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ABSTRACT The purpose of this study is to explore the measurement of human factors in the workplace
that can provide critical insights into workers’ well-being. Human factors refer to physical, cognitive, and
psychological states that can impact the efficiency, effectiveness, and mental health of workers. The article
identifies six human factors that are particularly crucial in today’s workplaces: physical fatigue, attention,
mental workload, stress, trust, and emotional state. Each of these factors alters the human physiological
response in a unique way, affecting the human brain, cardiovascular, electrodermal, muscular, respiratory,
and ocular reactions. This paper provides an overview of these human factors and their specific influence on
psycho-physiological responses, along with suitable technologies to measure them in working environments
and the currently available commercial solutions to do so. By understanding the importance of these human
factors, employers can make informed decisions to create a better work environment that leads to improved
worker well-being and productivity.

INDEX TERMS Human factors, industry 5.0, psycho-physiological signals, human physical and cognitive
states, signal acquisition, measuring techniques, human-in-the-loop, industrial applications.

I. INTRODUCTION
Industry 4.0, also known as the Fourth Industrial Revolution,
relied heavily on automation and data exchange in manufac-
turing technologies to increase efficiency and productivity.
However, this has also raised concerns about job displace-
ment and the need for new skills and training. Industry 5.0,
on the other hand, builds on the principles of Industry 4.0 and
focuses on the integration of human skills and values in
order to create a more sustainable and human-centric industry
model. This includes the use of technology more closely
aligned with human needs and behaviour, as well as the incor-
poration of ethical and social considerations into the design
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and implementation of technology. At the general level, the
goal of Industry 5.0 is to create a more harmonious relation-
ship between humans and technology in order to address the
challenges and issues that have arisen with the increasing
reliance on automation and data exchange.

II. MOTIVATION
Industry 4.0 focuses on all system-centric manufacturing,
placing system optimization at the core of manufacturing [1].
The humanization of the built technological workplace for
Industry 4.0 was one of the first steps in the evolution towards
Industry 5.0. According to the European Commission (EC),
the power of Industry 5.0 is a societal goal beyond jobs and
growth to become a resilient provider of prosperity by making
production respect the boundaries of our planet and placing
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the well-being of the industry worker at the centre of the
production process [2].

Industry 5.0 represents a shift from a strategy of high
industrial performance (Industry 4.0) to a strategy of human
centricity (Industry 5.0) [3], placing the worker’s well-being
at the centre of the production process [4]. In summary,
Industry 5.0 presents itself as a strategy that puts the human
factor (HF) at the centre of production, where the well-being
of the worker is prioritized, as well as more sustainable and
resilient production systems.

Human centricity beginswith understanding human factors
and satisfying human needs in manufacturing. According to
the Industrial Human Needs Pyramid (Figure 1), a concep-
tual framework for classifying human needs in Industry 5.0
[5], human state monitoring, assessment, and optimization
should directly address Level 2 of human needs, which refers
to a healthy working environment.

FIGURE 1. Industry human needs pyramid (source: [5]).

Enabling Industry 5.0 workplaces to identify human fac-
tors unobtrusively and continuously is the first step in closing
the symbiosis loop between humans and industrial systems
while providing an adaptive environment. Human factors can
be identified by a combination of physical, cognitive and
psychological states [6], which plays a crucial role in the
performance of companies owing to their direct impact on
the efficacy and efficiency of the duties that each worker
develops [7].

Furthermore, Industry 5.0 is characterized by the inte-
gration of advanced technologies such as Artificial Intelli-
gence (AI), Internet of Things (IoT) and Human Factors.
Therefore, it is important to consider how the integration
of advanced technologies may bring new types of stres-
sors, negative impacts and challenges for workers in the
workplace. By addressing this impact on human states and
providing support for workers, organizations can optimize
employees’ well-being, working conditions, and industrial
results.

III. HUMAN FACTORS AT WORKPLACE
Although it is difficult to identify the most relevant human
factors in Industry 5.0, as this will depend on the specific
context and goals of each organization, there are six specific
human factors that have been identified as particularly rel-
evant and critical in Industry 5.0 [5], [8] [9]. We classified
these human factors based on the affected distinctive states as
detailed in Level 2 of the Industrial Human Needs Pyramid:
physical, cognitive, and psychological states.

• Physical states: Physical fatigue
Physical states include an individual’s physical and
motor health as well as the capability to perceive the
external environment’s stimuli. Physical skills signif-
icantly influence human performance. The physical
state worsens as the worker gets older, but there are
cases in which this state can also be affected by the
worker’s health condition (for example, the worker has
the flu). Postural impact and physical fatigue are cen-
tral concerns to a human’s physical state. Considering
this, supporting physical health refers to enabling an
environment that minimizes risky movements, postures,
or working patterns to avoid long-term musculoskeletal
injuries and minimize physical fatigue. Measuring phys-
ical fatigue in a dynamic manufacturing environment is
challenging.

• Cognitive states: Attention and Mental workload
Cognitive states represent the cognitive skill sets that
enable the worker to act and experience the workplace,
including the process of acquiring knowledge and under-
standing through thoughts, experiences, and senses. This
is a particularly important concept in the workplace,
where employees with cognitive skills can make all
the difference. An industrial worker (e.g. a disassembly
worker) is constantly exposed to a large amount of data
that must be properly handled to make rapid and suitable
decisions (e.g. remembering disassembly instructions,
recognising the component to disassemble, commenc-
ing the work and identifying the next step). Attention
and mental workload are central concerns in a human’s
cognitive state.
– Attention is the cognitive state that allows a worker

to choose among different stimuli in a dynamic
and changing workplace and to concentrate on a
specific task. Attention from workers in manufac-
turing environments is important and requires a
higher demand as it can impact productivity and
performance (for example, doing repetitive tasks
can result in products slipping out on the line
because the worker was not paying attention). The
integration of multimodal interactive systems can
be an effective way to divide attention or to direct
the focus of attention towards relevant objects.

– Mental workload has become a key topic in opti-
mizing the cognitive states of industrial workers
and increasing manufacturing performance. The
manufacturing environment should also provide
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high-value tasks to maintain worker engagement
while minimizing the cognitive workload to keep
workers mentally healthy. Mental workload is a
subjective parameter influenced greatly by an indi-
vidual’s cognitive capabilities at different tasks that
could lead not only to errors, safety risks, and
performance inefficiency [10] but also has nega-
tive effects on workers’ behaviour, motivation and
well-being [11].

• Psychological states: Stress, Trust and Emotional
Assessment
The psychological states include all those innate
(un)conscious expressions of inner nature and personal-
ity related to emotions and feelings that influence human
cognition and behaviour.
– Stress is a psychological state that occurs when

the requirements and demands of a job are exces-
sive and greater than the capabilities, resources,
or needs of a worker. Stress may cause burnout
(deriving into fatigue and frustration), job dissatis-
faction, low commitment, and a high propensity to
resign [12], [13].

– Trust is the ability to rely on and place confidence
in someone or something (e.g. a collaborative robot
called cobot) and give him/her/it greater responsi-
bilities and authority. In human-centric work envi-
ronments, one core challenge is acceptance and
trust in technology. Human-robot collaborative sys-
tems need to be transparent, reliable, intelligent, and
friendly.

– Emotions are faithful descriptors of a worker’s
feelings and personality. Moving to human-centric
manufacturing, empathetic machines and systems
that sense human emotions, needs, and preferences
are expected to provide adaptive assistance and col-
laboration to humans.

In general, as an open challenge, the primary approach
to assessing the human psychological state has been
focused on detecting stress, trust, or emotions from
(i) external human behaviours (such as gestures, body
pose, and facial expressions), or (ii) physiological sig-
nals (such as heart rate, skin conductance or respiration).

The human-centred approach focuses on designing tech-
nology and systems that are easy to use and intuitive for
humans. This includes understanding the human factors or
status when interacting with various systems under different
conditions. It is certainly true that workplace events can
influence and trigger human factors, which are psychological,
social, and organizational factors that can affect an individ-
ual’s behaviour, performance, and well-being [14]. That’s
why it is important for organizations to be aware of these
human factors and how workplace events may influence
them. Therefore, being able to measure aspects of human
factors (such as the physical, cognitive and psychological
states of employees) could improve the quality of employees’

working lives, reducing the mental and physical impact of the
workload, increasing safety in the work field, and improve the
performance of the company.

As mentioned before, the physical, cognitive and psycho-
logical needs of humans are considered the main components
of human status detection and have been widely investigated
in the Human Factors domain [15]. The psycho-physiological
responses of humans are considered valuable indicators of
human states, which are accompanied by changes relevant
to human organs and tissues such as the brain, heart, skin,
blood flow, muscle, facial expressions, voice, etc. The ner-
vous system plays a central role in regulating those responses
of the body, together with the hormones segregated by the
Endocrine System [16].

The nervous system is involved in a wide range of func-
tions, including controlling movement, regulating body sys-
tems (such as the cardiovascular and respiratory systems), and
influencing behaviour and emotion. It is also closely linked
to the endocrine system, which produces hormones that can
influence the body’s response to various stimuli [17]. The
nervous system is divided into two parts: Central and Periph-
eral Nervous Systems (CNS and PNS). The PNS consists of
Autonomic and Somatic Nervous Systems (ANS and SNS).
The autonomic nervous system is composed of sensory and
motor neurons, which operate between the CNS and various
internal organs, such as the heart, lungs and viscera. Among
the signals generated by the Nervous System, those triggered
by the ANS have special relevance as they are harder to
influence voluntarily, in contrast to other signals such as facial
expressions, body gestures or speech which could be easier to
control.

On the other hand, the hormones segregated by the
Endocrine System are generated in the different glands of
the human body. Hormones are a set of chemical compounds
that contain information that must be carried around the
body to coordinate certain functions and generate changes
and adaptations to prepare the body for the situation that is
experiencing [18]. The process of continuously regulating
the amount of hormones required to maintain the body in
a correct balance is called homeostasis. Additionally, the
balancing act performed by the brain to preserve homeostasis
and make changes in the organism anticipating the body’s
needs to prepare it to face a certain situation is called allostasis
[19]. These concepts are relevant for understanding why in
certain situations the body reacts by segregating different
hormones and sending specific body signals, which lead to
determinate emotional and cognitive states and vice versa
[18]. Most of these body signals are controlled by the ANS
which regulates critical aspects such as brain, cardiovas-
cular, electrodermal, muscular, respiratory and eye activity
response.

Consequently, using appropriate techniques and sensor
technologies, it is possible to detect andmeasure these aspects
to achieve a better understanding of human factors inside and
outside industrial workplaces.
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The field of psychophysiological signal analysis encom-
passes a wide range of algorithms used for calculating
physiological and psychological signals. While a compre-
hensive listing of all algorithms is beyond the scope of
this paper, it is valuable to highlight some commonly used
examples in the literature, such as Fast Fourier Transform,
Wavelet Transform, Principal Component Analysis, Indepen-
dent Component Analysis, Hidden Markov Models, Neural
Networks, and Time-Frequency Analysis. These algorithms
have demonstrated effectiveness in various research domains
and, thus, researchers and practitioners can refer to these
algorithms as a foundation for analyzing psychophysiological
signals related to human factors. However, it is important to
consider the specific research objectives, signal characteris-
tics, and contextual factors when selecting and adapting these
algorithms for individual studies.

It is important to recognize that assessing factors such
as fatigue, attention, and stress often require the use of
various psychophysiological signals, which may lead to
conflicts when combining information from different measur-
ing instruments each with its own accuracy and data struc-
ture. Additionally, demographic factors, including race and
age, can influence psychophysiological responses, further
contributing to variations in the processed signals. While
acknowledging the presence of such conflicts, addressing
them in a universal way is challenging as are affected by
the accuracy and quality of the measurement instruments,
contextual variables, and environmental conditions. Under-
standing the complexities associated with these conflicts,
researchers and practitioners can make informed decisions
when designing and conducting studies on human factors.

IV. IDENTIFICATION OF HUMAN FACTORS
This section provides a detailed description of the six specific
human factors identified in Subsection III physical fatigue,
attention, cognitive workload, stress, trust, and emotional
assessment.

A. PHYSICAL FATIGUE
Physical fatigue is defined as a sub-optimal psycho-
physiological condition caused by exertion. Muscular fatigue
tends to appear in any part of the body. Even if traditionally
linked to exercise conditions, physically demanding working
tasks or conditions may provoke muscles to temporarily lose
their ability to produce force, thus leading to a state of fatigue.
Fatigue is a crucial factor that affects task performance [20],
therefore it is relevant to determine fatigue in its diverse
forms.

Under normal conditions, the brain manages muscular
movement through electrochemical signals produced by the
positively charged sodium. The brain creates a signal that
travels through the neural spine and when it reaches the
muscle, it provokes muscular contraction. If the signal is
mitigated in the proximity of the muscular end, muscle
strength is limited, thus, it provokes peripheral fatigue [21],
[22]. However, signal mitigation in the central neural system

causes central fatigue [21], [23]. The authors in [24] described
several factors that affect the signal transmission between the
brain and muscular chains.

Nevertheless, there is a direct connection between the
intensity of the electrochemical signal at the muscle end and
the movement’s strength or lack thereof. Therefore, measur-
ing such signals using passive electrodes is widely used to
detect fatigue [23], [25], [26], [27], [28]. Additionally, owing
to the direct link between the electrical signal and the mus-
cular strength, the muscular chains may also be stimulated
by external electrical signals using active electrodes, thus
forcing muscular contraction. Among a wide variety of appli-
cations, this may be used to determine the origin of fatigue as
peripheral [29] or central [30]. In any case, correct electrode
placement is critical for achieving satisfactory results [31].

Considering the link between the brain and muscular
chains, muscular fatigue is also reflected in brain activ-
ity. In this sense, [32] described that muscular fatigue
causes neurons in the posterior cingulate cortex to align
their positive-negative directions, creating equivalent current
dipoles (ECP). Other authors have pointed out a reduction in
the peak alpha frequency in the frontal/prefrontal cortex [33]
and around the motor cortex area [34].

Similarly, physical fatigue also affects cardiac activity in
individuals. Studies such as [33] and [35] have established
that a significant increase in heart rate (HR) is a fair indicator
of physical fatigue. However, [36] affirmed that heart rate
had no significant difference before and after fatigue and
identified blood pressure as an alternative valid indicator of
fatigue. Other authors, such as [35], point out that heart rate
variability (HRV) is a better feature for assessing physical
fatigue, as the ratio of low-frequency (LF) to high-frequency
(HF) components of cardiac activity increases due to fatigue.
Furthermore, the authors in [37] used heart rate variability
entropy to assess fatigue in real-time.

Muscular fatigue and the corresponding lack of strength
in certain muscular chains may also lead to changes in move-
ment dynamics [38], [39], [40]. Therefore, a detailed analysis
of body acceleration may be used for fatigue assessment
[41], [42]. Recent studies, such as [43], studied the changes
in dynamics by direct observation of body movement and
bio-mechanical analysis to create fatigue assessment models.

Ocular fatigue may be considered a particular case of
physical fatigue. The oculomotor system and, particularly,
the extraocular muscles are responsible for provoking eye
movements and are particularly resistant to fatigue due to
their inner structure [44], [45], [46]. However, visual fatigue
affects eye movement kinematics and dynamics. Longer fix-
ations [47], slower saccadic movements [48], [49], [50],
appearance of glissading undershoots [51], [52], and longer
and more frequent blinks [48], [53], [54], [55] are the
most common fatigue-caused behavioral alterations. Based
on these effects, several studies [48], [56], [57], [58] have
created ocular biomechanical models to assess visual fatigue.
In recent years, these biomechanical models are of particular
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interest to assess visual fatigue in unnatural environments
like Virtual Reality (VR) or 3D animation environments [59],
[60], [61], [62].

B. ATTENTION
Attention is one of the most popular areas of brain study,
as it represents the capacity of the brain to focus and process
environmental information. However, as pointed out by [63],
this concept is broad and ambiguous, as it comprises different
specific competencies, including, but not limited to the abil-
ity to mantain a focused state of mind during long periods
(sustained attention) [64], the capacity to process simulta-
neous events (divided attention) [65], and the proficiency
to focus on certain items while blocking irrelevant stimuli
(selective attention) [66]. The time-related nature of attention,
especially in the case of sustained attention, also relates to
the personal capacity to maintain engagement in a specific
task [67].

Brain activity is sensitive to variations in cognitive states.
When these changes affect attention and task engagement,
they are mainly reflected in the prefrontal and the parietal cor-
tices [68]. In addition, high-frequency brain activity is often
related to awareness and higher cognitive activity, whereas
low-frequency activity is associatedwith relaxation and lower
vigilance. Therefore, many studies have examined the ratio
of high- and low-frequency brain activity as a direct indicator
of attention. For instance, [69] found that reaction time on the
Stroop Color Test correlates both with the alpha/gamma band
power ratio (Pα

Pγ
) in the frontal area and with the theta/beta

band power ratio ( Pθ

Pβ
). Similarly, [70] points out three indices

for asses attention, all of them composed as a ratio between
high- and low-frequency spectral power indices: (Pβ

Pα
), ( 1

Pα
),

and ( Pβ

Pα+Pθ
). Also, [71] establishes yet another indicator of

attention in the so-called ‘‘engagement index’’ expressed as
the following ratio: ( Pβ

Pα+Pβ
).

In addition, when a person is performing an activity that
requires certain levels of attention, this mental state usually
produces changes in the cardiac activity [72], [73]. In fact,
higher heart rate variability is related to better cognitive per-
formance [74]. However, the amount of work regarding the
use of cardiac activity as an indicator of cognitive attention
is scarce and mainly aimed at specific demographics, such
as the elderly [75] or children with attention-deficit disor-
ders [76], [77]. Therefore, studies regarding healthy adult
individuals are limited. According to [78], high-frequency
heart rate variability favours the attention rate in highly anx-
ious individuals. Similarly, [79] demonstrated that sustained
attention is associated with higher heart-rate variability in the
resting state. Some studies have shown that cardiac activity
has the capacity to assess attention, but with slightly inferior
accuracy than using brain activity as an indicator [80], [81].

Ocular behaviour is closely related to attention, as gaze
acts as a proxy for attention [82]. Gaze fixation represents
a focused cognitive state, while gaze instability may also
be a measure of hyperactivity and lack of attention [82],

and saccadic eye movements are considered indicators of
attention in tasks that require visual action such as object
manipulation, search, examination, or reading [83]. It has
also been observed that changes in pupil diameter are mark-
ers of attention performance [84], [85]. In addition, [86]
shows the capacity of eye vergence information to assess
attention.

C. COGNITIVE WORKLOAD
Cognitive workload also referred to as mental workload,
is one of the most important human factors to assess effective
performance in human-machine interaction, as it identifies
the amount of mental resources required to perform a certain
task efficiently. Traditionally, themental workload has played
a main role in safety-critical situations, such as air traffic
control, automotive, and defense. However, the digitization
of workplaces has allowed further research on industrial
environments [87], [88].

Mental workload is a multidimensional human factor that
may lead to an ambiguous definition of the term. One possible
approach to identifying the mental workload is to objectively
analyze the work to be performed by the user. From this
perspective, the number and complexity of tasks produces
a higher workload demand. However, certain circumstan-
tial causes, such as time constraints or environmental risks
increase themental resources necessary to undertake a certain
task. Finally, from a subjective perspective, different users
may require greater mental resources to overcome the same
task, even if the circumstances are the same. These three
factors were first identified by Sweller in the late 80s [89],
[90] under the names of ‘‘Intrinsic cognitive load’’, ‘‘Extra-
neous cognitive load’’ and ‘‘Germane cognitive load’’, are
related to the inner nature of the task, the external factors
and the personal characteristics, respectively. Some modern
approaches use the term ‘‘Taskload’’ to identify the intrinsic
cognitive load and ‘‘Workload’’ as a term to encompass both
the extraneous and the germane factors of the cognitive load.
However, even if different researchers do not consider exactly
the same concept of workload, the internal consistency of
the studies should be considered a guarantee for the different
results to identify correctly the human psychophysiological
responses regarding the mental resources involved in the
experimental procedures.

Recent studies have investigated the use of brain activity to
identify mental workload states. Several studies have shown
that there are changes in brain activity, particularly as a
decrease in alpha band power, also referred to as alpha sup-
pression, when the workload increases [91], [92], [93], [94],
[95]. However, [96] points out that whereas alpha suppression
is present in increasingly difficult mathematical calculations,
it may not be a valid feature to distinguish major workloads
from other tasks. Other authors also pointed to variations in
the activity of beta [97] and theta [98], [99] bands. Addition-
ally, [88] pointed out significant differences between veteran
and novice workers in the beta and gamma bands, as well
as in the brain activity asymmetry index. These differences
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are related to the germane cognitive workload identified by
Sweller [89].

An increase in mental workload leads to an increase in
physiological arousal [100], and therefore, variations in elec-
trodermal activity may act indirectly as a measure of work-
load. However, according to a recent systematic review [101],
skin measures are rarely used in metal workload detection,
although they seem to provide promising results. Out of the
more than 400 studies reported in the review, only seven of
them employed skin conductance to assess mental workload,
but amajority of them (six out of seven) found this feature as a
significant indicator of mental workload. Subsequent studies
further validated the usability of electrodermal signals as a
solid indicator of the mental workload level [102], [103].

High demand for cognitive resources also leads to changes
in cardiovascular activity. According to [101], a wide variety
of cardiovascular features are used in current research to infer
workload information. Among them, heart rate in terms of
beats per minute and heart rate variability in both the time and
frequency domains are the most popular metrics for assessing
mental workload. The heart rate increases accordingly to task
complexity [95], [97], [104]. Similarly, several studies [105],
[106], [107] have shown a reduction in the interbeat interval
as the mental workload demands increase. In the frequency
range, higher mental workload increments the low-frequency
components of cardiovascular activity, while reducing the
high-frequency components [108], [109]. Therefore, the ratio
between these two components is a solid assessment feature
of the mental workload [110], [111]. In addition to cardiac
activity, systolic blood pressure [109], [112] and blood oxy-
genation [113], [114] are rarely used but have proven to be
valid workload evaluation features.

Eye movements and ocular behaviour are sensitive and
non-occlusive indicators of cognitive load. This approach
has been widely used in the evaluation of Human-Machine
interactions (HMI) [115]. The authors in [116] used pupil
diameter, blink, and gaze metrics to evaluate the cognitive
workload in surgery and determined that pupil diameter and
gaze entropy are suitable indicators of mental load. Similarly,
[117] employed both pupil diameter and eyemovements (sac-
cades) as indicators of the mental workload. Among other
indicators, increased blinking latency and decreased blinking
duration are related to high workload demands [115]. How-
ever, the same authors pointed out the blinking rate is an
ambiguous indicator. This phenomenon is further explained
by [118] and [119], which stated that the visual demand of the
work can interferewith the blinking rate and thus compromise
the use of this feature as a valid indicator of mental workload.

D. STRESS
Taking into consideration the work of [120] stress can be
defined as a condition in which unpredictability (absence of
anticipatory response) and uncontrollability (delayed recov-
ery of the response and presence of a typical neuroendocrine
profile) are involved.

Every day, people encounter various sources of stress that
can impact their mental and physical well-being. Stress can
arise from a variety of personal, social, environmental, and
situational factors, including financial troubles, job-related
issues, conflicts in relationships, and significant life events,
such as the death of a loved one. The effects of stress can be
categorized as either acute or chronic, with the latter having
a particularly harmful impact on both physical and mental
health outcomes. While manageable levels of stress can be
beneficial for individuals, prolonged exposure to stress can
lead to a range of health problems. Therefore, there has been
a significant effort among researchers to identify effective
methods for detecting and predicting mental stress, as early
intervention is critical for mitigating the negative effects of
stress.

From a biological perspective, the Autonomic Nervous
System regulates automatic bodily functions, including the
hormonal system and is divided into sympathetic and
parasympathetic nervous systems, responsible for stress and
relaxation responses, respectively. Normally, both systems
are balanced, but the continuous release of hormones under
continuous stress conditions distorts harmony. As stress hor-
mones increase the heart and respiration rates as well as blood
pressure, a long-lasting effect of such hormones is associated
with an increased risk of stroke and heart attack [121], [122].

Among stress-related hormones (cortisol and cate-
cholamines [123], [124]), the presence and levels of cortisol
are the most frequently used stress indicators [125]. Cortisol
can be measured in various body fluids such as urine and
saliva. Cortisol levels are normally high in the morning and
low at night. An alteration in these levels, such as abnormally
high levels at night or small variation between day and night
cycles points towards a time-sustained stress level situation
[126], [127].

Even if salivary cortisol is considered a reliable indicator of
stress levels, as indicated in [128], salivary cortisol analysis
requires several days to obtain results. Therefore, alternative
methods have been implemented to infer stress levels more
quickly and simply. Among other physiological variables,
cortisol level affects the heart rate [129], [130], [131], skin
temperature (ST) [132], blood pressure [133], and galvanic
skin response [134], [135].

Heart rate is a well-known marker of the sympathetic
nervous system under mental stress [136], involving both
time-domain analysis and frequency-domain analysis tech-
niques. Traditionally, time domain analysis for stress detec-
tion involves studying the mean and standard deviation of the
respiration rate (RR) peak. On the other hand, frequency anal-
ysis works by obtaining the high- and low-frequency powers
of heart rate variation. The high-frequency component is
related to vagal activity, whereas the low-frequency spectrum
modulates sympathetic nervous activity [137], [138], [139],
[140].Mental stress induces a reduction in the high-frequency
component while increasing the low-frequency component
[141], [142].
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Brain activity analysis is also used to measure stress levels,
especially under the hemispheric specialization (HS) theory.
According to this model, cognitive, sensory, and motor func-
tions are related to brain structure [143], [144]. Research
performed in [145] showed an association between right
hemisphere activation and electrodermal activity in stress
situations. Finally, stress can be assessed by measuring pupil
diameter [146].

E. TRUST
Trust is a critical aspect that rules social relationships
and plays an essential role in understanding inter-character
dynamics. It influences both physical and non-physical
interpersonal bonds [147], [148], [149], as well as human
relations with organizations [150], [151], [152] and tech-
nology [153], [154], [155]. Owing to the interest in under-
standing trust dynamic, it has been extensively studied in
many different fields such as psychology [156], sociology
[157], economics [158], philosophy [159], and several tech-
nological fields, such as automatization [160] and network
computing [161], [162].

As it is a complex and widely used social construct,
there are a wide variety of definitions of trust according
to different areas of application. On the one hand, some
researchers, such as [163], focus on synthesizing the nature
of trust, based on previous academic definitions in different
fields of application, and, by doing so, they aim to identify
the core intrinsic elements of trust. On the other hand, the
main academic stream adopts the analytical perspective and
focuses on defining different dimensions to establish the
nature, origin, and dynamics of trust. For instance, research
in [164] distinguishes moralistic trust based on previous
beliefs about others’ behaviour and strategic trust based on
individual experiences. In addition, in [165] and [166] the
authors identified three distinct types of trust: dispositional,
situational, and learned. Dispositional trust is grounded in
individual characteristics such as culture, gender, and age.
Situational trust is influenced by contextual factors such as
the difficulty or importance of the task, whichmaymodify the
otherwise natural response. Finally, learned trust is shaped by
accumulated experiences. Each of these dimensions interacts
to shape the overall dynamics of trust in any given interaction
between a trustor and trustee. Similarly, [161] considered
trust as a combination of individual trust (which is derived
from personal characteristics and conformed by logical trust
and emotional trust) and relational trust, referred to as the
dimensions of trust that arise from relationships with other
entities.

The complex nature of trust hinders the capacity tomeasure
it accurately. Questionnaires and self-report instruments such
as those described in [167], [168], and [169] are commonly
used, but these kinds of instruments lack both objectivity and
the possibility to use them to obtain a real-time response,
which is why they focus mainly on steady long-term features
of trust, such as the individual and situational dimensions.

However, recent technological advances in the field of sen-
sors have led to an increased interest in the research of objec-
tive methods to evaluate trust. From this perspective, trust
is a subconscious state of mind, bound to the actions of the
peripheral and the central neural systems. Therefore, changes
in psycho-physiological signals can be used to objectively
assess the state of trust.

The use of signals from the central nervous system for trust
assessment is based on brain activity [170], [171], [172].

In contrast, other works studies have assessed trust based
solely on a single psycho-physiological signal from the
peripheral nervous system. For instance, [173] and [174]
analysed how the electrodermal response is significantly
affected variations in trust. Regarding pupillometry and eye
behaviour, [175] revealed that humans trust partners with
dilating pupils and withhold trust from partners with con-
stricting pupils. Research in the field of Human-Robot Inter-
action shows a similar reaction, although, in this particular
field, pupillometry is a better indicator of a high cogni-
tive workload state [176], [177]. Similarly, [178] uses gaze
behaviour to check the frequency in which the automatic sys-
tem is beingmonitored and infer the dispositional, situational,
and learned trust levels of the participants. Heart rate has also
been used as an individual indicator of trust, for instance,
in [179]. Furthermore, this study found greater levels of
behavioural trust in the trust game among the participants
when the HR was being measured.

However, the complex nature of trust makes it virtu-
ally impossible to assess trust using a single signal [180].
Therefore, most studies tend to combine signals from the
central nervous system (mostly brain activity) with those
from the peripheral nervous system. Works such as [173]
and [181] employed brain and electrodermal responses
to obtain real-time trust assessment while [182] included
cardiovascular responses. However, owing to the limited
temporal resolution of signals from the peripheral nervous
system, it is infrequent to combine more than three different
psycho-physiological responses for trust assessment [183].

F. EMOTIONAL ASSESSMENT
Emotions frequently refer to a mental state that occurs natu-
rally rather than via conscious effort and is frequently accom-
panied by physical and physiological changes. In contrast,
mood refers to the sustained cognitive state of mind or the
long-lasting emotional state for a certain time.

Emotions, which affect the physiological and psychologi-
cal status, play a key role in human life. Human emotions are
how each individual deals and interact with stimuli (matters,
situations or thoughts) that they find personally significant.
These emotions are defined as complex reaction patterns
involving experiential, behavioural and physiological ele-
ments and play a key role in human life [184].

Human emotions are psychological states formed in the
process of perceiving and interacting with external stim-
uli, such as environmental changes [185]. Emotions reflect
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the underlying motivation and consciousness of human
behaviours and have a direct impact on the establishment
and maintenance of interpersonal relationships, cognition,
decision-making, work efficiency, and other interactive activ-
ities [186], [187]. For example, emotions have a strong influ-
ence on modulating attention sensibility, which can reduce
the focus on relevant information. Furthermore, emotions
also facilitate efficient encoding and retrieval of information.
This is why we remember more emotionally charged events
(the flashbulb memory phenomenon). While long-term expo-
sure to unpleasant emotions might eventually harm physical
and mental health, positive emotions benefit health and pro-
ductivity.

According to Cannon-Bard’s theory of emotion [188],
also referred to as the thalamic theory of emotion, the
psycho-physiological reactions in CNS and ANS of the
body relate to emotional changes. According to this the-
ory, humans experience emotions together with physiological
responses including sweating, shaking, andmuscular tension.
For example, when an individual encounters a potentially
dangerous or stressful situation, their body automatically
activates a series of physiological changes that prepare them
to fight or flee. These changes include an increase in heart
rate, blood pressure, and respiration, as well as the release of
hormones such as adrenaline and cortisol. More accurately,
it’s been proposed that emotions emerge when the thalamus
and limbic system communicate with the brain in response to
a stimulus, causing a physiological response. [189], [190].

To avoid mistakes in emotion recognition and to design
a reliable set up (according to [191]), a deeper understand-
ing of emotion modelling, processing and its expression is
necessary. For this purpose, emotions should be defined and
quantitatively assessed. Yet, the precise concept of fundamen-
tal emotions is not universally recognized by psychologists.
Thus, emotional modelling often divides emotions into two
distinct philosophies [192]: The discrete or categorical emo-
tional model, which understands each emotion as an isolated
self, and the multidimensional emotional model, which uses
several affective dimensions to label and categorize the broad
emotional spectrum.

• Discrete/categorical emotion model (DEM): Discrete
model theory states that people’s emotions are com-
posed of basic emotions. All human emotions can be
formed by combining one or more of these basic emo-
tions [193]. Furthermore, the discrete emotion mod-
els have traditionally used word descriptors to identify
emotions than quantitative analyses. This method has
proven to be challenging in analyzing complex emo-
tions, including mixed emotions that are difficult to
articulate verbally and require a quantitative research
approach. Ekman’s seminal work in 1992 identified six
fundamental emotions, namely anger, pleasure, sorrow,
disgust, fear, and surprise, which have been extensively
studied in the literature [194]. Additionally, Ekman
posited that other emotions arise from combinations and
reactions of these fundamental emotions. The wheel of

emotion, first introduced by Plutchik in 2001, repre-
sents another popular framework employed to categorize
emotions, incorporating two more emotions, acceptance
and anticipation [195].

• Affective (multi)dimensional emotion model (ADM):
The (multi)dimensional theory outlines that emotion is
constantly changing, such as the two-dimensional emo-
tion model composed of valence and arousal and the
three-dimensional emotion model composed of valence,
arousal, and dominance. This model can be useful
because similar emotions can have overlapping param-
eters and emotions with the same descriptions may
have different intensities. These factors led to focus on
other classifications including dimensions of emotions,
in most cases valence (describes the polarity of emotion,
from negative to positive emotions) and arousal (points
out the intensity of emotion, from the active to pas-
sive scale), together with analysing only basic emotions
which can be defined more easily. Most research uses
variations of Russel’s circumplex model of emotions
[196], [197], which provides a distribution of basic emo-
tions in two-dimensional space with respect to valence
and arousal. Such an approach allows the definition of a
desired emotion and assesses its intensity by analysing
only two dimensions. Although the 2D emotion space
effectively distinguishes between positive and negative
emotions, it fails to differentiate similar emotions, such
as fear and anger, which are both situated within the
zone of negative valence and high arousal. To address
this issue, Mehrabian [198] extended the emotion model
to include a third dimension, named dominance, which
ranges from submissive to dominant and reflects an
individual’s control over the emotion. The inclusion of
dominance gives form to the PAD model (Pleasure,
Arousal, Dominance) and allows for easier identification
of emotions. Following the previous example, in this
model anger is located along the dominant axis while
fear is situated on the submissive axis. This model rep-
resents an improvement over previous 2D models by
providing a more nuanced and comprehensive approach
to understanding human emotions.

In the emotional spectrum, the right hemisphere is
more prone to process negative and withdrawal emotions,
whereas the left hemisphere specializes in positive and
approach-related emotions [199], [200]. Studies as [201]
show increased prefrontal activity in the left hemisphere
when processing positive emotions and greater prefrontal
activity in the right hemisphere when processing negative
moods.

If negative emotions are provoked, the heart beats rapidly,
thereby narrowing the R-peak (maximum amplitude of the
R wave) intervals [202]. Blood pressure also correlates with
emotions, with emotional intensity raising blood pressure.
Heart Rate Variability decreases with happiness, sadness, and
fear, while pleasant stimuli might increase the peak heart
rate response [203]. It has been established that breathing is
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a reliable indication of emotion. It is easy to discriminate
between emotions like anger or fear (which create irregu-
lar rhythms, quick variations and cessation of respiration)
and calm (represented by slow breathing). Furthermore, it is
possible to detect the laughing state due to high-frequency
fluctuations in the HRV signal [204]. Electrodermal activity
is actually a sensitive and convenient method of measur-
ing indexing changes in sympathetic arousal associated with
emotion [205], [206]. Notably, both positive (such as happy
or joyful) and negative (such as threatening or saddening)
stimuli can result in increased arousal and skin conductance.

Finally, there is an increase in pupil size as a reaction
to emotionally toned or fascinating visual stimulus viewing
[207]. The pupil diameter will dilate if a person is frightened
or excited owing to the natural adrenaline response of the
body [208]. Blink [209] and gaze patterns [210] have also
been related to emotional reactions, such as defensive or
negative reactions.

V. RECOGNITION OF HUMAN FACTORS
Human factor recognition can be performed using two com-
plementary methods: i) human internal signals, also known as
psycho-physiological signals, and ii) human physical signals
(such as facial expression or body posture). Spontaneous
human internal signals can be used to evaluate the activities
of the central and autonomic nervous systems and provide
more objective and effective detection of emotional states
from the perspective of internal physiology [17], [211]. The
main internal processes of human beings can be categorised
as follows: 1) brain, 2) cardiovascular, 3) electrodermal (or
skin conductance), 4) muscular, 5) respiratory and 6) ocular
activities. Human physical signals (such as facial expressions,
speech, gestures and postures) have the advantage of easy
collection and have been studied for years. However, themain
issue is related to reliability, which cannot be guaranteed,
because it can be easy for some persons to control the physical
signals (e.g., facial expressions or body pose) to hide their real
human state.

Each of these physical and internal signals can be quan-
tified using different measurement techniques, sensors and
devices. The specific positions of the sensors and devices
depend on the parameter being measured and the tech-
nique used. The following figure 2 shows examples of the
sensor positions for different physiological measurement
techniques.

The following subsections provide an analysis of each
signal, measurement techniques and relevant features.

A. BRAIN ACTIVITY
Several brain areas are activated when the body is influ-
enced by both sympathetic and parasympathetic nervous sys-
tem regulation [212]. Electroencephalography (EEG) is a
non-invasive technique for determining neurophysiological
functions in the brain. By placing electrodes on the scalp,
the electrical activity of large populations of neurons firing

FIGURE 2. Example position of sensors and devices (adapted from [184]).

synchronously in the brain is measured [213]. The electrodes
are commonly placed following the 10-20 system, which
refers to a conventional way of identifying anatomical points
of reference, such as nasion, inion, and preauricular points,
with the consecutive arrangement of electrodes at fixed dis-
tances from these points in steps of 10 or 20%, considering
head size variations [214]. The electrodes register the elec-
trical potential differences generated by the currents flowing
during synaptic excitations of the dendrites of pyramidal
neurons in the cerebral cortex [215]. The electrical activity
detected by the electrodes is amplified and displayed on a
screen, computer or paper.

EEG cannot measure every event triggered by brain neu-
rons. The majority of the neural activity is not measurable
using EEG or other brain-imaging techniques. Consequently,
it is crucial to select the correct brain-imaging technique to
better suit the nature of an investigation. In addition, the
results should be interpreted by considering what can be
measured using the selected technique. For instance, EEG
may not be able to measure electrical fields even if they
have sufficient power to reach the scalp. If potential fluc-
tuations form from opposing sides of a sulcus and have
similar strengths, they could counteract and cancel each other,
rendering the signal imperceptible from the scalp, as shown
in figure 3 [216].

FIGURE 3. Illustration of dipoles in different orientations with respect to
the skull, adapted from [216].
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Electrodes used in EEG headsets can be divided in great
scale into two main types: wet/gel and dry electrodes.

• Wet/gel electrodes generate a conductive zone between
the skin and electrodes using an electrolyte gel or
liquid solution, thereby decreasing the electrode-skin
impedance. These are more commonly used in EEG
applications [217]. Despite its broad use, they have some
disadvantages as it is time-consuming to prepare the
electrodes before each use, the gel might get dry during
the test it is necessary to hydrate the electrodes again,
or in cases where the gel might be a bit abrasive, it could
affect the subject.

• Dry electrodes have emerged as an alternative option
to the issues presented by wet/gel electrodes, allowing
the use of EEG devices for longer periods and reducing
time consumption as there is no need for laborious skin
or electrode preparation. Dry electrodes can be contact,
non-contact or other approaches such as solid gels or
foams [218]. Among the different types, the most com-
monly used because of their lower impedance levels are
dry contact electrodes. These electrodes usually have a
metallic surface made of multiple tiny spikes in direct
contact with the scalp. Dry electrodes also have some
drawbacks, they tend to have lower conductive lev-
els than wet/gel electrodes, meaning higher impedance
which results in a more significant amount of noise and
interference in the signal. In addition, contact dry elec-
trodes with spikes can be uncomfortable for the subjects
after wearing the headset for long periods [218], [219].

Even though there are differences between wet and dry
electrodes, as technology advances, more studies are con-
sidering that both approaches could yield similar results,
depending on their specifications [217].

Brain activity changes depending on the functional status
of a subject, being different in the alertness or relaxation
state [215]. In addition, brain signals follow a pattern forming
a sinusoidal wave. Commonly, brain waves are measured
from peak to peak and have an amplitude ranging from
0.5 to 100 (µV ). A Fourier transform on the raw EEG
signal provides its power spectrum, showing the contribu-
tion of different frequency brain waves contribute [215].
Brain waves have been classified into four frequency groups
[220], [221]:

• Delta rhythm (0.5-4 Hz): This usually occurs during the
dreamless state of sleep, known as deep sleep.

• Theta rhythm (4-8 Hz): Generated in deeply relaxed
states and during inward focus.

• Alpha rhythm (8-13 Hz): The dominant frequency in
adult humans. Alpha waves are predominantly produced
during wakefulness. Their observation improves when
the subjects are relaxed and with their eyes closed.
On the contrary, they are attenuated or stopped espe-
cially by visual attention.

• Beta rhythm (13-30 Hz): Generally, beta waves are asso-
ciated with alertness, focused attention, engagement and
stress.

• Gamma rhythm (30-45 Hz): Connected with informa-
tion processing, concentration, and performing volun-
tary movements.

In summary, the slowest cortical rhythms are associated with
an idle brain state and the fastest rhythms to information
processing.

EEG has been widely used to determine human states and
emotion recognition. To achieve this, brain activity gener-
ated in the different lobes (frontal, parietal, temporal and
occipital) is tracked. Subsequently, the registered brainwaves
are correlated with human states and classified using the
valence-arousal or PAD model. Researchers have found the
following relations between brainwaves and mental states:

• Alpha waves have been associated with pleasure
(valence) and relaxed conditions [222], [223].

• The Beta rhythm has been related to alertness and an
active state of mind [222], [223].

• The Beta to Alpha ratio reales to the arousal dimension
of the PAD model [222], [223].

• An increment of Beta to Alpha ratio in the frontal
lobe with an increase of Beta waves at the pari-
etal lobe has been linked to determine the dominance
dimension [223].

The detection and recognition of human emotions using
EEG has been used to improve communication, in the
industrial field, between humans and cobots, having a pos-
itive impact on the stress and engagement levels of an
operator [224].

A key factor in using EEG technology for emotion recog-
nition is the presence of accurate signals without noise. How-
ever, this can be challenged by several factors. First, EEG
signals are weak which makes them more easily disturbed by
external factors such as environmental noise or the subject
movement. It is also relevant to use proper and precise stimu-
lation methodologies to evoke the target’s emotions. There
are various methods of stimulation (e.g., pictures, music,
video clips, games, and environmental elicitation such as
lighting, temperature, and humidity). Additionally, the sys-
tem performance is affected by the signal processing platform
used to handle the EEG data, which should consider other
aspects such as data denoising, filtering, feature selection and
classification algorithms [225].

B. CARDIOVASCULAR ACTIVITY
The activation or deactivation of the ANS can be appreciated
by checking for variations in the heart rate. Heart rate is
defined as the number of times that the heart beats per minute.
On average, an adult’s heart beats between 60-100 times per
minute [226].

An electrocardiogram (ECG) enables an accurate measure
of the heart rate. ECG is a non-invasive test which measures
the electrical activity and rhythm of the heart. Conventional
ECG machines have 12 leads divided into two groups, limb
leads and precordial leads. The limb leads record the heart
information in a vertical plane, whereas the precordial leads
provide the heart’s electrical activity in the horizontal plane.
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The combination of both groups of limbs is captured in a
graph representing the cardiac electrical activity. In the con-
ventional 12-lead ECG, electrodes are placed on the arms,
legs, and surface of the chest. ECGs recordings are based on
electromagnetic currents with magnitude and direction. The
ECG device records a positive deflection when a current trav-
els towards an electrode, on the other hand, there is a negative
deflection each time that the current moves away from an
electrode. Additionally, if the current travels perpendicular to
the sensor, it produces a biphasic wave [226]. A normal ECG
signal cycle consists of three segmentedwaves. The first is the
P wave, generated by atrial depolarization. Second, the QRS
(a wave complex) can be found, which contains the highest
amplitude produced by ventricular depolarization. Finally,
the T wave is formed owing to ventricular repolarization.
Usually, the distance between R peaks is used to calculate
the heart rate [227] (see figure 4 for more details).

FIGURE 4. ECG cycle in a normal and healthy heart (based on [228]).

ECG has been used in several experiments for emotion
recognition [229], [230]. The detection of cognitive and
emotional states such as stress via heart rate traditionally
involves the time domain analysis of ECG, which includes the
maximum, minimum, medium, mean, and standard deviation
of inter-beat characteristics (HR or RR-interval) as well as
within-beat features (PR-interval, QRS-interval, ST-interval,
QT interval, PR segment, and ST segment) [231]. On the
other hand, frequency analysis works by obtaining the high-
and low-frequency power of the heart rate variability. The
high-frequency component is related to the vagal activity,
whereas the low-frequency spectrum modulates the sympa-
thetic nervous activity [232].

ECGhas several benefits for emotion recognition. First, the
ANS stimulation towards emotions leads to rhythm changes
in the heart. Second, it is quite versatile as it can retrieve data
from several parts of the body such as the arms, legs and chest.
Third, ECG signals have higher amplitudes than other biosig-
nals. Finally, there are a great variety of wearable devices that
can be used to extract ECGdatawith accuracywhich provides
versatility for application in different scenarios [227].

To achieve maximum accuracy in an ECG clinical devices
should be used. On the other hand, in other scenarios where
emotion recognition could be crucial and users need to be
comfortable performing movements such as in industry, con-
struction, primary sector, etc. ECG clinical devices could
be cumbersome, restricting mobility at the workplace and
annoying the users. Consequently, commercial devices are
more practical in these cases as they provide the necessary
accuracy for extracting ECG signals that can later be used for
emotion recognition and research purposes.

While utilising ECG, there are some challenges to be faced.
One of the main challenges is the signal acquisition stage.
ECG signals can be easily corrupted by noise if the electrodes
are incorrectly placed. Some factors that can influence the
signal at this stage are power line interference, breathing
movements, electrical impulses, contractions of other mus-
cles, the subject’s movements, and electrode misplacement.
Additionally, other generic aspects such as posture, the sub-
ject’s attributes such as age or weight, heart rate variabil-
ity, emotional states or fatigue. [228] should be taken into
consideration.

Apart from ECG, one of the most commonly used tech-
niques to measure cardiac activity is photoplethysmography
(PPG). PPG is an optical measurement technique that com-
monly uses red or near-infrared light to illuminate the target
tissue and photodetectors measure small changes in light
intensity related to variances in perfusion in the catchment
volume [233]. PPG is commonly used in wearable devices
to track cardiac variables such as heart rate, HRV, blood
pressure, and blood oxygen saturation (SpO2) [234].

C. ELECTRODERMAL ACTIVITY
The activation of the sympathetic nervous system, also known
as the fight or flight response, induced by physical or cog-
nitive challenges can be detected by a significant increase
in skin conductance (SC) levels [235]. SC is detected by
measuring the electrodermal activity (EDA) which serves
as an indicator of the activation of the sympathetic nervous
system in healthy subjects [236]. EDA (traditionally known
as galvanic skin response [GSR]) can be described as a
biofeedback signal of tiny variances in the electrical activity
of the skin. EDA signals comprise of two main parts related
to the SC [237], [238] (see figure 5 for more details):

• Skin Conductance Response (SCR) refers to the phasic
or short-term changes produced in the humidity levels of
the skin before and after a stimulus.

• Skin Conductance Level (SCL) that is related to the tonic
or long-term average level of conductivity created by
sweat during a specific time frame.

EDA devices are composed of a set of electrodes usu-
ally placed on the limbs. An electrical microcurrent passes
through the electrodes, the signal is amplified, and variations
in the conductivity are registered in the device. The elec-
trodes measure the differences in the electrical activity of the
skin provoked by changes in the activity of the sudorifer-
ous (sweat) glands, in particular, the eccrine glands, which
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FIGURE 5. Difference between SCR and SCL in an EDA raw signal (based
on [239]).

open onto the skin surface. Depending on the amount of
sweat segregated by the glands, the skin’s conductivity varies.
The higher the sweat response, the higher the conductivity
(µS), which indicates lower electrical resistance (k�m) of the
skin [240].

Considering the valence-arousal space for emotion recog-
nition [196], EDA has been used in several studies, to deter-
mine both the arousal and valence levels [241], [242]. Also,
SC has been commonly used in studies that research human
fear [243].

EDA can be influenced by several factors that cause tech-
nical challenges in the measurements. Environmental factors
such as humidity and temperature can affect skin proper-
ties, leading to inaccurate results. Additionally, other aspects
such as skin hydration can significantly influence the EDA
data [244].

D. MUSCULAR ACTIVITY
The muscles can be activated voluntarily or involuntarily.
Both types of activation are handled by the nervous system,
which controls movement, thoughts, automatic responses,
and other body functions. It is the somatic nervous system,
part of the peripheral nervous system, which leads and han-
dles skeletal muscles to perform voluntary movements [245].
On the other hand, the sympathetic nervous system (fight or
flight response), part of the ANS, plays a role in performing
short and intense tasks as the Wingate test [246], and it
has also an influence on regulating skeletal muscle motor
innervation and neuromuscular junction structure and func-
tion (chemical synapses between motor neurons and skeletal
muscle fibres) [247], [248].

Considering that muscle activity plays a crucial role in the
quality of human movement, it can influence the abilities of
operators to perform tasks. Consequently, it becomes relevant
to measure the muscular activity of a person, as it can deter-
mine several physiological or psychological conditions that
the person might experience, such as fatigue or stress.

Electromyography (EMG) is one of the most utilised meth-
ods to determine muscle activity. EMG records the electrical
signals controlled by motor neurons that generate muscle
contraction [249]. EMG can be performed in an invasive or
non-invasive manner. In the invasive case, known as needle
EMG, a needle electrode is inserted into the target muscle

recording its electrical activity. Needle EMG provides more
precision to determine the structure of the muscles and can
register activity from individual muscle fibres or entire motor
units. Usually, needle EMG is used in the clinical field [250].

On the other hand, surface EMG uses non-invasive elec-
trodes placed on the surfaces of the muscles to track their
electrical activity. Contraction occurs when muscles are acti-
vated. Therefore, their length decrease and surface electrodes
move with respect to each other [249]. Surface EMG is more
commonly used outside the medical field (e.g., engineering,
research) because it can be conducted by personnel other than
medical specialists, and it is more comfortable and less risky
for the subject [251].

Electro-oculography (EOG) is a particular type of EMG
where sensors are placed near the eyes and used to measure
their muscular activity. The equipment in both cases is iden-
tical, as will be detailed later in the ocular activity section.

Several aspects shape the EMG signal characteristics,
which depend on the subject’s internal structure, skin temper-
ature, blood flow velocity, skin formation, and tissue struc-
ture, among others. These characteristics generate diverse
types of noise and artifacts found in the EMG signals. Con-
sequently, it is crucial to eliminate the noise from the sig-
nal improving the feature extraction and usability of EMG
signals [249].

Regarding human factors, EMG has been broadly used to
detect muscular fatigue [23], [26], [28]. Muscular fatigue can
appear in all body parts, affecting task performance and atten-
tion, as mentioned in the previous sections. Another habitual
use of EMG is to determine facial expressions. By measuring
the activity of the zygomatic and corrugator muscles it is
possible to detect if the subject is experiencing a positive
valence emotion (increased zygomatic activity) or negative
valence emotion (increased corrugator activity) [252], [253].

E. RESPIRATORY ACTIVITY
The central and peripheral nervous systems play crucial roles
in the regulation of voluntary and involuntary breathing.
Because of this strong bond, respiration analysis contains
useful information regarding diseases and emotional states
[254], [255]. Additionally, there is a relationship between
agitated states of respiration and the activation of the sym-
pathetic nervous system, and slow, deep and calm breathing
techniques with parasympathetic nervous system activation.
Concerning this topic, it has been studied the treatment of
emotional states with a sympathetic dominance such as stress,
anxiety, or depression, with breathing techniques that can
shift from sympathetic to parasympathetic dominance [256].

Considering the complexity and impact of respiration,
reducing its study to a single parameter, such as respiratory
rate, seems to be insufficient, being necessary more variables.
These parameters are based on respiratory gases, particularly
oxygen uptake (VO2) and carbon dioxide output (VCO2),
which are sensitive to cognitive load and can be influenced by
emotional processes [257]. Other aspects such as respiration
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rate, velocity, and depth, should be considered due to their
alteration in different mental states and diseases.

Human emotion typically affects both the depth and speed
of breathing. For example, deep breathing indicates excite-
ment brought on by happiness, anger, or fear; shallow breath-
ing denotes tension; relaxed people frequently have deep
breathing; shallow breathing shows a calm or negative atti-
tude. According to [258], a person typically breathes 20 times
per minute when they are calm and 40 times per minute when
they are excited. Due to the complexity of the respiratory
processes and the fact that they have an impact on a signifi-
cant portion of the body, there are numerous approaches for
evaluating respiration.

Spirometry is a lung test that evaluates the amount of
air inhaled and exhaled, and the speed of exhalation. There
are several types of spirometers that measure the volume
of air in different ways such as using pressure difference,
ultrasonics, water, or a wright peal flowmeter spirometer.
This technique can be useful for determining VO2 and VCO2
levels [257], [259].

Capnography is a minimally invasive measurement of the
partial pressure of CO2 from the airway during inspiration
and expiration [260]. This technique uses sensors to measure
the carbon dioxide (CO2) present in exhaled gases. It pro-
vides physiological information on ventilation, perfusion, and
metabolism, which is important for airway management.

Other techniques are non-invasive and easier to apply, even
though they are more focused on measuring variables such
as respiratory rate, or respiratory effort, instead of O2 or
CO2 levels. One of the most commonly used techniques is
based on plethysmography. Plethysmography techniques use
instruments to measure the increase in blood flow in a region
of the body, and determine its volume differences [261]. Non-
invasive plethysmography techniques are commonly used to
measure respiratory rate. The use of PPG to determine the
respiratory rate and respiratory effort could enhance the avail-
ability of respiratory data in wearable devices [262], [263].

On the other hand, respiratory inductance plethysmog-
raphy (RIP) involves the use of elastic bands or belts
wrapped around the chest and abdomen, detecting variances
in the circumference of the thoracoabdominal area during
breathing. Regularly, RIP is performed with two bands,
because single-band approaches may not provide the same
level of detail as the dual-band approach [264]. Similar to
RIP, other respiratory motion monitoring (RMM) techniques
include strain gauges, textile-based/resistive strain sensors,
wire strains, or foam-based pressure sensors to record and
analyze chest wall movements, thus obtaining several respi-
ratory activity variables [265].

Thermal cameras can also be used to measure the respira-
tory rate, helping to analyse temperature fluctuations near the
mouth and nose areas caused by exhaled air [266].

Apart from the non-invasive RMM techniques described
previously, and other less intrusive methodologies, the
majority of the techniques for assessing respiration activity
considering parameters related to respiratory gases, are

difficult to be applied in industry. The main reason is that
these methods require subjects to wear a mask or perform
intubation to collect the gases, which is not practical in indus-
trial scenarios. Consequently, the use of respiration activity
for analysing human factors in the industry requires more
research and technology development to be performed in a
more comfortable and suitable way for operators.

F. OCULAR ACTIVITY
The ANS also influences several features of the eyes such as
pupillary response, blink ratio, percentage of eyelid closure
(PERCLOS), and saccadic movements. Pupillary response
refers to the difference in pupil diameter. Variances in pupil
size could be derived from three main aspects, adjustments to
brightness levels of the environment (light response), modifi-
cations due to fixation (near fixation) and variations in arousal
andmental effort [267]. The eyelid is controlled by a complex
system of muscles and nerves that work together to facilitate
its opening and closing. The levator palpebrae superiorismus-
cle is responsible for opening the eyelid, while the orbicularis
oculi muscle is responsible for closing it. The levator palpe-
brae superioris muscle is innervated by the oculomotor nerve,
while the orbicularis oculi muscle is innervated by the facial
nerve. Additionally, the trigeminal nerve is responsible for
detecting sudden, unexpected stimuli and initiating the pro-
tective blink reflex, which is also controlled by the orbicularis
oculi muscle. The blink ratio is the interval between blinks,
which may vary, depending on the conditions, from averages
of spontaneous blinking of 12-15 blinks/min to 22 blinks/min
in calm conditions [268]. Similarly, PERCLOS considers the
slow drop of the eyelid over the pupil over time instead of a
usual rapid and involuntary blink, and it is frequently used to
study drowsiness [269]. Finally, saccades are rapid conjugate
eye movements that shift the line of the sight (centre of gaze)
from one part of the visual field to another and are mainly
used for orienting towards objects of interest [270].

The technology that studies and identifies all these con-
cepts is called eye-tracking. Eye-tracking can be defined as
the study and measurement of eye movements in certain con-
ditions and stimuli to extract and evaluate eye characteristics
such as point of gaze, and pupil diameter, among others.

There are two main methods of performing eye-tracking:
measuring the eye’s position relative to the head, and deter-
mining the orientation of the eye in space also known as point
of regard. The last one is more commonly used when themain
interest is to track the position where a user is presumed to
be observing rendered content on screens or other interfaces
[271]. Considering these two eye-tracking methods, three
major techniques have been developed to study this field: the
scleral search coil technique, electro-oculography (EOG) and
video-oculography (VOG).

• The scleral search coil technique is an invasive tech-
nique based on recording electrical currents induced by
a magnetic field in a coil formed by thin wires situated
in a circular plastic embedded in a contact lens, placed
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in the eye [272]. The signal produced by the induced
voltage represents the eye position, allowing to achieve a
three-dimensional recording of the eye movements. This
methodology is precise and allows the measurement of
eye position relative to the head, but at the same time,
it has some disadvantages as it is intrusive, wearing
lenses could cause discomfort, and it is not convenient
for measuring the point of regard [271], [273].

• Electro-oculography is one of the most commonly used
methodologies for capturing eye movements. On EOG
a set of sensors are attached around the area encircling
the eye, which records the skin’s electric potential dif-
ferences generated while the eyes are rotating [273].
The range of recorded potentials is between 15−200µV
with nominal sensitivities on the order of 20µV/deg of
eye movement [271]. EOG calculates eye movements
by taking into consideration the head position, if there
are no eye movements, the signal can be altered. Also,
EOG is not usually employed in daily uses, however
its application is more suitable for medical fields and
laboratories [271], [273].

• Video-oculography systems have as their principal com-
ponent a video that sends recorded images to a computer
to process the data [274]. The first VOG devices and
previous techniques had issues in providing the point of
regard. It was necessary to have the head fixed or to mea-
sure multiple eye features to disassociate head move-
ment from eye rotation [271]. Nowadays, the majority
of the devices use high-resolution cameras and near-
infrared technology To provide VOG with the capacity
to offer the point of regard. It is crucial to detect the
above-mentioned features of the eyes to precisely detect
the pupil region. If there is an inaccurate segmentation
of the pupil by the camera, the extracted data and its
analysis can be compromised [56]. The most common
technique to provide the point of regard is called pupil
centre corneal reflection (PCCR). PCCR uses a cam-
era to track the pupil’s centre and light reflection in
the cornea. Corneal reflection, or glint, is used as a
fixed reference point. Later, the vector composed of
the angle between the two features, pupil centre and
corneal reflection is calculated, which combined with
other geometrical data, gives the point of regard, solv-
ing the related issues of head movement sensitivity
[273], [275].

Among the presented methodologies for extracting eye
features, the more used in industry and research is infrared
oculography (IOG). Among this category, there are two types
of eye trackers: remote and mobile. Depending on the use
case, one could be more suitable than the other, having both
benefits and drawbacks.

• Remote eye trackers: They are usually comprised of
a camera and infrared source. The most common are
the screen-based ones used in cases where the operator
spends most of the time in front of a screen. The eye
tracker device is positioned at the bottom of the screen,

where it records a functional working region known as
the head box. The device captures the eye movements
when the user is within the boundaries of the head
box.

• Mobile eye trackers: These devices are worn by the
subjects and employed in dynamic environments where
they have to look in different planes andmove in real-life
scenarios, facilities, or virtual environments. Typically,
the device has the form of glasses or a headband which
contain small cameras targeting the eye and the view
field or scene.

Using eye-tracking technology might be challenging in
some scenarios. In cases where the user is not wearing
the eye-tracking device, such as in screen-based eye track-
ers, the eye trackers could struggle to calculate accurately
where the users are looking. For example, if the users are not
looking directly at the screen, their faces leave the detection
area, or even if they are moving, screen-based eye trackers
might face difficulties in the detection. To solve those aspects,
it is required fast calibrations, which apart from the user’s
movement, they should also consider demographic features,
lighting, among other parameters.

Additionally, in several studies of human factors, eye-
tracking is used with other technologies such as EEG. In par-
ticular, when Extended Reality (XR) with eye-tracking is
combined with EEG, an arising challenge is the placement of
the XR headsets with the EEG headset. Usually, XR headsets
have bands that attach the glasses to the user’s head. These
bands cover positions where the EEG electrodes should be
placed. To solve this issue, several companies are combining

TABLE 1. Physical and ocular fatigue: main psycho-physiological
alterations and measurement techniques.
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XR headsets with EEG headsets, which can be helpful
because if the XR headsets include eye-tracking, there will
not be any sensory data lost.

VI. CLASSIFICATION OF RESULTS
This section provides a condensed summary of the previous
sections, creating a bridge between Sections IV and V. The
tables presented in this section aim to offer a comprehensive
reference for researchers and practitioners working in the
field of human factors.

These tables summarize the psycho-physiological alter-
ations associated with each human factor discussed in the pre-
vious sections, including physical fatigue (Table 1), attention
(Table 2), cognitive workload (Table 3), stress (Table 4), trust
(Table 5), and emotional state (Table 6). Each table provides
a concise overview of the main physiological signals affected

TABLE 2. Attention: main psycho-physiological alterations and
measurement techniques.

TABLE 3. Cognitive workload: main psycho-physiological alterations and
measurement techniques.

by a particular factor, highlighting the complex relation-
ships between human factors and physiological responses.
These tables serve as useful references for readers to quickly

TABLE 4. Stress: main psycho-physiological alterations and
measurement techniques.

TABLE 5. Trust: main psycho-physiological alterations and measurement
techniques.

TABLE 6. Emotional state: main psycho-physiological alterations and
measurement techniques.
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TABLE 7. Key companies in the market and their most representative products for measuring activity in the CNS.

understand key aspects of each factor and guide future
research and practice in this area.

Further, a summary of the technologies used tomeasure the
alterations in psychophysiological signals is presented. For
readability issues, the information is divided into two differ-
ent tables. The first table (Table 7) focuses on technologies
that measure brain activity related to the central nervous sys-
tem (CNS), while the second table (Table 8) covers devices
thatmeasure the physiological signals affecting the peripheral
nervous system (PNS). Both tables include the most notable
currently available commercial solutions for each technology
in the list. As this paper’s objective is to investigate the
measurement of human factors in the workplace to improve
worker well-being and industrial results, only technologies
that are compatible with working environments are covered
in these tables. In this sense, technologies that are incompati-
ble with the working activities (such as magnetoencephalog-
raphy and sphygmomanometry among others) are not
listed.

VII. DISCUSSION AND CONCLUSION
Controlling human factors in industrial workplaces is crucial
for improving worker well-being and productivity. The six

human factors discussed in this article – physical fatigue,
attention, mental workload, stress, trust, and emotional state –
have a significant impact on workers’ performance and
well-being, and thus they should be monitored and con-
trolled. Understanding the effects of each human factor on
psycho-physiological signals is essential to develop effective
control strategies.

Different human factors can affect several psycho-
physiological signals, and it can be challenging to distinguish
one from another. For instance, stress can cause an increase
in heart rate, breathing rate, and electrodermal activity. How-
ever, cognitive workload provokes very similar reactions,
including also an increase in heart rate and electrodermal
activity. Therefore, it is essential to consider multiple sig-
nals to identify the specific human factor that needs to be
addressed.

Furthermore, measuring psycho-physiological alterations
can be difficult, as some equipment, such as magnetoen-
cephalograms and sphygmomanometers among others, may
not be compatible with the industrial environment, rendering
them impossible to use for industrial implementation. How-
ever, by combining different techniques and devices, it is
possible to achieve full coverage of the main variables needed
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TABLE 8. Key companies in the market and their most representative products for measuring activity in the PNS.

to assess and utilize human factors. For example, using a
portable electroencephalogram (EEG) tomeasure brain activ-
ity and an electromyogram (EMG) tomeasuremuscle activity
can provide a comprehensive understanding of how physical
fatigue impacts worker performance.

Industry 5.0 emphasizes a human-centric perspective in
industrial environments. Monitoring human factors is one
way to achieve this, as it can lead to numerous benefits, such
as a healthier environment, increased worker satisfaction,
and improved safety and well-being. Additionally, it can also
result in improved productivity, as it can help to identify the

root cause of poor performance and implement strategies to
improve it.

While the literature on this topic is extensive, there is
still room for deeper theoretical and experimental analysis
of the influence of human factors in industrial environments.
Also, further research is necessary to develop new techniques
and devices that enable the inclusion of newer and more
accurate metrics to evaluate human factors. For instance, new
developments in wearable technology and sensor fusion can
offer a more integrated and holistic approach to measuring
human factors. To illustrate some potential research beyond
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the scope of this paper, computer vision has been identified
as a valuable technique to assess certain human factors like
physical fatigue, trust and emotional state. The complexity
of these techniques demands a specific review to assess the
potential impact in this area.

In conclusion, controlling human factors in industrial
workplaces is essential for achieving both human and pro-
ductivity benefits. By prioritizing the well-being of workers
and utilizing technological advancements, industrial environ-
ments can become more human-centric and efficient. More
research and development are needed to expand our under-
standing of human factors and to improve the techniques and
devices used to monitor them. This will enable the devel-
opment of more effective and tailored strategies to enhance
worker well-being and boost productivity in industrial
settings.
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