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ABSTRACT Glycans are important biological molecules that can be found on their own or attached to other
molecules. They have complex, branching structures that do not follow the linear structure. Glycans are
crucial for many biological processes and they are involved in the development of several important diseases.
Due to the complexity and the branched structure of glycans, most of the current studies have mainly focused
on the other attached molecules instead of glycans themselves. This paper proposes, GNNGLY, a graph
neural networks model for glycans classification. Firstly, Glycans are represented as molecular graphs,
where atoms are represented as nodes and bonds are represented as edges. Graph convolutional networks
(GCNs) are then used to make predictions on eight taxonomic classification levels and for the level of
immunogenicity property. The performance results indicate that GNNGLY outperforms traditional machine
learning methods and when compared to other existing tools for glycan classification, GNNGLY showed
considerable performance results. GNNGLY could have a significant impact on the field of glycoinformatics
and related research areas.

INDEX TERMS Glycan, glycoinformatics, machine learning, graph neural networks, graph convolutional
networks.

I. INTRODUCTION
Glycans or carbohydrates are important biological molecules
that can be found on their own or attached to proteins, lipids,
and other molecules. They are extremely diverse molecules
that are found on the surface of all cells [1]. They have
complex, branching structures made up of many different
monosaccharides, and they do not follow the linear structure
of DNA, RNA, and proteins, which are made up of only
four nucleotides or 20 amino acids, respectively. Glycans do
not conform to the central dogma of biology and cannot be
studied using traditional sequencing techniques [2]. However,
they are crucial for many biological processes such as protein
function, cell-cell interaction, immune response, and overall
organismal function. In addition, glycans are involved in the
development of several important diseases [3], [4].

The study of glycans, or carbohydrates, has been limited by
various challenges including the vast amount of data avail-
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able in chemistry and biology, the complexity and diversity
of carbohydrate molecules, and the branched structure of
glycans, which is not template-driven like the synthesis of
other biomolecules. As a result, current studies have mainly
focused on proteins associated with glycans rather than the
glycans themselves [3], [5]. Machine learning and deep learn-
ing have been used effectively for analyzing other types of
biomolecules such as proteins and RNA, but these approaches
rely on sequence-based representations that work well for
linear structures but not for more complex structures like
glycans [6].

A more general way to represent biomolecules is as a
graph, with nodes representing atoms or monomers and edges
representing bonds between them. This method can handle
molecules with linear, branching, and cyclic structures. Arti-
ficial intelligence in graph representation has achieved excel-
lent results in various fields including social media networks,
chemistry, and bioinformatics.

In recent years, machine learning and deep learning have
been applied to the analysis and classification of glycans.
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SweetTalk, a glycan language model that employs recurrent
neural networks, was developed by Bojar et al. [3]. It gener-
ates ‘‘glycowords’’ from glycans containing three monosac-
charides and two bonds in order to capture the unique features
and contextual information of the glycan. The model takes
into account the composition and connectivity of the glycan.
By employing this model, the teamwas able to explore motifs
in glycan substructures, categorize them based on their O-
/N-linkage, and accurately predict their immunogenicity at a
rate of approximately 92%. Bojar et al. also created Swee-
tOrigins [2], a language model-based method that extracts
species-specific evolutionary information from glycans by
training multiclass classifiers at each taxonomic level.

Burkholz et al. proposed SweetNet [1], which is based on
deep learning and GCNs and converts glycans into a graph
representation to predict glycan properties and features. The
key aspect of their approach is the use of monosaccharides
and glycan bonds as nodes and their connections as edges
to build a neural network graph. Mohapatra et al. intro-
duced a generalized approach called GLAMOUR [6], which
represents glycan macromolecules as graphs with chemi-
cal information captured from molecular fingerprints. They
applied supervised and unsupervised learning using different
GNN models to classify glycans by taxonomic level and
immunogenicity properties. GLAMOUR treats monosaccha-
ride monomers as graph nodes and glycan bonds as graph
edges. Dai et al. [7] develop a deep learning method, called
glyBERT, to study the structure-function relationships of
glycans. GlyBERT encodes glycans using a biochemical
language and learns biologically relevant glycan represen-
tations by capturing both local and global context through
an attention-based deep language model. The authors apply
glyBERT to a variety of prediction tasks such as immuno-
genicity, glycoprotein linkage state, and taxonomic origin for
the glycans.

The advancement of deep learning has resulted in the
development of multiple neural network methods for han-
dling graph and tree structures. Graph neural networks
(GNNs) use the information present in the nodes and edges
of a graph, as well as contextual information from the
graph’s neighborhoods, to predict either individual nodes
or the entire graph. The most common types of GNNs are
message-passing neural networks (MPNNs) and GCNs [6].
In MPNNs, feature data is exchanged between neighboring
nodes. A standard MPNN consists of several propagation
layers, each of which is updated by aggregation functions
based on the features of its neighbors.

There are three main types of aggregation functions used in
GNNs: convolutional, attentional, and message passing [8].
GCNs, which are based on convolutional neural networks
(CNNs), learn about graphs through multiple convolution
operations. An iterative convolution filter is applied to the
entire graph to process data from related nodes. Each convo-
lution embeds the features of a node’s neighbors to represent
the features of the node. The concept of ‘‘neighboring’’ then
expands with each subsequent convolution, defining a larger

area of the graph. After this is done for every node and
its neighbors, the resulting features are passed through the
neural network for prediction [5]. GCNs have been used for
studying social networks [9], protein function prediction [10],
COVID-19 forecasting [11], and drug design studies [12],
[13]. They have also been proposed for glycan analysis and
prediction [1], [2], [3], [6].

In this research, glycans are represented as molecular
graphs in which the different components of the glycan are
represented as a structural formula in terms of graph theory.
The atoms are depicted as nodes and the bonds between
them are shown as edges. Graph neural networks (GNNs) are
currently the best option for classifying these types of graphs.
Given a labeled graph L = (Gi, yi), where yi is the label of the
graph Gi, the goal of graph classification is to build a model
using L that can predict the labels of unlabeled graphs. The
nodes and edges of the graph have associated features that
can be used to classify the graph using GCNs. We devel-
oped several GCNs models for classifying glycans based on
different taxonomic levels, which refer to the classification
of organisms based on their evolutionary relationships. For
instance, glycans can be classified based on the organism
in which they are found, such as human glycans or plant
glycans. We also classified glycans based on their proper-
ties, such as immunoglobulins which are glycans involved in
immune defense. Moreover, we encode the glycan SMILES
(simplifiedmolecular-input line-entry system) intomolecular
fingerprint binary vectors and then use traditional machine
learning methods for glycan classification and compare them
with the proposed graph convolutional network models.

The remaining of the paper is structured as follows: Sec-
tion II provides a detailed explanation of the used materials
andmethods, including dataset preparation, feature and graph
representation, and machine learning methods. The results
and analysis of the experiments are presented in Section III.
Section IV is devoted to discussing the obtained results.
Finally, Section V offers conclusions of the work.

II. MATERIALS AND METHODS
The proposed framework of GNNGLY is outlined in Figure 1.
The first step is to gather and prepare the glycan data sets.
The glycans are then converted into SMILES format and
subsequently into molecular objects. These glycan molecu-
lar objects are then transformed into either sequence-based
features for building traditional machine-learning classifi-
cation models or into a graph for building GCNs models.
Lastly, the models are evaluated and compared using various
performance measures. The specific details of each step are
discussed in this section.

A. DATA PREPARING
In this study, we used the Sugarbase v2.0 database [2]
(https://webapps.wyss.harvard.edu/sugarbase/) as a source of
data. The database contains 19,299 glycans represented in
the IUPAC (International Union of Pure and Applied Chem-
istry) format. We obtained a labeled dataset on the taxonomic
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FIGURE 1. The general framework of GNNGLY.

level of glycans and their immunogenicity from Sugarbase,
which had previously been used in the SweetNet [1] and
SweetOrigins [2] studies. Bojar et al. collected the labeled
data for SweetOrigins from three sources: previous scien-
tific literature, UniCarbKB, and the Carbohydrate Structure
Database (CSDB). This dataset includes 13,209 glycans that
are classified into eight taxonomic levels: domain, kingdom,
phylum, class, order, family, genus, and species. Each glycan
in this dataset may belong to multiple taxonomies. Therefore,
we created a new multilabel dataset from this dataset by
adding each glycan to the new dataset with multiple labels
separated by commas. The new dataset consists of 9,446
unique glycans, each with multiple labels at each taxonomic
level. Using the GlyLES tool [14], we converted the glycan
sequences to the SMILES format but had to remove 1,750
glycans because the tool was unable to convert them due
to issues such as unequal or unclear parentheses or brack-
ets, missing bonds, and branching brackets around the first
monosaccharide.

Glycan classification involves considering both the
immunogenic properties and the taxonomy of the glycan.
Nine datasets have been created to reflect this, each con-
taining the SMILES representation of the glycan sequence
and multilabel classes for the glycan. Any labels with fewer
than three glycans were removed, as were null or unknown
labels and their associated glycans. Table 1 shows the

TABLE 1. Dataset class labels and the number of multilabel classes and
samples for each classification level.

number of labels and glycan samples in each dataset after
preprocessing.

B. FEATURE REPRESENTATION
1) SMILES
SMILES (simplified molecular-input line-entry system) is a
standard for expressing the structure of chemical compounds
using brief ASCII strings that are understood by computer
programs easily. For example, the SMILES string ‘‘CCO’’
represents the molecule ethanol, which consists of two car-
bon atoms, one oxygen atom, and three single bonds [14].
The glycan sequences with IUPAC notation are converted to
SMILES using GlyLES python package that depends on the
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ANTLR grammar parser generator (https://www.antlr.org/).
Figure 2. Illustrates the example of the IUPAC glycan
sequence, its glycan structure, its chemical structure, and its
SMILES sequence.

2) FINGERPRINT REPRESENTATION
A molecular fingerprint is a fixed-length binary vector rep-
resentation of a chemical compound. It is used to encode
structural information about a molecule, such as its atoms
and bonds, into a format that can be easily compared to other
molecules. To convert a molecular object (a representation of
a molecule as a set of atoms and bonds) into a fingerprint vec-
tor, a hashing algorithm is typically used to map each unique
substructure of the molecule to a unique bit in the fingerprint
vector. There are various methods to generate a fingerprint
vector [15]. In this work, the Morgan fingerprint [16] is used
to encode each glycan SMILES to a binary vector using the
RDKit [17] python library. The method was first proposed
by Robert Morgan in the late 1960s. It is based on the con-
cept of a molecular ‘‘fingerprint’’ that is generated by the
unique environment of each atom in a molecule. To generate
a Morgan fingerprint, the algorithm starts with an atom in the
molecule and performs a breadth-first search to identify all
other atoms that are within a specified radius (typically up
to a radius of 2 or 3 bonds). The resulting set of atoms and
bonds is hashed to a unique bit in the fingerprint vector. The
process is repeated starting from each atom in the molecule to
generate the final fingerprint. This process is repeated for all
atoms in the molecule to generate the final fingerprint, which
in this case has a length of 128 bits or features for each glycan.

3) GRAPH REPRESENTATION
RDKit [17] is used to convert the glycan SMILES strings to
molecule object that has various functions to get the chem-
ical atoms and bonds of the chemical structure of glycan.
The glycan molecule objects then are utilized to construct
glycan graphs as DGL (deep graph library) graphs [18]. The
molecule atoms as represented as nodes and the molecule
bonds between them are represented as edges. The chemical
RDKit library is also used to extract chemical features for
each node (atom) and edge (bond). The general notation for
the glycan graph can be represented as G = (V ,E,X ) in
which V is a set of the graph nodes (atoms) with length n,
E is the set of graph edges (bonds) with length m, and X ∈ R
represents the features of the nodes and edges graphs. The
adjacency matrix A for the graph is a n×nmatrix where Aij =

0 if eij /∈ E and Aij = 1 if eij ∈ E . The set of neighborhood
nodes of a node v is represented as N (v) = u ∈ V |(v, u) ∈ E .
Let node vi ∈ V , eij ∈ E is the edge that connects the node
vi with vj, xv ∈ Rc represent the feature vector of with length
c, and xeu,v ∈ Rd is the feature vector for the edge (u, v) with
length d [19], [20].

4) GRAPH FEATURES
The RDkit chemical library is used to extract various fea-
tures at the node (atom) and edge (bond) level for a graph.

These features, known as atom and edge feature descriptors,
encode different properties of the molecule. Six types of
atom features are used, including the atomic number, chi-
ral type, degree, formal charge, number of hydrogens, and
hybridization type. For edges, three bond features are used:
bond type, presence in a ring, and conjugation [21]. Each
feature descriptor is transformed into a one-hot vector. The
resulting node feature vector has a size of 133, while the edge
feature vector has a size of 14. The descriptions of these node
and edge feature descriptors can be found in Table 2.

C. MACHINE LEARNING (ML)
1) GRAPH CONVOLUTIONAL NETWORKS
Glycan classification is a type of graph-level classification
that aims to predict the class label(s) for a glycan based on the
entire graph. One of the most effective methods for this task
is the use of graph neural networks (GNNs). A specific type
of GNN, known as a graph convolutional networks (GCNs),
was developed by Kipf andWelling [22] to handle irregularly
shaped graphs that cannot be processed by traditional convo-
lutional neural networks (CNNs). CNNs are designed to work
on regular, Euclidean structures, like images, while GCNs are
better suited for irregular, non-Euclidean structures, such as
graphs where the number of edges between nodes varies and
the nodes are not arranged in a regular pattern [19].

In general, GCNs are composed of three main parts:
(A) graph convolutional layers that extract high-level features
from the graph by using an aggregation function, (B) graph
pooling layers that reduce the graph structure by coarsening
it into a sub-graph at each iteration, and (C) a readout layer
that combines the final representations of each graph [19],
[20], [23]. These components work together to create an end-
to-end model for graph prediction, which can be used to
classify glycan graphs. The graph convolutional layers are
utilized to build a high-level node representation for node v
by aggregating its features xv with its neighbors’ features xu
where u ∈ N (v). Each layer k of the convolutional layers
operates on the hidden state of nodes h(k) ∈ RN×mk , where
N is the number of nodes and mk is the number of hidden
units in layer k . At each layer k , the hidden state of node v is
updated as:

h(k)v = σ

 ∑
u∈N (v)

1
cu,v

W (k)h(k−1)
u + b(k)

 (1)

where h(k−1)
u is the hidden state of node u at layer k − 1, σ

is the activation function such as ReLU or sigmoid,W (k) and
b(k) are the learnable weight matrix and bias vector of layer k ,
respectively, and cu,v is a normalization constant that adjusts
for the degree of node u and v. The normalization constant is
defined as:

cu,v =
√
deg(u) × deg(v) (2)

where deg(u) and deg(v) are the degrees of node u and v,
respectively. The graph pooling layers are used to coarsen
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FIGURE 2. Glycan representation example. (A) Glycan in the IUPAC format. (B) Glycan structure in SNFG (Symbol
Nomenclature for Glycans) standards. (C) Chemical structure of glycan. (D) SMILES notation for the glycan.

TABLE 2. The node and edge feature descriptors.

the graph structure into a sub-graph at each iteration. The
pooling allows for deeper networks which can help to reduce
overfitting and computational complexity [24]. The pooling
operation typically involves grouping nodes into clusters or
super-nodes, based on some criteria such as node degree,
node importance, or clustering coefficients. The sub-graphs
obtained after pooling can then be fed into the next layer
of the GCNs for further processing. The readout layer then
aggregates the final representations of each graph to make a
prediction for the entire graph. One common way to imple-
ment the readout layer is to use a permutation-invariant func-
tion, such as summation or average pooling, over all node
representations. This can be represented mathematically as:

hG =

N∑
v=1

αvh(L)v (3)

where hG is the final representation of the entire graph, h(L)v
is the hidden state of node v at the final layer L of the GCNs,

and αv is a scalar weight assigned to node v that depends on
its importance in the graph.

After the readout layer combines the final node represen-
tations, the output is processed by a dropout layer and fully
connected networks to make predictions. The dropout layer
randomly drops out some of the activations to prevent overfit-
ting. The fully connected networks consist of multiple layers
of densely connected nodes that transform the output of the
readout layer into a format suitable for prediction. Each node
in the fully connected layers applies a linear transformation to
its input, followed by a non-linear activation function, such as
ReLU or sigmoid. The output of the last layer of the fully con-
nected networks is passed through a final activation function,
such as softmax or sigmoid, to obtain the final prediction.

During training, the model is optimized using the BCE-
WithLogitsLoss loss function, which calculates the binary
cross-entropy between the true target labels and the predicted
probabilities. The Adam optimizer is also used to adjust
the model’s weights during training, with hyperparameters
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TABLE 3. Tuned parameter setting for GCNs models.

such as learning rate, maximum epoch, and batch size tuned
to optimize performance. An early-stopping strategy is also
implemented to prevent overfitting, where training stops if
the validation loss does not improve after a certain number
of epochs, such as 30 in this case. To optimize the GCNs
model for glycan classification, multiple hyperparameter val-
ues were experimented with. The final set of hyperparameters
used in the GCNs model was determined based on the valida-
tion performance results from this experimentation process.
The specific hyperparameters used can be found in Table 3.

2) TRADITIONAL ML METHODS
In addition to GCNs, this study also employs other traditional
Machine Learning (ML) techniques to develop prediction
models for glycan classification using fingerprint sequence
representations of glycans. The effectiveness of the graph rep-
resentation and GCNs are evaluated by comparing the GCNs
model with three traditional machine learning algorithms:
Support Vector Machine (SVM), Random Forest (RF), and
XGBoost (XGB). The SVM and RF algorithms are imple-
mented using the Scikit-learn Python library, while XGBoost
is implemented using the XGBoost Python library. SVM is
a widely-used classifier that aims to classify by determining
the optimal separator hyperplane that maximizes the margin
between classes. RF is an ensemble-based algorithm that is
based on decision trees and is commonly used in compu-
tational biology for its simplicity and suitability for high-
dimensional data. XGBoost is also an ensemble learning
method that is based on tree boosting and uses gradient
descent to deal with high dimensional data [25], [26]. Mul-
tiple hyperparameters are experimented with each classifier
using training and validation datasets. Table 4 shows the
hyperparameters used for the three machine learning classi-
fiers, along with the corresponding values for each parameter.

III. RESULTS
In the GNNGLY, nine different GCNs models were devel-
oped to classify glycans based on their taxonomic level and
immunogenicity level. All the models were built using the
same architecture, with the only difference being the number
of nodes in the output layer. The number of nodes in the
output layer varied for each taxonomic level, depending on
the number of classes for that level. The models were trained
using the PyTorch and DGLgraph libraries on a GPU. The
performance of the models was evaluated using both ten-fold

TABLE 4. The hyperparameter configurations for the machine learning
classifiers used in this study, along with the corresponding values for
each parameter.

cross-validation and independent testing. The dataset was
randomly split into training, validation, and testing sets in the
ratio of 60%, 20%, and 20% respectively. The training set was
used for both training the models and for cross-validation.
The validation set was used to fine-tune the model’s hyper-
parameters and weights, and the testing set was used for
independent testing and comparison with other tools.

Five performance metrics were used for model evaluation
and testing: ROC-AUC (Area Under the Receiver Operating
Characteristic Curve), F1-score, recall, precision, and accu-
racy [4], [27]. The task of classifying glycans based on their
taxonomic origin was treated as a multi-class and multi-label
classification problem since glycans can be present in mul-
tiple types of organisms. In contrast, for the classification of
glycans based on their immunogenicity, the dataset had only
two classes: yes or no. The number of classes and samples for
each task was shown in Table 1.

A. RESULTS USING CROSS-VALIDATION
The first strategy to evaluate GNNGLY is the ten-fold cross-
validation. The data is divided into ten folds, and the model
is trained and evaluated ten times, each time using a different
fold as the test set and the remaining folds as the training set.
The final performancemetric is then the average performance
across all ten iterations. Table 5 presents the results of the ten-
fold cross-validation performance for glycan classification
using GNNGLY, SVM, RF, and XGB on both the taxonomic
levels (8 levels) of glycans and the immunogenicity property
level of glycans.

The results of the ten-fold cross-validation are represented
by the ten iterations’ average results ± standard deviation
in terms of ROC-AUC, F1, recall, precision, and accuracy
performance measures. The low standard deviations showed
that the models’ overall prediction abilities are stable. The
results indicate that GNNGLY models surpass all other ML
methods for all prediction tasks in terms of accuracy, recall,
precision, F1-score, and AUC performance metrics (as seen
in Table 4). GNNGLY showed an average improvement of
0.01 in accuracy for the immunogenicity level, domain level,
0.07 for the kingdom level, 0.1 for phylum level, 0.07 for
the class level, 0.13 for the order level, 0.03 for the 0.13 for
family level, 0.11 for genus level, and 0.11 for the species
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TABLE 5. Ten-fold cross-validation performance results of GNNGLY compared to SVM, RF, and XGB. The results are represented by the average ± standard
deviation in the terms of accuracy, recall, precision, F1-score, and AUC metrics for all glycan classification levels.

level, over the SVM, RF, and XGB methods. In comparison
to traditional ML methods (SVM, RF, and XGB), it was
observed that the ensemble-based methods (RF, and XGB)
perform better than SVM in most multi-label class data.

B. RESULTS USING INDEPENDENT TESTING
To evaluate theGNNGLYmodels further, independent testing
is used, where the models are tested on a separate set of
data and the results are compared with those of the SVM,
RF, and XGB ML methods. The performance results for this
prediction are presented in Table 6.

The results of the independent test also showed that
GNNGLY models outperform the traditional ML methods in
the terms of accuracy, precision, recall, F1, and AUC perfor-
mance metrics. GNNGLY showed an average improvement
of 0.04 in accuracy for the immunogenicity level, 0.03 for
the domain level, 0.07 for the kingdom level, 0.1 for phylum
level, 0.13 for the class level, 0.11 for the order level, 0.11 for
family level, 0.05 for genus level, and 0.14 for the species
level over the SVM, RF, and XGB methods.

Generally, the utilization of graph feature representation
in combination with the GCNs classification method has
proven to be more efficient than using sequence-based rep-
resentation with traditional ML techniques for glycans pre-
diction tasks. This is because graph representation captures
the structural information and relationships among different
parts of the data, which can be more informative than linear
sequence information alone. Furthermore, GCNs are able
to perform convolution operations on graph-structured data,
which enables them to effectively extract features from the
graph, resulting in improved classification performance.

C. COMPARING WITH EXISTING METHODS
GNNGLY for glycan classification is compared to two exist-
ing tools, SweetNet [1] and GLAMOUR [6], using the same
datasets. All three methods utilize GCNs for glycan classi-
fication, but they differ in their representation of the glycan
graph. SweetNet uses monosaccharides and bounds as nodes
and connections between them as edges, while GLAMOUR
employs text files containing SMILES sequences, monomer
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TABLE 6. Independent testing performance results of GNNGLY compared to SVM, RF, and XGB in the terms of accuracy, recall, precision, F1-score, and
AUC metrics for all glycan classification levels.

positions, and bond connections, with monosaccharides as
nodes and bonds as edges. GLAMOUR extracts features
using the Morgan fingerprint RDkit Chem library for each
monosaccharide and bond. The performance results of the
comparison are presented in Figure 3. From the figure we
illustrated that GNNGLY exhibits competitive performance
results compared to the other existing tools.

IV. DISCUSSION
The complex and branched structure of glycans makes tra-
ditional sequence-based methods used for DNA and protein
sequences ineffective for studying them. A more effective
approach is to use graph representation, which is a more gen-
eral way to represent glycans for computational techniques.
However, there are only a few studies on glycan classifica-
tion using graph representation and graph neural networks,
highlighting the need to improve classification results and
develop new glycan classifiers. In this work, we introduce
GNNGLY, a novel glycan classifier based on GCNs, that

is able to classify glycans which represented as molecular
graphs on nine classification levels.

The performance results of GNNGLY are compared with
three supervised ML techniques. The glycans data is repre-
sented as binary vectors using molecular fingerprint tech-
niques for ML models, while they are represented as graphs
using molecular graphs and DGL graphs for GNNGLY mod-
els. The results from Tables 5 and 6 show that the perfor-
mance of GNNGLY models outperforms the ML models
on all classification levels. Ensemble-based methods such
as RF and XGBoost show better performance than SVM in
most multilabel class data that have the largest number of
classes. This indicates that tree-based and ensemble learning
methods can perform better than otherMLmethodswith large
multilabel classes.

The utilization of graph feature representation in combi-
nation with the GCNs classification method has proven to
be more efficient than using sequence-based representation
with traditional ML techniques for glycans prediction tasks.
This is because graph representation captures the structural
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FIGURE 3. Performance results of GNNGLY compared to SweetNet, and GLAMOUR tools on the
independent dataset in the term of accuracy metric.

information and relationships among different parts of the
data, which can be more informative than linear sequence
information alone. Furthermore, GCNs can perform convolu-
tion operations on graph-structured data, which enables them
to effectively extract features from the graph, resulting in
improved classification performance.

Moreover, GNNGLY is compared with two recent existing
methods for glycan classification, SweetNet [1] and GLAM-
OUR [6], using the same dataset (Sugarbase). GNNGLY
shows better performance results with the Species, Genus,
Family, and Order classification levels. On the other hand,
SweetNet exceeds GNNGLY by 1.5% on the Class clas-
sification level, and by 0.3% on the Phylum classification
level. GLAMOUR exceeds GNNGLY by 0.9% on the King-
dom classification level. Additionally, SweetNet exceeds
GNNGLY by 0.6% on the Domain classification level, and
by 0.4% on the Immunogenicity classification level. Overall,
GNNGLY shows very close performance results to SweetNet
or GLAMOUR results. With the large number of multilabel
classes (Species, Genus, Family, and Order), GNNGLY per-
forms better than SweetNet and GLAMOUR.

Based on the data presented in Table 1 and the results
in Section III, it can be observed that the performance of
the models decreases as the number of multilabel classes
increases. For more clarification, the Species classification
level is the most challenging task with the largest number
of multilabel classes (499), resulting in the lowest predic-
tion performance across all models. This is because most
classes have a small number of samples, making the dataset
highly imbalanced. However, GNNGLY outperforms other
ML methods and existing methods on the large number of
multilabel classes.

To improve the classification performance with large mul-
tilabel classes, data augmentation can be used to increase
the amount of data available for training. This can be
done in the future to improve the performance of glycan
classification.

V. CONCLUSION
The paper presents, GNNGLY, a new approach for classifying
glycans, which are important biological molecules that play
a crucial role in many biological processes and are involved
in the development of several diseases. Due to the complex-
ity and branched structure of the glycans, previous research
has not primarily focused on studying glycans themselves.
GNNGLY addresses this challenge by representing glycans
as molecular graphs and using graph convolutional neural
networks to make predictions on eight taxonomic classifi-
cation levels and for the level of immunogenicity property.
Results indicate that this approach outperforms traditional
machine learning methods including SVM, RF, and XGB
in terms of accuracy, precision, recall, F1, and AUC perfor-
mance metrics. It is more efficient than using sequence-based
representation with traditional ML techniques because graph
representation captures structural information and relation-
ships among data. Moreover, GCNs can also effectively
extract features from the graph which results in improved
classification performance. It was also compared to existing
tools, SweetNet and GLAMOUR, and showed good perfor-
mance results, suggesting that it could be a useful tool in the
field of glycan classification.
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