorizing
the maize crop leaf disorders with an accuracy of 97.89%.
In future work, we are planning to evaluate the proposed
approach over other challenging datasets. Moreover, we will
explore other DL approaches to further enhance the classifi-
cation results.
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