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ABSTRACT Because the lack of semantic information exchange between characteristic layers, the SSD
(Single Shot multibox Detector) algorithm has insufficient detection performance. To address this problem,
a detection algorithm called VPE-SSD (Visual Path Enhancement SSD) by incorporating a visual expansion
mechanism and path syndication proposed in this paper. Firstly, a visual expansion mechanism is added to
the shallow characteristic layer to increase the perceptual field. This enables the semantic information in
the shallow layer to be more fully utilized by the network. It can also achieve the purpose of enhancing the
expressiveness of the shallow feature layer. Then, the processed deep and shallow characteristic layers are fed
into the path syndicationmodule for bi-directional fusion. This improves the global information of the feature
layers and generates multi-scale global feature maps. Next, to enhance the detailed information of deep
characteristics and improve their expression, the deep characteristic enhancement module is applied to the
last three characteristic maps. Finally, using the blended attention module to reduce the negative interference
and improve the expression of characteristic maps during target detection. The experimental analysis of
the VPE-SSD algorithm is conducted on VOC and COCO, and the mAP is 83.4% and 48.4%. From the
result, VPE-SSD algorithm can make better use of the different size characteristic information which helps
to improve the performance of the algorithm.

INDEX TERMS Target detection, visual expansion mechanism, path syndication, deep characteristic
enhancement, attention mechanism thesaurus.

I. INTRODUCTION
The task of target detection is to use the computer to identify
and classify the target object in the input image, and is an
integral part of computer vision [1]. Recent years, due to the
continuous development of artificial intelligence and deep
learning, recognition and detection models developed with
Convolutional Neural Networks (CNN) as the cornerstone
have achieved more remarkable results in industrial [2], [3],
medical [4], [5], transportation [6], [7], [8], image recognition
processing [9], [10], [11], [12], [13], and other fields. The
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main target detection algorithms using deep learning as a
framework are Fast R-CNN [14], Faster R-CNN [15], Mask
R-CNN [16], YOLO (You look only once) series algo-
rithms [17], [18], [19], [20], [21] and SSD (Single Shot multi-
boxDetection) algorithms [22]. Among the above algorithms,
YOLO and SSD algorithms are favored because of their fast
detection speed and high detection accuracy. Though the SSD
algorithm can extract characteristic maps more suitable for
detecting targets of different sizes, it does not fully consider
the role of the shallow semantic information and cannot detect
effectively in the recognition of the target.

As the SSD algorithm still has some shortcomings,
in 2020, Kumar et al. [23] reduced the parameters of
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FIGURE 1. Standard SSD algorithm structure diagram.

the model by depth-separable convolution and spatially-
separable convolution, allowing the algorithm to achieve
desirable results in real-time, but slightly lacking in
detection accuracy. Zhaoyuan et al. [24] used Characteristic
Pyramid Networks(FPN) to optimize the SSD algorithm,
and improved the detection capability of the algorithm by
adopting the idea of multi-scale fusion characteristic map.
However, the method was limited by the structural design
of the characteristic pyramid, and the optimization effect
was inadequate. In 2021, Nagrath et al. [25] combined the
SSD algorithm and Mobile NetV2 to lighten the algorithm
model, which was relatively balanced in terms of detection
accuracy and real-time performance, but did not achieve
generalization of the scenario. Sun et al. [26] enhanced the
target characteristics by capturing the semantic information
of deep characteristics, and expanding the scale of the
backbone network, thus improving the detection performance
of the network. However, this increased the computational
power of the algorithm and the hardware burden to a
certain extent. Zhang et al. [27] used characteristic mapping
to extract global semantic information and proposed an
operator called Lightly Expanded Convolution (LMDC),
which improved a more accurate input of characteristic
information to the detection side. However, the application
of shallow characteristics is not sufficient, resulting in
poor detection performance in the overlapping part of the
target. In 2022, Jiang et al. [28] proposed an improved SSD
algorithm that uses deformable convolution to extract target
information and improves the detection performance of
targets at different scales. However, the use of Res Net50
as the characteristic extraction backbone network, leads to
a large computational effort of the algorithm. In 2023,
Chintakindi and Hashmi [29] proposed the SSAD algorithm
for target detection in autonomous driving using feature
fusion and multiscale attention mechanisms, because of the

simple and efficient design of SSAD, achieving promising
results on different datasets.

To solve the above problems, a target detection algorithm
based on SSD fusion visual expansion mechanism and
path syndication proposed in this paper. First, the visual
expansion mechanism is adopted to expand the perceptual
field of shallow characteristics to improve the algorithm’s
ability to extract target characteristics, and pixel convolution
instead of pooling and up-sampling operations is used to
reduce the loss of semantic information. Then, the deep
characteristics are bi-directionally fused with the shallow
characteristics through path syndication to further enhance
the semantic information of the shallow characteristics and
generate multi-scale global characteristic maps, and the last
three characteristic maps are improved by using the deep
characteristic enhancement module to strengthen the detail
information of the deep characteristics. Finally, the rejection
of useless interference information is achieved through a
blended attention mechanism to obtain cross-channel and
directional location information, which helps the algorithm
model to identify and locate detection targets more accurately
and improve algorithm performance.

II. RELATED WORK
A. SSD ALGORITHMS
SSD algorithm is a one-stage target detection algorithm based
on deep learning proposed by Liu W et al. in 2016, and its
structure is shown in Figure.1. VGG16 (Visual Geometry
Group network-16) is the backbone network of the SSD
algorithm, and the fully connected layer in the YOLO
algorithm is replaced by a convolutional layer to obtain
different scale characteristic maps. The idea of the anchor
frame mechanism is also borrowed in the algorithm to detect
targets based on characteristic maps of six sizes. Meanwhile,
SSD algorithm combines the advantages of fast detection
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speed and accurate candidate localization of the YOLO
algorithm, thus achieving higher detection performance.

B. ATTENTION MECHANISM
Inspired by the human visual system, researchers proposed
and developed the concept of Attentional Mechanism(AM).
In 2014, AM was first proposed as a part of encoder-decoder
in the Recurrent Neural Network (RNN) to encode long
input utterances [30]. In the last two years, AM has been
widely used in deep learning tasks in image recognition,
target detection, and natural language processing. The
characteristics of the object being recognized differ in
importance, which leads to a difference in the importance
of each characteristic map in the CNN. Fundamentally, the
primary objective of the AM is to identify and extract
characteristic information from a large amount of data.Which
is more beneficial to task at hand, and it is similar to the
human’s selective vision mechanism. [31] In 2018, Hu’s
team [32] proposed the SE-Net (Squeeze-and Excitation
Network), which explicitly establishes the interdependencies
between characteristic maps on channels and adaptively
obtains the importance of different characteristic maps and
then updates the weight coefficients. With SE-Net, the team
won the ImageNet image classification championship that
year. In the same year, Woo’s team [33] proposed the
CBAM (Convolutional Block Attention Module Network)
structure, which extracts the spatial and channel information
of characteristic maps using SAM and CAM modules
respectively, and fuses them to obtain more stable and
reliable characteristics. In 2019, Li’s team [34] proposed
SK-Net (Selective Kernel Networks), which focuses on the
importance among convolutional kernels and considers that
the characteristic maps generated from the same image after
different convolutional kernels have different importance.
In 2020, based on SE-Net, Wang’s team [35] proposed
ECA-Net (Efficient Channel Attention Network) to achieve
cross-channel interaction without dimensionality reduction
and a method to adaptively adjust the size of one-dimensional
convolutional kernels, which effectively reduces the model
complexity while maintaining performance.

The AM is widely used in the field of deep learning mainly
relying on its efficient and convenient characteristics, and is
also an important means to further improve the effectiveness
of deep learning, and is likewise one of the hot spots of current
research.

III. ANALYSIS OF THE VPE-SSD ALGORITHM MODEL
The SSD algorithm uses the model to output characteristic
maps at different scales to identify the target to be measured,
and is able to cover targets of different sizes. However,
since the traditional SSD algorithm do not make the most
of characteristic information in the shallow layer and do
not pay attention to the exchange and fusion of shallow
and deep characteristic information, it is deficient in overall
performance. In response to this issue, a target detection
algorithm called VPE-SSD proposed in this paper that

FIGURE 2. VPE-SSD algorithm structure diagram.

integrates visual expansion mechanism and path syndication,
and the overall structure of VPE-SSD is shown in Figure 2.
The algorithm consists of four parts: the Visual Expansion
Mechanism (VEM), the Path Syndication Module (PSM),
the Deep Characteristic Enhancement Module (DFEM) and
the Blended Attention Module (BAM). The algorithm is
developed based on the SSD algorithm, and after extract-
ing the shallow characteristic layer, the visual expansion
mechanism is used to obtain a large perceptual field, so that
more effective characteristics can be extracted for algorithm
recognition. Meanwhile, the path syndication module is used
to bi-directionally fuse the shallow characteristics and deep
characteristics to promote the exchange of characteristic
information and improve the characteristic extraction capa-
bility. When the characteristic information is exchanged, the
deep characteristic enhancement module is used to enhance
the deep detail characteristic information and improve the
expression of deep characteristics. Finally, the blended
attention mechanism is used to eliminate the negative effects
and background interference in the fusion between different
characteristic layers.

A. VISUAL EXPANSION MECHANISM
For the problem of poor detection of shallow targets,
a visual expansion mechanism is introduced in the shallow
characteristic layer to expand the perceptual field of the
model to extract higher-level characteristic information using
shallow characteristics. In convolutional neural networks, the
size of the input layer corresponding to the output result is
determined by the perceptual field; the larger the perceptual
field, the more effective information is extracted by the
network model, which helps to improve the target detection
performance. As shown in Figure3, the visual expansion
mechanism adopts a multi-branch structure; each branch
uses different convolutional kernels to obtain receptive fields
of different sizes while intergrating with the expanded
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FIGURE 3. Visual expansion mechanism.

convolution to expand the receptive field of the shallow
characteristic layer and extract more contextual information.
In the visual expansion mechanism, three 1× 1 convolutions
are used in parallel to adjust the number of channels;
then, different convolution operations are used to obtain
the characteristic maps; next, expansion convolutions with
different expansion rates are used in series in each branch
to adjust the perceptual field of the characteristic maps;
finally, human visual perception is simulated by concatenate
and convolution to obtain the most favorable characteristic
maps for target detection. Being close to the human visual
perception system, the visual expansion mechanism can
obtain discriminative characteristics without increasing the
computation amount too much while satisfying the overall
real-time requirement of the algorithm.

B. PATH SYNDICATION MODULE
Since the shallow characteristic layer of the SSD algorithm
contains only the semantic information of this characteristic
layer and lacks global information. For this issue, this paper
uses the path syndication module to bi-directionally fuse
the deep characteristics with the shallow characteristics to
enhance the global information in the shallow characteristic
layer and generate a multi-scale global characteristic map,
thus improving the detection performance. The overall
structure of the path syndication module is presented in
Figure 4. Considering that it is not enough to obtain shallow
characteristics by Conv4_3 layer alone, which does not
express them completely, Conv3_3 layer is added to form
a four-way parallel bi-directional path aggregation module
to provide more shallow characteristic information for the
overall algorithmmodel. First, Conv3_3, Conv4_3, Conv5_3,
and Fc7 in parallel go through the blended attention module
and the convolution part with a convolution kernel of 3 to
realize interference filtering and characteristic extraction.
The convolved Fc7 layer is sub-pixel convolved and pro-
cessed by the attention module again, then it is stacked with
the initial processed Conv5_3 for Concat operation, and the

FIGURE 4. Path syndication module.

stacked characteristic layers are further extracted to complete
information cross-fertilization of different feature layers.
Next, Conv4_3 and Conv3_3 are added to form a complete
reverse transmission channel for characteristic exchange
from deep layers to shallow layers by the same operation.
Subsequently, the fused shallow layer characteristics are
convolved and mixed with the attention module to perform
the final characteristic extraction and deblending of the
characteristic layer, and the characteristics are passed through
the shallow to the deep layer to form a characteristic fusion
channel for characteristic output. The two-way characteristic
exchange channel can effectively facilitate the characteristic
information exchange and improve the characteristic extrac-
tion capability.

C. CHARACTERISTIC ENHANCEMENT MODULE
Because the low resolution of the deep characteristic layer
makes the network model perceive the characteristic details
poorly, in order to solve this problem and improve the
detection accuracy, this paper also performs characteristic
enhancement on the last three characteristic layers of the
algorithm. The deep characteristic enhancement module
is demonstrated in Figure 5, where the three deep char-
acteristic layers, Conv9_2, Conv10_2 and Conv11_2, are
first convolved with a kernel of 3 × 3 in parallel, then
Conv9_2 is sub-pixel convolved to compensate for the
information lost in up-sampling, the number of channels is
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FIGURE 5. Deep characteristic enhancement module.

adjusted to be consistent with Conv10_2 by convolution for
stacking operation, and then the result in output by 1 × 1
convolution. Similarly, the stacked characteristic map is sub-
pixel convolved, the number of channels is adjusted to be
stacked with Conv9_2, and then the result is output by 1 × 1
convolution. The purpose of using the deep characteristic
enhancement module is to improve the correlation between
different characteristic layers and extract richer characteristic
information. This structure is suitable for solving the problem
of local ambiguity between characteristics and helps to better
classify the targets to be detected.

D. BLENDED ATTENTION MODULE
The algorithm will be affected by background interference
and useless information in the detection process, also, the
channel and location information between each characteristic
map differ, and cannot reflect the correlation and importance
of each other. This problem will bring a negative impact
on the algorithm model and result in poor detection
results. To solve this problem, this paper designs a blended
attention mechanism that combines channel attention and
location attention, as shown in Figure 6. The rich location
information in shallow characteristics can be used to extract
the dependencies of target location characteristics, while
the rich semantic information in deep characteristics can
better reflect the importance of target characteristics. In,
the input characteristic map is sent to the channel attention
module for processing by global average pooling, then 1D
convolution instead of the fully connected layer is directly
applied to obtain better cross-channel information acquisition
with less overhead, and, multiply and fuse the processed
characteristic maps with the input characteristic maps. Next,
the processed characteristic maps are input to the position
attentionmodule in series to process the position information,
and three characteristic maps Pi1, Pi2, and Pi3 are generated
after three 1×1 convolutions in parallel; then, Pi1 is reshaped
and transposed to obtain the matrix PTi1, and Pi2 and Pi3 are

reshaped to obtain P′

i2 and P
′

i3. Subsequently, the correlation
matrix D is obtained by multiplying PTi1 and Pi2, and it
is reshaped to obtain the characteristic map, then, average
pooling with Sigmoid activation is added to achieve the
attention matrix A. Finally, A and P′

i3 is multiplied element
by element, and the result is added it to the characteristic map
Pi to obtain the final characteristic map Pouti P_i^out with
location characteristic information. The process of whole
attention module is expressed as

Pi = Conv1D(Gavgpool(Fi)) ⊗ Fi
Pi1 = Conv(Pi)
Pi2 = Conv(Pi)
Pi3 = Conv(Pi)
PTi1 = Tran(Re(Pi1))
P′

i2 = Re(Pi2)
P′

i3 = Re(Pi3)
D = PTi1 ⊗ P′

i2

A = Sig(Avg(Re(D)))
Pouti = (A⊕ P′

i3) ⊕ Pi

(1)

In Equation 1, Conv1D () denotes 1D convolution,
Gavgpool () denotes the global average pooling function,
Conv () denotes 1 × 1 convolution with the relu activation
layer, Re () denotes the reshape operation, Tran () denotes
the transpose operation, ⊗ denotes the element-by-element
multiplication operation, Avg () denotes the average pooling
function, Sig () denotes the Sigmoid activation function, and
⊕ denotes the element-by-element summation operation.

IV. EXPERIMENTS AND ANALYSIS OF RESULTS
A. EXPERIMENTAL SETUP
To test whether the effectiveness of the algorithm proposed in
this paper, two general datasets, PASCAL VOC2007+2012
and MS COCO, are selected for validation analysis in
experiments. The targets in the VOC are divided into
20 classes, including 16551 training images with 40058 tar-
gets, 8333 validation imageswith 20148 targets, and 4952 test
images. The targets are subdivided into 80 categories in
COCO2017, including 118287 training images, 5000 vali-
dation images, and 40,670 test images. Both of the above
datasets are suitable for application in performance testing of
algorithms

The experimental platform is NVIDIA GeForce RTX3090
GPU with 24GB memory. The algorithm is implemented
in the TensorFlow2.4 framework using Python3.7.9 as the
compiler. In the model training process, SGD (Stochastic
gradient descent) is used as the optimizer, and the specific
parameters are listed in Table 1.

When evaluating the algorithm’s performance, detection
accuracy and detection speed,i.e., mAP (mean Average
Precision) and FPS (Frames Per Second), are taken as
evaluation metrics. Specifically, mAP is the average of
all categories of AP, and AP is defined in Equation 2,
where p(r) denotes the recall and accuracy curves, and FPS
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FIGURE 6. Blended attention module.

TABLE 1. Experimental parameter setting.

indicates the number of images the algorithm can process per
second.

AP =
1
∫
0
p(r)dr (2)

The loss curve of the VPE-SSD algorithm is shown
in Figure 7, when the algorithm is applied on the VOC
dataset, the loss value decreases from 18 and it converges
to around 3.5 finally, as shown in Figure 7(a). When the
algorithm is trained on COCO, the loss value decreases
from 19 and it converges around 3.3 finally, as shown in
Figure 7(a).

B. ANALYSIS OF RESULTS
To verify the effectiveness of the improvements of the
algorithm in this paper, this section mainly compares the per-
formance of the proposed VPE-SSD algorithmwith the target
detection algorithms based on CNNs in recent years.

1) EXPERIMENTAL RESULTS OF VOC
Table 2 lists the performance comparison between VPE-SSD
and the target detection algorithms of recent years on VOC.
The results are all derived on the VOC07+12 dataset. The
mAP results are the mean values of the various types of
accuracy detected with the intersection ratio of positive and

negative sample areas of 0.5. The results in Table 2 indicate
that the VPE-SSD algorithm can achieve a detection accuracy
of 81.2% and detection speed of 23.6 FPS for an input size
of 300×300. Compared to the RFB and SSD algorithms, the
detection accuracy is improved by 0.7% and 4% respectively;
compared to SSD-based optimization algorithms such as
DSSD, MDSSD, DF-SSD, RSSD, FSSD, and SEFN, the
detection accuracy is improved by 2.6%, 2.6%, 2.3%, 2.7%,
2.4%, and 1.6%, respectively. At an input size of 512 × 512,
the VPE-SSD algorithm can achieve a detection accuracy of
83.4% and detection speed of 16.1 FPS. Compared to the
RFB and SSD algorithms, the detection accuracy is improved
by1.2% and 4.9% respectively; compared to SSD-based
optimization algorithms such as DSSD, MDSSD, RSSD,
FSSD, ESSD, and SEFN, the detection accuracy is improved
by 1.9%, 2.4%, 2.6%, 2.5%, 1.3%, and 2.2%, respectively.
Since images inevitably have smaller targets to be measured,
different sizes are used in Table 2 to help improve the
detection of small objects to improve the comprehensiveness
of the algorithm. So we choose two different sizes as
input, and from the results in Table 2 we can see that the
larger size has a more significant improvement than the
smaller size. Although VPE-SSD has improved the detection
accuracy compared with the above algorithms and can meet
the requirements of real-time detection, there are still some
shortcomings.

To verify the effectiveness of each module of the
VPE-SSD algorithm, ablation experiments are conducted on
the VOC07+12 dataset, and the models, i.e., VEM, PSM,
DFEM and BAM are added to the basic model of the SSD
algorithm one by one. The effectiveness of these modules
is analyzed by comparing the experimental results listed in
Table 3.
In verifying that the VEM is valid, the SSD is used as

the basis, and VEM was added to four characteristic layers,
i.e., Conv3_3, Conv4_3, Conv5_3, and Fc7, to enhance
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FIGURE 7. VPE-SSD model training loss curve.

TABLE 2. mAP of different algorithms on VOC dataset.

TABLE 3. Ablation experiments for each module.

the perception of target characteristics by increasing the
perceptual field of the algorithm. The results in Table 3
indicate that the mAP is increased by 2.9% after adding
the VEM module, indicating that VEM can provide the
algorithm with useful characteristic information for detecting
targets.

In verifying that the PSM is valid, the module is added
to the four characteristic layers of Conv3_3, Conv4_3,
Conv5_3, and Fc7 after the VEM module for path syndica-
tion. The results show that the mAP is improved by 3.3%,
indicating that the PSM module can better fuse the semantic
information of deep and shallow layers, thus improving the
detection performance of the algorithm.

In verifying that the DPEM is valid, characteristic
enhancement is performed on three deep characteristic layers,
i.e., Conv9_2, Conv10_2 and Conv11_2, based on the
addition of the first two modules. The mAP is improved by
0.6%, indicating the usefulness of DPEM in improving the
correlation between different characteristic layers.

In verifying that the BAM is valid, BAM is added after the
three modules mentioned above, and the mAP is improved
by 2%. The result indicates that BAM can eliminate the
undesirable effects of background and characteristic fusion,
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FIGURE 8. Graph of qualitative experimental results of different algorithms.

TABLE 4. Performance comparison of the VPE-SSD algorithm and other algorithms on the MS COCO dataset.

which helps to balance the information between characteristic
maps.

2) QUALITATIVE EXPERIMENTS
Figure 8 compares the detection effect of VPE-SSD, SSD,
SEFN, and ESSD algorithms on VOC. From the results dis-
played, the performance of the SSD is insufficient, and there
is an obvious phenomenon of missing detection. The SEFN
algorithm and ESSD algorithm are adjusted and optimized
based on SSD algorithm, and although they alleviate the
missing detection phenomenon to a certain extent, they are
not effective in detecting overlapping targets and incomplete

targets. By incorporating the visual expansion mechanism
and path syndication, our proposed target detection algorithm
can deal with these situations more effectively and shows a
more desirable detection performance.

3) EXPERIMENTAL RESULTS OF COCO
To further demonstrate the performance advantages of the
proposed VPE-SSD algorithm for target detection, this paper
further compares it with other algorithms on the MS COCO
dataset, and the results are shown in Table 4. It can be seen
that the VPE-SSD algorithm improves the detection accuracy
and recall to varying degrees, compared to algorithms
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such as SEFN512, SSD512, FSSD512, DF-SSD, DSOD300,
DSSD513, and RFB512. In Table 4, the results indicate that
the proposed VPE-SSD algorithm has better performance in
target detection.

V. CONCLUSION
To solve the problem of poor target detection performance
due to inadequate semantic information and lack of infor-
mation exchange between characteristic layers, a algorithm
called VPE-SSD proposed in this paper that incorporates
the visual expansion mechanism and path syndication. Four
components are designed to optimize performance of the
SSD algorithm: the visual expansion mechanism, the path
syndication module, the deep characteristic enhancement
module, and the blended attention module. Firstly, a visual
expansion mechanism is added to the shallow characteristic
layer to increase the perceptual field, so that the semantic
information in the shallow layer can be more fully utilized by
the network for the purpose of enhancing the expression of the
shallow characteristics; then, the processed deep and shallow
characteristic layers are fed into the path aggregation module
for bi-directional fusion to improve the global information
of the characteristic layers and generate multi-scale global
characteristic maps. Next, to improve the expression of deep
characteristics, the last three characteristicmaps are enhanced
using the deep characteristic enhancement module to enhance
the detailed information of deep characteristics. Finally,
using the blended attention module to reduce the negative
interference and improve the expression of characteristic
maps during target detection.

The result of the VPE-SSD algorithm was conducted on
the VOC and COCO datasets. The mAP of the algorithm
in this paper was 83.4% and 48.4%, respectively, and the
results indicate that the VPE-SSD algorithm achieves better
detection performance. The VPE-SSD algorithm proposed in
this paper can effectively improve the utilization of semantic
information and enhance the information exchange between
feature layers to improve the detection accuracy of the
algorithm.However, the size of theVPE-SSD algorithm is not
fully considered, which leads to a slightly inferior processing
speed. Our future work will study how to improve the speed
of the algorithm without reducing the accuracy.
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