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ABSTRACT A fractional-order fuzzy proportional integral derivative (PID) controller is a controller that
combines the benefits of fractional calculus and fuzzy logic with the conventional PID controller. In this
paper, a four-stage optimization algorithm is proposed for the design of a Type-2 Fuzzy fractional-order PID
controller based on the Fourier SeriesMethod (FSM). Three distinct control structures are introduced: Type-2
fuzzy fractional PD + fractional PI controller, Type-2 fuzzy fractional PID, and Type-2 fuzzy fractional
PD + Type-2 fuzzy fractional PI controller. In addition to a modified multi-performance criterion cost
function, four integral performance criteria are employed as cost functions for each stage. The suggested
algorithm avoids the utilization of the approximation equivalent for the fractional-order system and instead
employs FSM. Furthermore, the approach optimizes the nonlinearity within the upper membership function
(UMF) and the uncertainty range through the lower membership function, as opposed to arbitrary selection.
By considering variations in the membership functions, the outcomes exhibit a superior response compared
to previous investigations. The results of the three control structures are compared with the traditional PID
controller, and simulation results demonstrate the feasibility of this technique. The findings suggest that by
optimizing different integral performance criteria using this design technique, controllers for both integer and
fractional-order plants can yield favorable step responses. The proposed algorithm is validated by comparing
its step response performance with that of previous research, followed by a discussion on sensitivity analysis
and computational requirements.

INDEX TERMS Fourier series method, fractional-order PID controller, type-2 fuzzy controller.

I. INTRODUCTION
A. THE MOTIVATION OF THE PAPER
Various engineering disciplines are currently striving to iden-
tify the optimal controller to achieve the most favorable step
response for a given plant. Fuzzy logic, which was introduced
to the controller field in the last century as part of artificial
intelligence applications and tools, has gained significant
traction due to its ability to handle uncertainty in inputs,
outputs, and decisions [1]. The two most prevalent types of
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fuzzy controllers are Mamdani and Sugeno, which differ in
their output membership function and the definition of fuzzy
logic operators [2]. The latest iteration of fuzzy logic is the
fuzzy-fuzzy logic, or type-2 fuzzy, which contains an inter-
nally undefined area in its input/output membership func-
tions, resulting in a higher level of uncertainty than traditional
fuzzy logic [3]. This research employs the Sugeno type-2
fuzzy controller, which differs from its type-1 counterpart in
its input membership functions.

Conversely, the fractional-order PID controller offers two
additional degrees of solution freedom, effectively rendering
the conventional PID controller as a particular point in the
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two-axis FPID space [4]. This study aims to amalgamate the
benefits of fuzzy type two and fractional-order control to
create distinct type-2 Fuzzy FPID structures.

B. LITERATURE REVIEW
One of the newest research papers in this field is referenced
in [5]. This paper presents a novel approach for design-
ing a controller known as the Interval Type-2 Fractional-
order Fuzzy PID (IT2FO-FPID) controller, which utilizes
fractional-order integrators and differentiators. The authors
combine a Takagi-Sugeno-Kang (TSK) type Interval Type-2
Fuzzy Logic Controller (IT2FLC) with the fractional PID
controller to evaluate the controller’s performance in terms of
both unit step response and unit load disturbance. The IT2FO-
FPID controller is tested on various benchmark plants with
time delays and nonlinearities, and its robustness is analyzed.
The design parameters of the controller include fractional-
order integrator-differentiator operators and input-output
scaling factors.

To optimize these parameters, an optimization algorithm
called the Artificial Bee Colony-Genetic Algorithm (ABC-
GA) is employed. The optimization process minimizes a
weighted sum of the integral of time absolute error (ITAE)
and the integral of the square of the control output (ISCO).
Simulation results demonstrate that the IT2FO-FPID con-
troller outperforms other controllers in most cases. However,
it is important to note that this paper does not take into account
the impact of nonlinearity on the fuzzy controller, the lower
membership functions of the type-2 fuzzy are chosen arbitrar-
ily, and the Oustaloup approximation is utilized to address the
fractional-order controller. Furthermore, the optimization of
fuzzy membership functions and set rules is not addressed
in this paper, as the focus is solely on optimizing the
fractional-order PID parameters. Similar observations can be
made regarding the papers referenced as [6], [7], [8], and [9].

In [6], the proposed fuzzy logic controller (FLC) incorpo-
rates fractional-order differ-integrations as design variables,
along with input-output scaling factors (SF), which are opti-
mized using Genetic Algorithm (GA). The objective function
aims to minimize several integral error indices along with
the control signal. However, the nonlinearity in the fuzzy
controller is ignored, and the Oustaloup approximation is
used to create an equivalent for the fractional-order.

Researchers in [7] present the development of a new
power system stabilizer (PSS) based on a type-2 fuzzy
fractional-order PID controller. The goal is to enhance the
dynamic stability of the power system by improving its elec-
tromechanical oscillation damping performance. To achieve
this, a hybrid algorithm that combines meta-heuristic tech-
niques is utilized for the controller design. All previous arti-
cles [5], [6], [7], [8], [9] employ the same control structure,
namely the fuzzy fractional PD + fractional PI controller
(FFPD-FPI).

The utilization of FFPD-FPI to enhance the dynamic sta-
bility of power systems incorporating renewable resources

is introduced in [7] and [9]. In [8], the proposed FFPD-FPI
controller is applied to a tractor active suspension system.
Based on a comprehensive literature review, it is evident that
most researchers tend to arbitrarily select the internal mem-
bership functions of type-two fuzzy sets. Unfortunately, they
often overlook the impact of nonlinearity on these member-
ship functions. Furthermore, in many cases, approximation
models are employed to represent fractional-order plants [5],
[6], [7], [8], [9], [10].

In reference [12], the authors propose a novel approach
for frequency regulation in a multi-micro-grid (MMG) sys-
tem. The focus is on load frequency control and the integra-
tion of renewable energy sources. They introduce a specific
fractional-order fuzzy PID (FOFPID) controller designed for
efficient frequency control. The parameters of the FOFPID
controller are optimized using an enhanced version of the
Harris Hawks optimizer (mHHO), which outperforms other
commonly used optimization techniques in this field.

In reference [13], researchers present the design of an
adaptive fuzzy type-2 fractional-order PID sliding mode
controller for trajectory tracking of robotic manipulators
within a reduced task space. By combining the flexibility
of fractional-order controllers with the effectiveness of PID
controllers, the proposed controller addresses uncertainties
and provides a fast and accurate response. The selection
of a suitable Lyapunov function ensures global asymptotic
stability, regardless of the initial conditions. The study aims to
enhance the performance of robotic manipulators by enabling
precise trajectory tracking in a limited task space.

Reference [14] introduces a family of hybrid interval
type-2 fractional-order fuzzy PID (IT2FO-FPID) controllers.
These controllers incorporate fractional-order integro-
differentiators to enhance their performance. Evaluation is
done using time responsemeasures for unit set-point response
and unit load disturbance. The controllers are tested on
various fractional-order processes, and their robustness is
analyzed. The results demonstrate that the inclusion of
fractional-order integro-differential operators reduces sen-
sitivity to parameter changes, making the controllers more
effective. The design approach considers the fractional-
order integro-differential operators and input/output scaling
factors as variables for developing efficient and adaptable
controllers.

On the other hand, the controllers described in
references [15] and [16] utilize optimization techniques for
the membership functions. Reference [15] employs linear
membership functions, while reference [16] distributes the
membership functions non-uniformly around the origin.
However, it should be noted that these controllers rely on
the type-1 fuzzy PID controller and do not fully exploit
the advantages of fractional-order control or incorporate the
uncertainty footprint.

C. STUDY GAPS
Previous studies have presented various hybrid controllers
based on Fuzzy and FOPID techniques. However, there are
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certain gaps in the existing literature regarding the design of
these controllers. Specifically, when considering the mem-
bership functions of the type-1 fuzzy controller (or UMF of
type-2 fuzzy), most algorithms focus solely on optimizing
the PID or FOPID parameters and employ linear (triangular)
membership functions that are uniformly distributed around
the operating point [5], [6], [7], [8], [9], [10], [13], [14],
[15], [30], [31], [33], [36], [38]. These studies assume that
optimizing the PID or FOPID control parameters is sufficient
to optimize the entire controller, disregarding the impact
of the membership functions. However, the significance of
the membership function, particularly its distribution around
the origin, on the overall controller performance has been
demonstrated in [15] and [16].

In the context of the type-2 fuzzy controller, the lower
membership function plays a crucial role in quantifying the
level of uncertainty inherent in the controller. However, a sig-
nificant number of researchers opt to select these member-
ship functions arbitrarily, without a systematic approach or
justification [5], [7], [9], [13], [14], [31], [33]. On the other
hand, a few researchers have recognized the importance of
optimizing the lower membership function [8], [10]. Never-
theless, their optimization efforts have been limited to scenar-
ios where a linear upper membership function with uniform
distribution is employed. The exploration and optimization of
the lower membership function in conjunction with various
upper membership functions remain unexplored areas within
the existing literature.

Another notable gap identified in the existing literature
pertains to the treatment of fractional-order parameters within
FOPID (Fractional-order Proportional Integral Derivative)
controllers. A majority of the algorithms proposed in the
literature resort to approximating the fractional parameters
by mapping them to an integer-transfer function that closely
resembles the desired response [5], [6], [7], [8], [9], [10],
[13], [14], [30], [31], [33], [36], [37], [38]. This approach
overlooks the inherent characteristics and advantages offered
by fractional-order dynamics, thereby limiting the true poten-
tial and efficacy of FOPID controllers. The need for novel
methodologies that effectively handle and incorporate the
fractional-order parameters in the design and optimization of
FOPID controllers is evident in the current state of research.

The proposed algorithm presented in this study aims to
address the three identified gaps in the existing literature.
Firstly, it focuses on the optimization of the nonlinearity
of the membership functions, considering their significance
in controller performance. Secondly, the algorithm seeks to
optimize the lower membership function to enhance the con-
troller’s performance. Lastly, the proposed algorithm aims to
overcome the gap concerning the handling of fractional-order
parameters in FOPID controllers. Instead of approximat-
ing the fractional parameters to an integer-transfer function,
this algorithm embraces the true nature of fractional-order
dynamics, allowing for more accurate and effective control
using Fourier series method. To provide a comprehensive
overview of the progress made in addressing these gaps,

Table 1 summarizes the existing research in terms of these
three aspects, highlighting the limitations and areas that
require further exploration.

D. CONTRIBUTION AND PAPER STRUCTURE
This paper presents a novel design approach for optimizing
a nonlinear type-2 fuzzy fractional-order controller, elimi-
nating the need for fractional-order approximation by uti-
lizing the Fourier series method. Additionally, the paper
introduces three distinct structures of hybrid type-2 fuzzy
and fractional-order PID controllers. Furthermore, the Teach-
Learning-Based Optimization (TLBO) algorithm is modified
to effectively handle the type-2 fuzzy parameters, the foot-
print of uncertainty, and the membership nonlinearity.

The results of the various controller structures are com-
pared using a consistent design process. Furthermore, the
paper highlights the impact of the nonlinearity in mem-
bership functions, the footprint of uncertainty, and the
fractional-order on the step response of the plant.

Finally, this algorithm is compared with recently published
algorithms for various types of controllers, including high-
order processes, time-delay processes, and fractional-order
processes. The comparison aims to evaluate the performance
and effectiveness of the proposed algorithm in these different
scenarios.

This paper is structured into six sections. Section I serves
as the introduction, providing an overview of the research
topic and its significance. Section II delves into the theo-
retical background, presenting the fundamental concepts of
fractional-order calculus theory and the type-2 fuzzy con-
troller. Additionally, in section II, the overall transfer function
of the various controller structures is discussed. In Section III,
the paper outlines a proposed four-step design procedure for
the controller. The steps are described in detail, providing
a comprehensive understanding of the design process. Sec-
tion IV presents the simulation results obtained from applying
the different controller structures to two benchmark plants.
The performance and effectiveness of each structure are ana-
lyzed and compared. Algorithm validation is presented in
Section V, where the step performance of the proposed algo-
rithm is comparedwith previous research. Sensitivity analysis
and computational time response are also discussed, evaluat-
ing the robustness and efficiency of the algorithm. Finally,
in Section VI, the paper concludes by summarizing the key
findings and insights gained from the research. Concluding
remarks are provided, highlighting the contributions of the
study and potential areas for future research.

II. CONTROLLER MATHEMATICAL MODEL
In this section, we present the linear and nonlinear fuzzy
controllers, which are based on the fuzzy type-two system.
We also discuss the fundamentals of fractional calculus and
provide the transfer function for the different control struc-
tures. The Sugeno fuzzy controller is chosen for this project
due to its simplicity in the defuzzification process of the fuzzy
type-two system.
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TABLE 1. Different studies in hybrid fractional-order PID-Fuzzy controllers.

A. SUGENO FUZZY TYPE-2 CONTROLLER
The Sugeno type-2 fuzzy controller can be represented by a
linear transfer function if certain conditions are met [15]:

• The triangular membership functions for all inputs have
a uniform distribution.

• A complete set of if-then rules follows a linear transition
between membership functions.

In this study, all membership functions will be distributed
from−1 to 1. The FPID parameters will be sufficient to deter-
mine the optimal operation point for the controller. Therefore,
there is no need for test data or precise knowledge about the
plant. Figure 1 illustrates the membership functions of two
inputs and one output for the linear Sugeno fuzzy set. The
space between the centers of the inputs’ membership func-
tions is uniform, and the step size of the output membership
functions is constant. The complete set of if-then rules is
presented in Table 2.

Utilizing the aforementioned linear system, the functional
correlation between the system’s inputs (E(t), E’(t)) and the
output (y(t)) can be explicitly expressed as follows [15]:

y (t) =
1
2
E (t) +

1
2
E ′ (t) (1)

The nonlinearity inherent in the membership function can be
denoted by a factor that exhibits nonlinearity, as indicated by
the findings outlined in reference [16].

ζj =
εi − εi−1

εi−1 − εi−2
(2)

This nonlinearity factor, denoted as ζj, is associated with the
jth input (or output) and is linked to the center of the ith

FIGURE 1. Linear membership functions of two-input one-output
Sugeno-type fuzzy system.

membership function, represented by εi. Figure 2 illustrates
the nonlinear membership functions, wherein it is discernible
that the nonlinear factor, ζ , characterizes the ratio of center
distances among the membership functions prior to and sub-
sequent to the point in consideration. It is notable that the
value of ζ can be less than one, indicating that the member-
ship functions in close proximity to zero shall be broader.
Conversely, if ζ surpasses unity, the MF closest to zero will
display a more narrow shape. Eachmembership function may
demonstrate an asymmetrical shape, which can substantially
affect the system response, as dictated by the nonlinearity
factor’s definition.
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TABLE 2. Fuzzy set rules of five membership functions.

FIGURE 2. Nonlinear membership function; effect of nonlinearity factor
on input and output membership functions.

To address uncertainty and imprecision more effectively,
the utilization of fuzzy sets, specifically type-2 fuzzy sets,
was implemented. The membership degree of the fuzzy sets
was assigned to a type-2membership function denoted as0 <

µÃ(x,u) < 1 (with x ∈ X and u ∈ Jx ⊆ [0;1]), were
defined in two distinct definitions [3].

Ã =
{(
x, µÃ (x)

)
| x∈X

}
=
{
x, u, µÃ(x, u) | ∀x ∈ X , ∀u∈Jx ⊆ [0, 1]

}
(3)

Or

Ã =

{∫
x∈X

[∫
u∈Jux⊆[0,1]

f u (u) /u

]
/x

}
(4)

where ∫: union over x and u. xi and µi represents the centroid
of the consequent and the firing level of the ith rule in type-2
fuzzy set.

This definition may be depicted by two membership func-
tions, namely the Upper Membership Function (UMF) and
the Lower Membership Function (LMF), as delineated in
reference [17]. The FOU (footprint of uncertainty) denotes
the interval separating thesemembership functions and serves

FIGURE 3. Fuzzy-II input membership function; definition of footprint of
uncertainty (FOU), upper membership function (UMF) and lower
membership function (LMF).

as a crucial factor in characterizing the new membership
function definition, as depicted in Figure 3.

The Footprint of Uncertainty (FOU) is a key feature of
type-2 fuzzy sets that serves to capture the inherent uncer-
tainty within a system. This interval quantifies the degree
of uncertainty that arises from the imprecision in defining
the membership function, and reflects the range of possible
values for the membership degree of an element in the fuzzy
set.

The incorporation of the FOU in fuzzy control systems
provides an opportunity to enhance accuracy by addressing
uncertainty more comprehensively. In conventional fuzzy
control systems utilizing type-1 fuzzy sets, the membership
degree of an element is represented by a single value, which
may not fully capture the true uncertainty of the system.
By employing type-2 fuzzy sets with a defined FOU, the
system can incorporate a more complete understanding of the
range of possible values, leading to more accurate and robust
control.

The membership function of the output in a type-2 fuzzy
Sugeno system is defined as a weighted linear combination
of the crisp output values generated by the individual rules
of the system. For a given input combination, each rule is
evaluated, resulting in a crisp output value. These crisp output
values are then weighted according to the corresponding
type-2 membership function associated with each rule. The
weighted output values are aggregated using a weighted aver-
age approach, yielding the final system output.

The type-2 membership functions associated with each
rule capture the uncertainty inherent in the crisp output value
obtained from that rule. They enable the incorporation of
imprecision and uncertainty in the system’s output, thereby
providing a more comprehensive representation of the overall
system behavior.
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In a Sugeno type-2 fuzzy system, the defuzzification pro-
cess is used to convert the fuzzy output into a crisp output
that can be used to control the system. The center of gravity
(COG) defuzzification method is commonly employed to
achieve this objective. In this process, the fuzzy output of
the system is initially converted into a type-1 fuzzy set by
computing the weighted average of the type-2 membership
functions associated with each rule. This calculation is per-
formed according to Equation 5 [19]. As a result, a set of
type-1 fuzzy output values is obtained, where each value
corresponds to a specific rule.

y =
cL + cR

2

CL =

∑L
i=1 xiµi +

∑N
i=L+1 αx iµi∑L

i=1 µi +
∑N

i=L+1 αµi

CR =

∑R
i=1 αxiµi +

∑N
i=R+1 xiµi∑R

i=1 αµi +
∑N

i=R+1 µi
(5)

where xi andµi represents the centroid of the consequent and
the firing level of the ith rule in type-2 fuzzy set. In the con-
text of the Sugeno type-2 fuzzy system, the defuzzification
process relies on the estimation of switch points denoted as
L and R. These switch points are determined using various
type-reductionmethods [18], [19], [20], such as the Enhanced
Karnik Mendel (EKM) method employed in this study [19].

The ratio α, defined as P2/P1, represents the proportion
of the lower membership function to the upper member-
ship function. The center of gravity defuzzification method,
applied to Sugeno type fuzzy type-2 systems, has been
demonstrated to effectively address uncertainty and impre-
cision in control systems.

By utilizing type-2 fuzzy sets in conjunction with the
center of gravity defuzzification process, the control system
can incorporate a more comprehensive understanding of the
system’s uncertainty, resulting in improved robustness and
accuracy of control.

Towards the conclusion of this section, it is essential to
note that the optimization of ζ s (for nonlinearity) and αs (for
FOU) necessitates two distinct types of parameters. These
parameters are incorporated and designed in the third step of
the design procedure, which is expounded upon in Section III.
Where the first two steps entail the assumption of α and ζ as
linear type-1 fuzzy.

B. FRACTIONAL-ORDER PID CONTROLLER
A fractional-order PID (Proportional-Integral-Derivative)
controller, denoted asPIλDµ, represents an advanced version
of the traditional PID controller that has gained significant
attention in recent years. In contrast to the conventional PID
controller, which solely employs integer-order differentiation
and integration, the fractional-order PID controller incorpo-
rates fractional calculus in its design, offering enhanced flex-
ibility and control across various applications [4]. A notable
characteristic of the fractional-order PID controller is its
capability to accurately model the dynamics of a system,

FIGURE 4. The relation between fractional-order PID (FPID) and PID
controllers; different values of λ and µ.

including those exhibiting non-integer order behaviors. The
fractional-order parameter of the controller is determined
by the system’s time constant, enabling additional control
capabilities that enhance the system’s efficiency and effec-
tiveness. Furthermore, the flexibility of the fractional-order
PID controller allows for real-time adjustment of its param-
eters to accommodate the changing dynamics of the system.
This adaptability makes it particularly well suited for systems
operating under varying loads or environmental conditions.
Therefore, the fractional-order PID controller has emerged as
a powerful tool in the field of control systems engineering,
owing to its advanced modeling capabilities, increased con-
trol flexibility, and adaptability to changing dynamics [4].

This controller has been extensively investigated in both
the time and frequency domains [21], [22]. The transfer
function of the controller can be represented in the fre-
quency domain by equation 6, while in the time domain, it is
expressed by equation 7.

G (s) = Kp + Kis−λ
+ Kd sµ (6)

u (t) = Kpe (t) + KiD−λ e (t) + KdDµe (t) (7)

where D is a partial differ-integral operator, λ and µ are
fractional-orders. Based on these equations, the FPID con-
troller is a generalized form of the PID controller, where
the values of λ and µ determine its characteristics. Figure 4
illustrates the relationship between the P, PI, PID, and FPID
controllers. The integer controllers are associated with the
square corner, representing P, PI, PD, and PID controllers,
while the fractional controllers can be positioned at any
point inside or outside the square, highlighting their enhanced
flexibility.

The partial differ-integral operator (αDrt ) in Equation 7
is a mathematical operator that combines both differentia-
tion and integration within a single operation. It serves as
a generalization of traditional differentiation and integration
and enables the utilization of non-integer orders of these
operations. This operator finds application in diverse fields
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of science and engineering, including signal processing and
fractional calculus [23]. The operator can be applied to a
function f(t) to produce a new function that represents the
partial derivative of order r and partial integral of order alpha
of f(t).

αDrt =


d r/dtr r > 0
1 r = 0∫ t

α

(dτ)r r < 0

(8)

This operator has many properties, including linearity,
commutativity, and associativity. Furthermore, it can be
inverted, facilitating the computation of anti-derivatives and
partial derivatives [23]. The fractional calculus operator can
be defined using two common approaches: the Grunwald-
Letnikov (GL) method and the Riemann-Liouville (RL)
method [24], [25].

The Grunwald-Letnikov operator is a discretized approxi-
mation of the fractional derivative. It is defined as the limit of
a finite difference approximation as the step size approaches
zero. One advantage of this operator is its computational
simplicity, but its accuracy is constrained by the selection of
the step size. [24]

αDrt f (t) = lim
x→0

x−r
∑[ t−a

x

]
k=0

(−1)k
(
r
k

)
f (t − kx) (9)

The Riemann-Liouville operator, on the other hand,
provides a continuous definition of the fractional deriva-
tive. It extends the concept of integer-order derivative
to non-integer orders through the utilization of fractional
integration. Unlike the Grunwald-Letnikov operator, the
Riemann-Liouville operator offers improved accuracy. How-
ever, it is computationally more challenging to compute. The
RL definition relies on the gamma function, as expressed
below:

αDrt f (t) =
1

0 (n− r)
dn

dtn

∫ t

α

f (τ )

(t − τ)r−n+1 dτ (10)

for (n − 1 < r < n) and 0(:) is the gamma function.
In fractional calculus, both the Grunwald-Letnikov and

Riemann-Liouville operators are employed to extend differ-
entiation and integration to non-integer orders.

C. DIFFERENT CONTROLLER STRUCTURES
This project encompasses three distinct structures: the first
structure is the Fuzzy PD-Fuzzy PI controller with fractional-
order (FFPD-FPI), as depicted in Figure 5(a); the second
structure is the Fractional Fuzzy PID controller (FFPID),
illustrated in Figure 5(b); and the third structure is the Frac-
tional Fuzzy PI-Fractional Fuzzy PD controller (FFPI-FFPD)
with parallel fuzzy controllers, shown in Figure 5(c).
This research article focuses on the design of hybrid fuzzy-

fractional Proportional-Integral-Derivative (PID) structures,
which integrate both fuzzy logic and fractional calculus con-
cepts. The primary objective of these structures is to enhance
control and stability in diverse systems. The article conducts

FIGURE 5. Different controller structures. (a) Fractional Fuzzy
PD- Fractional PI (FFPD-FPI) controller. (b) Fractional Fuzzy PID (FFPID)
controller. (c) Fractional Fuzzy PD-Fractional Fuzzy PI (FFPD-FFPI)
controller.

a comparative analysis to evaluate the performance of three
such structures. By comparing the results obtained from dif-
ferent structures, the article aims to identify the structure that
exhibits the highest level of stability and control. Addition-
ally, the article offers insights into the effectiveness of these
hybrid structures, considering the impacts of the Footprint of
Uncertainty (FOU), nonlinearity fuzzy factors, and fractional
components.

III. PROPOSED DESIGN PROCESS
The design process proposed for hybrid fuzzy-fractional-PID
structures comprises four steps outlined in Figure 6. Firstly,
the linear type-1 fuzzy controller with PID components is
optimized using the ‘‘fminsearch’’ function in MATLAB.
Next, the impact of fractional-orders is incorporated into
the design. Thirdly, the parameters of the nonlinear fuzzy
type-1 controller are optimized using the modified Teaching-
Learning-BasedOptimization (TLBO) algorithm. Finally, the
uncertainty footprint of the fuzzy type-2 membership func-
tions is optimized using the same algorithm. The initial points
for each step are determined based on the results obtained
from the preceding step.

A. STEP 1: LINEAR TYPE-1 FUZZY PID
At this stage of the study, a linear type-1 fuzzy controller
is employed, characterized by input/output membership
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FIGURE 6. Four-step design process.

functions depicted in Figure 1. The influence of fractional-
order is disregarded in this phase, with λ andµ values set to 1.
Fuzzy rules are designed to maintain linearity, as described in
Equation 1, and are presented in Table 2. This step serves as a
foundation for the subsequent optimization and design of the
hybrid fuzzy-fractional-PID structures.

The transfer functions for each of the three structures
(FFPD-FPI, FFPID, FFPD-FFPI) are expressed as follows,
with ζ , α, λ , and µ all set to 1.

C1 (s) = AC + AD/s + BCs + BD (11)

C2 (s) = AC + BCs + DC/s (12)

C3 (s) = (A1 + A2)C + BCs + DC/s (13)

An integral performance criterion is defined in a general
form as,

Jn =

∫
∞

0

[
tne (t)

]2 dt (14)

where n = 0, n = 1, and n = 2 are utilized to represent
the integral squared error (ISE), integral time squared error
(ITSE), and integral squared time squared error (IT2SE),
respectively. Additionally, the integral absolute error (IAE) is
utilized as a cost function. A newmulti-performance criterion
is also introduced as follows:

MPC = 0.4 × ISE + 0.2 × ITSE + 0.4 × IAE (15)

The termMPC represents the multi-performance criterion,
which is used as one of the objective functions. Therefore, the
optimization of control parameters (A, B, C, D) is carried out
based on five objective functions (ISE, ITSE, IT2SE, IAE,
and MPC). The ISE criterion is evaluated using the Laplace
transform of the error signal and Parseval’s theorem [26],
as given by Equation (16). The solution to this equation can

be obtained analytically, as explained in [27].

J0 =

∫
∞

0
[e (t)]2 dt

ISE =
1
2jπ

∫ j∞

−j∞
E (s) ∗ E (−s) ds (16)

The aim of minimizing the ISE (Integral Squared Error) in
Equation 16 is to set the initial values of control parameters
A, B, C, and D for the remaining performance criteria. On the
other hand, the ‘‘PIDRUNNER’’ tool in MATLAB can be
employed for the sake of simplicity to initialize the searching
algorithm ‘‘FMINSEARCH.’’

B. STEP 2: LINEAR TYPE-1 FUZZY FPID
In reference [28], it is shown that the step response of the
fractional-order transfer function can be represented using
the Fourier series. The Fourier series is a mathematical
technique used to represent a periodic function as a sum
of sine and cosine functions. By employing this method,
the step response of the fractional-order transfer function
can be decomposed into an infinite sum of sine and cosine
terms, enabling its accurate representation. This technique
finds widespread application in control systems analysis and
design.

y (t) =
4
π

∑∞

k=1(odd)

1
k
Real(TF(jkws))sin(kwst) (17)

In the given equation, TF represents the transfer function of
the closed-loop control system, and ws denotes the frequency
of the square wave. The values for the step response, square
wave frequency (lower frequency), and higher frequency
were obtained from [28] to be applied in this study. For a
standard second-order underdamped plant, as illustrated in
equation 18, the real part of the closed-loop transfer function
of the first structure (FFPD-FPI) can be expressed using
equation 19.

G (s) =
K

s2 + 2hwns+ w2
n

(18)

Here, K represents the open-loop gain, h denotes the
damping ratio, and wn represents the natural frequency of
oscillation in (19), as shown at the bottom of the next page.

The use of the equation (j)α = cos((π/2)α) + jsin((π/2)
α) can precisely handle the fractional-order without any
approximations. Here, M and N are given by:

M = KAC + KBCwµ cos
(π

2
µ
)

+ KBDwµ−λ cos
(π

2
(µ − λ )

)
+ KADw−λ cos

(
−

π

2
λ

)
N = KBCwµ sin

(π

2
µ
)

+ KBDwµ−λ sin
(π

2
(µ − λ )

)
+ KADw−λ sin

(
−

π

2
λ

)
, and w = kws

Analogously, the real components of the closed-loop trans-
fer functions for the second and third controller structures
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can be determined. The values for A, B, C, D, λ , and µ

are optimized based on equations 14-15, where e(t) = 1-y(t).
In this study, the optimization technique employed is ‘‘Fmin-
search’’, with the initial point set as the output of the first step,
and λ and µ are both assigned a value of one. The optimized
values obtained from this step are utilized as the starting
point for the Modified Teaching-Learning-Based Optimiza-
tion (MTLBO) algorithm in the subsequent steps.

C. STEP 3: NONLINEAR TYPE-1 FUZZY PID
In this step, the focus is on optimizing the nonlinearity present
in the input-output membership functions of the fuzzy con-
troller. This nonlinearity is illustrated in Figure 2, where the
nonlinearity factors are defined by equation (2). To opti-
mize the nonlinearity factors for all input/output membership
functions, a modified Teaching Learning Based Optimization
(MTLBO) algorithm is proposed. This algorithm aims to
fine-tune the nonlinearity factors for improved performance
of the fuzzy controller.

Teaching-Learning Based Optimization (TLBO) is a
population-based optimization algorithm inspired by the
learning process of students and teachers in a classroom.
In the TLBO algorithm, each individual in the population
represents a student, and the best individual is considered as
the teacher. The algorithm consists of two main phases: the
teaching phase and the learning phase.

In the teaching phase, the teacher shares its knowledgewith
the students by moving each student closer to itself. This is
done by updating the student’s position using the following
equation:

xi(t + 1) = xi(t) + r ∗ (teacher(t) − xi(t)) (20)

where xi(t) is the position of the ith student at time t, teacher
(t) is the position of the teacher at time t, and r is a random
number between 0 and 1.

In the learning phase, the students learn from each other by
exchanging information. This is done by randomly selecting
two students and updating their positions as follows:

xi(t + 1) = xi(t) + r ∗ (xj(t) − xk (t)) (21)

where xj(t) and xk (t) are the positions of the randomly
selected students, and r is a random number between 0 and 1.

In this investigation, a new tier of teaching and learning
has been introduced to enhance the rate at which the algo-
rithm converges. This tier is referred to as the assistance
level and functions within subgroup levels. At the assistance
level, the population is sorted according to the cost value
and partitioned into subgroups. The most favorable solution
for each subgroup serves as a teaching assistant based on
the same previous equations, resulting in an acceleration of

convergence. The number of subgroups is randomly selected
during each iteration to diminish the risk of being confined
to local solutions. The fundamental purpose of this revised
phase is to increase the convergence speed and elevate the
probability of obtaining a global solution, thereby allowing
the best solution to be acquired with fewer iterations.

D. STEP 4: NONLINEAR TYPE-2 FUZZY-FPID
In this step, the goal is to optimize the footprint of uncertainty
for the type-2 fuzzy controller. The uncertainty footprint per-
tains to the input membership functions, which are shown in
Figure 3. In a Sugeno-type fuzzy controller, the output mem-
bership functions for the type-2 fuzzy controller are the same
as the type-1 fuzzy membership functions. The effect of the
lower membership function is defined by equation (5). In this
step, the Modified Teaching Learning Based Optimization
(MTLBO) algorithm is utilized to optimize the uncertainty
factors (α1, α2, . . .).

IV. TEST BENCH PROCESS APPLICATIONS
In this section, two benchmark process plants are chosen to
validate the efficacy of the proposed controller design. The
first plant is modeled as an integer-order transfer function
with three poles, while the second plant is represented by a
fractional-order transfer function. These plants are selected
for their complexity and practical relevance in the field of
process control, providing a robust validation of the proposed
controller design approach.

A. EXAMPLE 1: INTEGER ORDER PLANT
The following test bench process plant is an example of a
three-pole underdamped integer-order plant [29].

G (s) =
9

(s+ 1)(s2 + 2s+ 9)
(22)

The proposed four-step design procedure is applied to
design an optimal controller for this plant in the following
subsections. The detailed results of each stage are presented.
MATLAB code for this example is attached in Appendix I.

1) STEP ONE: LF1-PID CONTROLLER
In this step, the integral squared error criterion for the first
structure (FFPD-FPI) used to initialize the different integral
criteria is written in Equation 23. Similarly, the ISE0 for the
second and third structures is calculated.

ISE_0 = (27ABCD(AC + BD+ 1)+AB(61 − 6AC − 6BD)

− 27(AC + BD)+84BC + 72)/(3(AC + BD) ∧ 2

+ 17(AC + BD) + 3AD

+ 9BC(AC + BD+ 1) + 14) (23)

Real (TF) =
M2

−Mw2
+Mw2

n + N 2
+ 2hwnN(

M − w2
)2

+ w4
n + 2w2

n
(
M − w2

)
+ N 2 + 4Nhwwn + 4h2w2w2

n

(19)
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TABLE 3. Fitness values, LF1-PID.

The initial values of A, B, C, and D are calculated based
on PIDTUNER results in MATLAB, as follows:

Structure 1: A = 1,B = Ki,C = Kp
√
K 2
p − 4KiKd ,

D =
Kd
C .

Structure 2: A = Kp,B = Kd ,C = 1,D = Ki.
Structure 3: A1 = A2 =

Kp
2 ,B = Kd ,C = 1,D = Ki.

The optimal values of A, B, C, and D from equation 23 are
used to initialize the other performance criteria. Equation 24,
as shown at the bottom of the next page, shows the per-
formance criteria of the first structure. Similarly, different
performance criteria are found for the second and third struc-
tures:

Table 3 shows the fitness values of the various objective
functions for the LF1-PID design’s first step. The optimal
values of [A, B, C, D] for the first structure are [0.71, 0.655,
1.99, 2.15], [1.26, 3.31, 4.25, 1.63], [1.03, 0.42, 0.58, 1.41],
[1.06, 0.45, 0.48, 1.11], and [0.71, 0.63, 2.02, 2.27] for IAE,
ISE, ITSE, IT2SE, and MPC, respectively. The number of
iterations required for IAE, ISE, ITSE, IT2SE, and MPC are
180, 123, 97, 106, and 151, respectively.

It should be noted that the second and third structures have
the same transfer function in the first two steps, LF1-PID and
LF1-FPID. From Table 3, the fitness values of the second and
third structures are lower than that of the first structure for all
performance criteria.

Table 4 presents the step response of each structure, includ-
ing parameters such as rising time, settling time, percentage
overshoot, peak time, and steady-state error of LF1-PID con-
trollers. From the table, we can make the following observa-
tions regarding the performance of the different controllers:

• The ITSE controllers exhibit fast response times based
on their low rising time and settling time values. How-
ever, they may not be suitable for applications where
overshoot is critical due to their relatively high values
in the percent overshoot column.

• The IT2SE and IT2SE controllers have relatively low
values in both the rising time (Tr) and settling time (Ts)
columns, indicating that they are fast and responsive.
They also have relatively low values in the percent over-
shoot (OS) column, suggesting that they may be a good
choice when both speed and overshoot are important.

• The IAE andMPC controllers have relatively low values
in the rising time (Tr) and settling time (Ts) columns,
indicating that they are generally fast and responsive.
However, they have relatively high values in the percent
overshoot (OS) column, which means that they may not

TABLE 4. Step response information, LF1-PID.

be the best choice for applications where overshoot is a
critical issue.

• The ISE controllers have relatively high values in the
percent overshoot (OS) column. However, they have
relatively low values in the rise time (Tr) and settling
time (Ts) columns, indicating that they are generally fast
and responsive.

• In terms of steady-state error (ess), the IAE and MPC
of the second and third structures have the lowest val-
ues, indicating that they are better at maintaining a
steady-state response that tracks the desired value.

The step response of the first structure using the stated cri-
teria is displayed in Figure 7. Based on the graph, it can
be observed that there is minimal difference between the
responses of the IAE and MPC controllers.

2) STEP TWO, LF1-FPID CONTROLLER
In this particular step, the effect of fractional-order parame-
ters is introduced into the system under consideration. This
means that the controllers used to regulate the system have
fractional-order parameters that affect their behavior and per-
formance. The performance criteria for the LF1-PID con-
troller in the first structure are presented in equation 25, as
shown at the bottom of page 12. Similarly, the performance
criteria for the IAE and MPC controllers can also be com-
puted for the first, second, and third structures.

The optimal values of [A, B, C, D, λ , µ] for the first
structure are [5.1, 0.97, 18.40, 16.43, 0.99,1.50], [1.9, 0.41,
9.16, 2.37, 1.23, 1.50 ], [21.31, 4.25, 20.18, 102.15, 0.959,
1.491], [0.64, 0.39, 0.28, 1.50, 1.011, 0.838], and [12.35,
1.46, 36.35, 16.92, 1.50, 1.346], for IAE, ISE, ITSE, IT2SE,
and MPC, respectively. The number of iterations for IAE,
ISE, ITSE, IT2SE, and MPC are 759, 713, 768, 291, and 653.
The fitness value and step information of the various objective
functions for the second step design, LF1-FPID, are presented
in Tables 5 and 6, respectively.
Upon comparing Table 3 with Table 5, it can be observed

that the fractional components have improved the perfor-
mance of all structures by minimizing their fitness val-
ues. Notably, the three structures exhibit enhancements with
different criteria. Specifically, for ISE, all structures show
lower fitness values in step 2 compared to step 1. Similarly,
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FIGURE 7. Step response of the first structure first step, LF1-PID
controller.

step 2 has significantly lower ITSE values for all structures
compared to step 1. For IT2SE, step 2 has a much lower
fitness value for structure 2 and structure 3, while struc-
ture 1 shows similar fitness values for both steps. Moreover,
step 2 has substantially lower IAE and MPC values for all
structures compared to step 1.

In regards to the settling time (Ts), all structures have
demonstrated a decrease in Ts from step 1 to step 2, indi-
cating that the systems in step 2 respond faster. For instance,
in Structure 1, Ts decreased from 7.74 seconds to 1.71 sec-
onds for ISE and from 4.00 seconds to 0.15 seconds for
ITSE. This trend holds for all other structures. Concerning
overshoot (OS), most structures have shown a decline in
OS from step 1 to step 2, suggesting that the systems in
step 2 exhibit less overshoot. However, some structures have
displayed an increase in OS. For example, in Structure 1, ISE
has an OS of 62.61% in step 1 and 15.31% in step 2, while
ITSE has an OS of 7.13% in step 1 and 46.35% in step 2.
With respect to rise time (Tr), most structures have shown a
decrease in Tr from step 1 to step 2. However, some structures
have exhibited an increase in Tr. For example, in Structure 1,
ISE has a Tr of 0.1044 seconds in step 1 and 0.1447 seconds
in step 2, while ITSE has a Tr of 0.8287 seconds in step 1 and
0.0142 seconds in step 2. As for peak time, most structures
have displayed a decrease in peak time from step 1 to step 2,
suggesting that the systems in step 2 exhibit a faster response.

Figure 8 depicts the step response of the second structure in
the second step of the optimization technique. The response
performance of the MPC is observed to exhibit intermediate
behavior between the ISE, ITSE, and IAE criteria.

The influence of the fractional-order on the step response
of the first and second structures is demonstrated in Figure 9.
The figure illustrates the step response for both structures in
the first and second optimization steps.

Based on the figures and tables, it can be concluded that
in step 2, which present the effects of fractional parameters,

TABLE 5. The second step’s fitness values, second step (LF1-FPID).

TABLE 6. Step response information, second step (LF1-FPID).

all structures demonstrated faster response times with lower
settling times compared to step 1. Furthermore, most struc-
tures exhibited a reduction in overshoot, indicating improved
performance in step 2, although some structures showed an
increase in overshoot. While some structures demonstrated a
decrease in rise time, the majority showed an increase. Most
structures also showed a decrease in peak time, indicating
faster response times in step 2.

3) STEP 3, NLF1-FPID CONTROLLER
In this stage, the impact of nonlinearity in the membership
functions of the fuzzy inputs/outputs is taken into consider-
ation. The values of the parameters of the fractional-order
PID controller (A, B, C, D, λ , and µ) remain constant,
while the nonlinearity factors (ζ1, ζ2, ζ3, and so on) of each
input/output membership function are optimized using the
Modified Teaching-Learning-Based Optimization (MTLBO)
algorithm. The minimum and maximum values of the non-
linearity factors are set at 0.1 and 7, respectively. The initial
population is selected uniformly between 0.1 and 7, with a
sample size of 10, 12, and 20 for the first, second, and third
structures, respectively. An additional sample representing
linear fuzzy is added to the initial population.

The number of optimized parameters is the total number
of fuzzy inputs and outputs. For example, the first structure,
FFPD-FPI, has two inputs and one output. The three factors
(ζ1, ζ2, ζ3) in the first structure represent the nonlinearity of

jn = 0.2 ×

20sec∑
t=0(0.2)

[1 −

10001∑
k=1(odd)

k2w2
s (9AD− 9BC − 27AC) + 99BC − 99AD+ 81AC + 81BD

k
(
(kws)2 + 1

) (
(kws)4 − 14 (kws)2 + 81

) sin (kwst)tn]2 (24)
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FIGURE 8. Step response of the second structure second step, LF1-FPID.

FIGURE 9. Step response of the first and second structures steps one and
two, ITSE criteria.

the first input, the second input, and the output, respectively.
The second structure has four optimized parameters; the first
three parameters represent the nonlinearity factors in the three
inputs, while the last parameter represents the nonlinearity
in the output membership function. For the third structure,
FFPI-FFPD, six optimized parameters are required. The first
three parameters represent the nonlinearity in the first fuzzy
(FFPI) input 1, input 2, and output membership functions.
Similarly, the last three parameters represent the nonlinearity
in the second Fuzzy membership functions.

In the optimization process, the nonlinearity factors (ζ1, ζ2,
and ζ3) of the input/output membership functions were
optimized for the first structure using the MTLBO algo-
rithm. The optimal values of these parameters were found
to be [0.100, 6.313, 0.359], [3.9687,1.1636,0.1001], [0.9179,
1.105, 0.9749], [1.343, 5.1266, 0.1010], and [0.1506, 3.536,

TABLE 7. Fitness values, NLF1-FPID.

TABLE 8. Step response information, NLF1-FPID.

0.1021] for ISE, ITSE, IT2SE, IAE, and MPC, respectively.
These values were determined based on the fitness value of
the objective functions, which is shown in Table 7. The fitness
value indicates the performance of the controller in terms
of settling time, overshoot, and rise time, represents better
performance.

Table 8 shows the step response of each structure for the
third step, NLF1-FPID. The values of settling time, over-
shoot, and rise time were also evaluated and compared to the
values obtained in the previous steps. It was found that the
optimized values of the nonlinearity factors led to an improve-
ment in the performance of the controllers, as evidenced by
the lower settling time, overshoot, and rise time values.

Figure 10 depicts the step response of the second structure
using different criteria. The MPC criteria response combines
the advantages of ISE for lower overshoot and the advantages
of ITSE for lower steady-state error. The impact of the nonlin-
earity of the membership functions on the step response of the
first, second, and third structures is illustrated in Figure 11.
The figure shows the step response for all structures in the
second and third steps, LF1-FPID and NLF1-FPID. From the

jn = 0.2 ×

∑20sec

t=0(0.2)

[(
1 −

∑10001

k=1(odd)

M
(
M − 3k3w3

s + 9
)
+ N (N + 11kws − k3w3

s )

k(
(
M − 3k2w2

s + 9
)2

+
(
N + 11kws − k3w3

s
)2) sin (kwst)

)
tn
]2

M = 9AC + 9BCkµwµ cos
(π

2
µ
)

+ 9ADk−λw−λ cos
(π

2
λ

)
+ 9BDkµ−λwµ−λ cos

(π

2
(µ − λ )

)
N = 9BCkµwµ sin

(π

2
µ
)

+ 9ADk−λw−λ sin
(π

2
λ

)
+ 9BDkµ−λwµ−λ sin

(π

2
(µ − λ )

)
(25)
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FIGURE 10. Step response of the second structure third step, NLF1-FPID
controller.

figure, it is evident that optimizing the nonlinearity factors
enhances the step response of the controller in all three struc-
tures. The fitness function used for this response is ISE, and
similar observations can be made for other criteria.

Upon comparing Step 2 and Step 3, significant advance-
ments in the performance metrics of the majority of con-
trollers can be observed. Here is a comprehensive analysis:

• Rise Time (Tr): The controllers exhibit a decrease in rise
time, which is desirable as it signifies the time taken
by the system to reach its steady-state value. However,
IT2SE in the third structure displays a minor increase in
rise time.

• Settling Time (Ts): The controllers exhibit an improve-
ment in settling time, indicating that the system reaches
its steady-state value faster. However, ISE in the first and
third structures shows an increase in settling time.

• Percent Overshoot (OS): The percent overshoot has
reduced for the majority of the controllers. Neverthe-
less, there is a considerable increase in OS for ITSE in
structure 1.

• Peak Time: The majority of controllers exhibit improve-
ments in peak time, indicating that the system reaches
its maximum value faster. However, ISE in structure 2
shows a slight increase in peak time.

• Steady-state error (ess): All controllers exhibit a
decrease in steady-state error.

Overall, it is apparent that Step 3 has resulted in significant
improvements in the performance metrics of the majority of
controllers, demonstrating an increase in the efficiency and
effectiveness of the control system.

4) STEP OUR, NLF2-FPID CONTROLLER
In this step, the uncertainty range is taken into account with-
out modifying the values of A,B,C,D, ζ1, ζ2 . . . The lower
membership function ratios α1, α2, α3, .., and so forth are
fine-tuned using the same method as in the previous step. The
output membership functions remain unchanged.

FIGURE 11. Step response of all structures second and third steps, ISE
criteria.

For the FFPD-FPI structure, two lower membership ratios,
namely α1 and α2, are determined for the two inputs. The
second structure requires the optimization of three parame-
ters, and the third structure requires the optimization of four
parameters. Tables 9 and 10 present the fitness value and step
response of different objective functions for the NLF2-FPID
structure in the last step.

Upon comparing the fitness values in Step 3 and Step 4,
noticeable differences can be observed in the performance
criteria of the three control strategies. The most significant
improvement is seen in the ISE criteria for Structure 1
and Structure 3. In Step 4, the ISE values decreased from
0.1131 and 0.0329 to 0.0230 and 0.0309, respectively. This
improvement indicates a more effective control mechanism
in reducing the deviation between the target set point and
the actual output. However, the ITSE and IAE criteria show
only a slight improvement for Structure 2, with ITSE values
remaining the same for all strategies in both steps. Simi-
larly, the IT2SE criteria demonstrate notable improvement
for Structure 3 in Step 4, with a decrease from 0.000473 to
0.000123. However, this progress is not evident for Struc-
ture 1 and Structure 2. The MPC criteria show no signifi-
cant improvement between the two steps for all strategies,
indicating limited enhancement in maximum peak control
performance.

Figure 12 depicts the step response of the first structure
using various performance criteria. It is evident from the fig-
ure that the steady-state value can be reached within 0.2 sec-
onds using the MPC criterion. Notably, the IAE criterion
delivers the best step performance, as shown in Figure 12.
Table 10 further confirms that the IAE criterion achieves the
minimum settling time of 0.0814 seconds.

Figure 13 demonstrates the effect of nonlinearity in the
membership functions on the step response of the first, sec-
ond, and third structures (NLF1-FPID and NLF2-FPID). The
figure highlights that optimizing the uncertainty footprint of
the type-2 fuzzy results in a slight reduction in overshoot
across the three structures. Moreover, the second structure
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TABLE 9. Fitness values, NLF2PID.

TABLE 10. Step response information, NLF2-FPID.

FIGURE 12. Step response of the first structure fourth step, NLF2-FPID.

performs better than the first structure but not as well as the
third structure in terms of overshoot.

The advantages of type-2 fuzzy in the optimized nonlinear
fuzzy controller are limited. Further comparison is made
using the linear fuzzy controller. Figure 14 illustrates the
impact of the uncertainty footprint in the linear type-1 fuzzy
fractional-order controller (LF1-FPID) and linear type-2
fuzzy fractional-order controller (LF2-FPID) for the three
structures. Optimizing the footprint of the uncertainty of the

FIGURE 13. Step response of all structures third and fourth steps, IAE
criteria.

FIGURE 14. Step response of all structures, LF1-FPID, LF2-FPIF, for MPC
criteria.

linear fuzzy controllers enhances the step response of all three
structures. It is observed that the influence of the type-2 fuzzy
footprint is more significant in the linear fuzzy controller
compared to the nonlinear fuzzy controller, as depicted in
Figures 13 and 14.

In conclusion, it can be stated that achieving good perfor-
mance is possible using either a nonlinear type-1 fuzzy or a
linear type-2 fuzzy controller. There is no need to optimize the
uncertainty footprint of the optimized nonlinear fuzzy con-
troller or the nonlinearity of the optimized linear type-2 fuzzy
controllers. This observation suggests that the enhancement
provided by the nonlinearity in the type-1 fuzzy controller is
comparable to the improvement achieved by the linear type-2
fuzzy controller.

B. EXAMPLE 2: FRACTIONAL-ORDER SYSTEM
A fractional-order plant refers to a system or process
whose dynamics are described by fractional calculus equa-
tions. The dynamics of fractional-order plants can be mod-
eled using fractional-order differential equations, which
are similar to ordinary differential equations but involve
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FIGURE 15. Step response of the first structure fractional-order plant, IAE.

fractional-order derivatives. These equations provide a more
accurate description of the behavior of many real-world sys-
tems that exhibit non-integer order dynamics. Fractional-
order plants have a wide range of applications, including
chemical and biological processes, electrical circuits, and
mechanical systems. Controlling such plants presents new
challenges and opportunities, as traditional control tech-
niques designed for integer-order systems may not be effec-
tive. Research in fractional calculus and fractional-order
systems is an active area, with new theories and applications
constantly emerging. The following example represents a
fractional-order system [27]:

G (s) =
0.4s1.12 + 0.3

s5.25 + 4s3.77 + 6s2.92 + 4s1.68 + 1.3s1.43 + 0.3
(26)

The four-step design procedure is applied to this plant.
Figures 15 to 17 display the step response using the integral
absolute error (IAE) objective function.

Figure 15 likely depicts a plot showcasing the step response
of the first structure of the fractional-order plant for the initial
three stages of the control system design. The plot indicates
that the last step, denoted as NLF2-FPID, achieves outcomes
that are considerably close to the third step of the control
system design. This implies that optimizing the footprint of
the uncertainty for the nonlinear fuzzy controller of the first
structure of the fractional-order plant may not be necessary.
Moreover, the plot reveals that the step response of the plant
is augmented with each step of the design. For instance,
the overshoot is reduced by the second step, attributed to
advancements in the fractional-order effect. The integral
absolute error (IAE) is also reduced by the third step, credited
to advancements in the nonlinear effect. In summary, the
plot and statement demonstrate how a systematic approach
to control system design can enhance the performance of a
fractional-order plant. Employing diverse control techniques
and assessing system performance using the IAE criterion can
help identify and address performance issues in the system.

FIGURE 16. Step response of the second structure fractional-order plant,
IAE.

FIGURE 17. Step response of the third structure fractional-order plant,
IAE.

In the second and third structures, as demonstrated in
Figures 16-17, the optimization process involves the uncer-
tainty footprint for the linear fuzzy controller followed by
the optimization of the nonlinearity in the type-2 fuzzy. With
each step, the integral absolute error is reduced, but there
is an increase in overshoot. Different objective functions
yield distinct step responses for this plant. These figures
(Figures 15-17) exemplify how the proposed design algo-
rithm can facilitate advancements in control system design
for fractional-order plants.

V. ALGORITHM TESTING AND VALIDATION
A. PERFORMANCE RESULT VALIDATION
This section is dedicated to validating the effectiveness of
the proposed algorithm through its application to different
types of processes. The processes considered for validation
include time delay processes, higher order processes, and
fractional-order systems. The primary objective is to assess
the performance of the algorithm by comparing it with other
recently published algorithms, as presented in Table 11.
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TABLE 11. Systems parameters and performance of the proposed algorithm and some selected from the previous research.

The transfer functions provided below exemplify the diverse
nature of plants in various applications:

a) First order Pulse dead time lag-dominant process [33]:

G1 (s) =
2.4351

12.5688s+ 1
e−1.0787s (27)

b) Higher order Processor [34]:

G2 (s) =
1

(s+ 1)4
(28)

c) Integrating Time-Delay Process [35]:

G3 (s) =
0.55

s(0.6s+1)
e−0.05s (29)
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d) First order pulse dead time delay-dominant Process [32]:

G4 (s) =
1

0.2s+ 1
e−0.4s (30)

e) Modelling of Pneumatic Pressure System [37]:

G5 (s) =
1

1.1s1.5 + 1
e−0.105s (31)

Through the comparison with existing algorithms in
Table 11, the performance of the proposed algorithm will be
assessed in terms of its ability to handle the unique charac-
teristics and challenges posed by these different types of pro-
cesses. This validation process aims to provide insights into
the algorithm’s effectiveness and its potential for practical
applications within various domains.

The first four processes have been previously tested in [32],
and the performance results (specifically, overshoot value
and settling time) available in the literature are included in
the table for comparison with the proposed algorithm. Addi-
tionally, the results of the fractional-order process (G5) are
presented in [37].

The system parameters of the proposed algorithm are pre-
sented in two vectors: FOPID and ζ . The FOPID vector
represents the values of A, B, C, D, λ , and µ in the speci-
fied sequence, while the ζ vector represents the nonlinearity
factors in the two input membership functions and the output
membership function. For the purpose of this comparison,
only the first structure (FFPD-FPI) is considered, as it is the
most commonly used in the literature. Additionally, the fourth
step of the proposed algorithm, which involves optimizing
the lower membership function, is not taken into account.
This is due to its minimal impact on the designed nonlinear
controller, as previously discussed.

The table serves to highlight the robustness of the pro-
posed algorithm. Notably, the ITSE, IT2SE, andMPC criteria
demonstrate superior performance compared to the best algo-
rithm presented in the table for the first process (G1), con-
sidering both overshoot and settling time. Similarly, for the
second process (G2), the IT2SE criterion outperforms other
algorithms in terms of overshoot and settling time. In the case
of the integrating time delay process (G3), all criteria exhibit
improved performance compared to the best algorithm pre-
sented. For the first order pulse dead time delay-dominant
process (G4), the IT2SE criterion proves to be the most
effective controller according to the table’s results.

Furthermore, the proposed algorithm is shown to be
well-suited for fractional-order processes (G5). The table
demonstrates that the rise time achieved by the proposed
algorithm, irrespective of the performance criterion used,
is superior to the best rise time reported in [37]. To facilitate
a fair comparison of overshoot values, the fitness function
in the proposed algorithm incorporates the maximum value
of the step response. The corresponding results are denoted
as Proposed∗. These results exhibit slightly longer rise times
but with reduced overshoot, surpassing the performance of
the approach presented in [37] in terms of both rise time and
overshoot.

TABLE 12. Computational time.

B. COMPUTATIONAL PROCESS
The simulation and implementation of this study were con-
ducted using MATLAB 2020b. The MATLAB codes and
Simulink models employed in the simulations are provided
in the appendix for reference. To measure the computational
time required for the execution of the proposed algorithm, the
(tic, toc) functions in MATLAB were utilized. The resulting
computational times, obtained from an average of 10 trials for
the first structure, are presented in the following table.

The optimization process for the first two steps in Table 12
was terminated when the optimal fitness value was achieved.
However, the third and fourth steps were stopped due to
reaching the maximum number of iterations set for the Modi-
fied Teaching-Learning-Based Optimization (MTLBO) algo-
rithm, which was set to 25 in this study. The computational
limitations experienced in the third and fourth steps can be
attributed to the implementation of nonlinear fuzzy logic and
type-2 fuzzy logic, which were simulated using MATLAB
Simulink. These simulation constraints could be overcome
by representing the nonlinear fuzzy controller and type-2
fuzzy controler in the form of transfer functions, similar to
the approach used for type-1 linear fuzzy logic [15]. Fur-
thermore, the computational time required for the second and
third structures was longer due to the larger population size
used in these steps.

On a contrasting note, the Modified Teaching-Learning-
Based Optimization (MTLBO) algorithm introduced a chal-
lenge regarding computational time. However, the outcomes
achieved after 25 iterations using MTLBO were found to be
comparable to those obtained after approximately 50 itera-
tions using the Traditional Teaching-Learning-Based Opti-
mization (TLBO) algorithm. Interestingly, the time taken to
complete 25 iterations with MTLBOwas approximately 75%
of the time required for 50 iterations with TLBO. In simpler
terms, the same level of optimization results could be attained
with a reduction of 25% in computational time.

The selection of the population size for the Modified
Teaching-Learning-BasedOptimization (MTLBO) algorithm
was determined based on careful consideration. Specifically,
population size is a crucial factor that depends on the number
of variables and the range of parameters involved in the
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optimization process. In this study, the population size for
the three structures was chosen as 10, 12, and 15, respec-
tively, taking into account the specific characteristics of each
structure. It is important to note that the range of nonlinearity
factors in this study varied from 0.1 to 7, which represents a
wide range of values. It was observed that larger population
sizes resulted in longer computational time for each iteration,
while smaller population sizes required a greater number of
iterations to converge to a solution. Therefore, the selection of
an appropriate population size is a trade-off between compu-
tational efficiency and convergence speed in the optimization
process.

C. STABILITY ANALYSIS
Stability is a fundamental requirement for control systems,
ensuring that internal signals remain bounded and preventing
loss of control or equipment damage. In linear feedback
systems, stability is typically assessed by analyzing the poles
of the closed-loop transfer function. However, it is also impor-
tant to consider the robustness of stability, which refers to the
system’s ability to tolerate changes in the loop gain without
losing stability.

The root locus plot is a useful tool for estimating the range
of loop gain values that maintain stability. Robust stability
goes beyond loop gain changes and takes into account imper-
fect plant modeling, where both gain and phase may not
be known precisely. Phase variation near the gain crossover
frequency, where the open-loop gain is 0dB, is particularly
critical. The phase margin quantifies the amount of phase
variation needed at the gain crossover frequency to destabilize
the system, while the gain margin measures the relative gain
variation required for instability. These stability margins pro-
vide an estimate of the safety margin for closed-loop stability,
with smaller margins indicating greater fragility.

To satisfy the criteria for a feedback control system, sev-
eral conditions must be met. First, closed-loop stability with
an appropriate margin should be ensured. Second, the sys-
tem should exhibit robustness against process variations and
model uncertainty. Additionally, it should be insensitive to
time delays andmeasurement noise. Lastly, the system should
demonstrate good step performance, characterized by fast
set-point tracing and minimal overshoot.

In the proposed algorithm, these criteria are incorporated
into the objective function using three constraints derived
from frequency domain analysis: gain margin (Gm > 2),
phase margin (Pm > 30), and phase crossover frequency
(5 < Wcg < 20). The gain margin represents the amount
of gain variation required to achieve unity loop gain at the
frequency where the phase angle is−180◦. The phase margin
is the difference between the response phase and−180◦ when
the loop gain is 1.0. The gain crossover frequency is the
frequency at which the magnitude is 1.0.

Calculating these parameters involves analyzing the
open-loop transfer function using the formula ((jw)α =

wα(cosα + j sinα)). The specified criteria ensure acceptable

FIGURE 18. Scatter plot of the controller parameters.

stability margins, sensitivity within the operating frequency
range, and desirable performance.

In this section, the sensitivity of the system is tested using a
fractional-order process described by equation (32) to achieve
the worst case. An (MPC) criteria is employed, with con-
troller values specified as FOPID = [1.13, 0.78, 2.62, 4.14,
1.01, 1.03]. These values serve as the centers of the Normal
Distribution function, and normalizing coefficients (σ ) are set
as [0.065, 0.045, 0.151, 0.24] respectively. The fractional-
orders (λ and µ) and time delay are uniformly distributed
from [0.91, 0.92, 0.094] to [1.12, 1.13, 0.11] respectively,
resulting in the generation of 50 random samples. The cor-
responding values are depicted in Figure18.

The evaluation analysis involves determining the bound-
aries of the step response based on specific performance
criteria. In this study, the selected criteria for the step response
are a maximum overshoot of 20%, a rising time of 1 second,
and a settling time of 3 seconds, as illustrated in Figure 19.
These criteria provide quantitative measures for assessing

the performance of the system’s step response. Themaximum
overshoot refers to the peak value beyond the desired setpoint,
which should be limited to 20% to ensure stability and avoid
excessive oscillations. The rising time represents the duration
required for the system’s output to reach and stabilize within
a certain tolerance of the setpoint. In this case, a rising time
of 1 second is specified to achieve a prompt response. The
settling time indicates the duration needed for the system’s
output to reach and remain within a specified tolerance band
around the setpoint, ensuring steady-state operation. In this
study, a settling time of 3 seconds is considered as a suitable
criterion for achieving stable behavior.

By setting these boundaries for the step response, the per-
formance of the system can be assessed against the desired
criteria, enabling a comprehensive evaluation of its dynamic
behavior and responsiveness. Figure 19 provides a visual
representation of the step response with the specified perfor-
mance boundaries.

53456 VOLUME 11, 2023



M. M. Al-Momani et al.: Optimal Nonlinear Type-2 Fuzzy FOPID Control Design

FIGURE 19. Step response envelope used for system evaluation.

FIGURE 20. Error histogram on the step response envelope.

Figure 20 displays a histogram representing the distri-
bution of errors, calculated based on the envelope of the
response. The error is a measure of the deviation between the
desired response and the actual output of the system. In this
study, the errors for a sample set of fifty are analyzed and
presented in the histogram.

Upon examining the histogram, it is observed that one sam-
ple out of the fifty has an error of approximately 0.4. Addi-
tionally, two samples exhibit errors around 0.36, while only
four samples have errors exceeding 0.2 in their envelopes.
This information provides insights into the variability and
accuracy of the system’s performance. By comparing the
histogram in Figure 20 with Figure 19, it can be inferred
that the proposed algorithm has contributed to a reduction in
errors, resulting in improved response accuracy.

To investigate the correlation between the control param-
eters and the system’s output, Figure 21 is presented. This
figure depicts the relationship between the control parame-
ters, which are the inputs to the system, and the corresponding
output. By analyzing the correlation, it is possible to identify
any patterns or dependencies between the control parame-
ters and the resulting output. This information is crucial for
understanding the influence of the control parameters on the
system’s behavior and performance.

FIGURE 21. Correlation analysis.

Overall, Figures 20 and 21 provide valuable insights into
the error distribution and the correlation between the control
parameters and the system’s output. These findings contribute
to the evaluation and understanding of the proposed algo-
rithm’s effectiveness and its impact on the system’s perfor-
mance.

Figure 21 presents the correlation analysis of the system
parameters, namely A, B, C, D, L, Mu, and Td. The correla-
tion coefficients between these parameters and their influence
on the system’s output response are as follows: approxi-
mately 0.2 for parameter A, around 0.45 for parameter B,
approximately 0.35 for parameter C, −0.48 for parameter D,
−0.25 for parameter L, approximately 0.7 for parameter Mu,
and 0.25 for parameter Td.

These correlation coefficients provide insights into the
relationship between the system parameters and the output
response. A positive correlation coefficient indicates a direct
relationship, meaning that an increase in the parameter’s
value leads to an increase in the system’s output response,
while a negative correlation coefficient suggests an inverse
relationship, where an increase in the parameter’s value
results in a decrease in the system’s output response.

Based on the correlation analysis presented in Figure 21,
it can be concluded that parameter Mu exhibits the highest
positive correlation with the system’s output response, with
a correlation coefficient of approximately 0.7. This indicates
that variations in the Mu parameter have a substantial influ-
ence on the behavior of the system, and increasing the Mu
value is likely to result in an increase in the system’s output
response.

On the other hand, parameter D shows the highest negative
correlation with the system’s output response, as evidenced
by a correlation coefficient of -0.48. This negative correlation
implies that as the value of D increases, the system’s output
response tends to decrease, and vice versa.

Understanding the correlation between system parameters
and the output response is crucial for system analysis and con-
trol. It allows for the identification of key parameters that sig-
nificantly impact the system’s behavior and provides valuable

VOLUME 11, 2023 53457



M. M. Al-Momani et al.: Optimal Nonlinear Type-2 Fuzzy FOPID Control Design

insights for system optimization and performance enhance-
ment. The correlation coefficients presented in Figure 21
offer quantitative measures of these relationships, aiding in
the development of effective control strategies and decision-
making processes.

VI. CONCLUSION AND FUTURE WORK
This research paper introduces a novel four-step algorithm for
the design of hybrid type-2 fuzzy fractional-order PID con-
trollers. The proposed algorithm optimizes each component
of the controller, including the nonlinearity and the footprint
of uncertainty in fuzzy membership functions. Additionally,
it addresses the fractional-order aspects of the controllers
and processes using the Fourier Series Method, which offers
greater accuracy compared to traditional fractional-order
approximation methods.

Three different type-2 fuzzy FOPID control structures
are presented, and various performance criteria such as
ISE, ITSE, IT2SE, IAE, and MPC are employed as fitness
functions. The proposed algorithm optimizes the controller
parameters in a step-by-step manner. Firstly, the A, B, C, and
D parameters, which correspond to Kp, Ki, and Kd in a PID
controller, are optimized. Subsequently, the fractional-order
parameters are considered in the second step. The third and
fourth steps focus on handling the fuzzy parameters, specif-
ically the nonlinearity in the membership functions and the
footprint of uncertainty.

The proposed algorithm is applied to both integer order
and fractional-order plants, and the influence of each
parameter group is thoroughly examined. Furthermore, the
algorithm’s performance is validated by comparing the
controller’s response with various algorithms reported in
the literature. Stability analysis and computational time anal-
ysis are also conducted for the algorithm.

The results demonstrate the robustness and superior per-
formance of the proposed algorithm. However, it should be
noted that the computational analysis highlights a limitation
in the simulation process due to the utilization of MATLAB
Simulink for representing the nonlinearity and footprint of
uncertainty in the fuzzy controller. To address this limita-
tion in future work, researchers are encouraged to develop
a transfer function in the time or frequency domain for the
fuzzy controller, even when operating in different modes.
By doing so, the results obtained in the third and fourth
steps of the algorithm can be further enhanced. Currently, the
optimization algorithm terminates after 25 iterations in the
modified TLBO because of this limitation.

The algorithm presented in this paper holds promise for
application in various engineering fields, particularly in the
context of smart grids and renewable energy integration prob-
lems. In the next phase of this project, the authors plan
to apply this algorithm to address low-frequency oscillation
challenges [43], [44] and implement the results in the Jordan
Power system using the available Real-Time Digital Simula-
tor (RTDS) at Mu’tah University.

APPENDIX A: MATLAB CODES

clear all
clc
%% Training steps 1+2
global G Gff str cost step Results
Gff = @(x) 9./(x+1)./(x.^2+2.*x+9);
Gf = @(x) 9/(x+1)/(x^2+2*x+9);
s = tf(‘s’);
G = Gf(s);
for str=1:2
for step =1:2 % LF1PIF, LF1FOPID
for cost=1:5 % cost= ISE, ISTE,IST2E, IAE, FFF
Results.str{str}.step{step}.perfor{cost}=optimPID1
;
end
end
end
Results.str{3}=Results.str{2};
Results.PID=pidtune(G, ’PID’);
save(‘ResultsP1’, ‘Results’)
clc
disp(‘step 1+2 finished’)
%% Training steps 3-5
clear all
clc
global str cost step Results
load (‘ResultsP1’);
num=9;
denum=[1 3 11 9];
s=fotf(‘s’);
for cost=1:5
for step =3:5 % NLF1FPIF, NLF2FPID, LF2FPID
for str=1:3 % cost= ISE, ISTE,IST2E, IAE, FFF
Results.str{str}.step{step}.perfor{cost}=optimPID2
;
save(‘ResultsP1’, ‘Results’)
end
disp([‘step ’ num2str(step) ‘ cost ’
num2str(cost) ‘ are finished’])
end
disp([‘step 3-5 str ’ num2str(str) ‘ finished’])
end
%% information Structure 1
clear
num=9;
denum=[1 3 11 9];
load (‘ResultsP1’);
load_system(‘str2.slx’);
X=[Results.PID.Kp,Results.PID.Kd,1,Results.PID.Ki,
1,1];
fis3=FUZZY3([1 1 1 1 1 1 1]);
out=sim(‘str2.slx’);
Results.pid.y=out.simout.Data;
Results.pid.t=out.simout.Time;
Results.pid.stepinto=stepinfo(out.simout.Data,out.
simout.Time,1);
load_system(‘str1.slx’);
str=1; step=1;
for cost=1:5
X=[Results.str{str}.step{step}.perfor{cost}.x(end,
:),1,1];
fis2=FUZZY2([1 1 1 1 1 ]);
out=sim(‘str1.slx’);
Results.str{str}.step{step}.perfor{cost}.y=out.sim
out.Data;
Results.str{str}.step{step}.perfor{cost}.t=out.sim
out.Time;
Results.str{str}.step{step}.perfor{cost}.stepinto=
stepinfo(out.simout.Data,out.simout.Time,1);
end
save(‘ResultsP1’, ‘Results’)
str=1; step=2;
for cost = 1:5
X = Results.str{str}.step{step}.perfor{cost}.x(end,:
);
fis2 = FUZZY2([1 1 1 1 1 ]);
out = sim(‘str1.slx’);
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Results.str{str}.step{step}.perfor{cost}.y = out.sim
out.Data;
Results.str{str}.step{step}.perfor{cost}.t = out.sim
out.Time;
Results.str{str}.step{step}.perfor{cost}.stepinto =
stepinfo(out.simout.Data,out.simout.Time,1);
end
save(‘ResultsP1’, ’Results’)
str = 1; step = 3;
for cost = 1:5
X = Results.str{str}.step{1,2}.perfor{cost}.x(end,:);
fis2 = FUZZY2([Results.str{str}.step{step}.perfor{co
st}.x(end,:), 1, 1 ]);
out = sim(‘str1.slx’);
Results.str{str}.step{step}.perfor{cost}.y = out.sim
out.Data;
Results.str{str}.step{step}.perfor{cost}.t = out.sim
out.Time;
Results.str{str}.step{step}.perfor{cost}.stepinto =
stepinfo(out.simout.Data,out.simout.Time,1);
end
save(‘ResultsP1’, ‘Results’)
str = 1; step = 4;
for cost = 1:5
X = Results.str{str}.step{1,2}.perfor{cost}.x(end,:)
;
fis2 = FUZZY2([Results.str{str}.step{1,3}.perfor{cos
t}.x(end,:),
Results.str{str}.step{step}.perfor{cost}.x(end,:)
]);
out = sim(‘str1.slx’);
Results.str{str}.step{step}.perfor{cost}.y = out.sim
out.Data;
Results.str{str}.step{step}.perfor{cost}.t = out.sim
out.Time;
Results.str{str}.step{step}.perfor{cost}.stepinto =
stepinfo(out.simout.Data,out.simout.Time,1);
end
save(‘ResultsP1’, ‘Results’)
str = 1; step = 5;
for cost = 1:5
X = Results.str{str}.step{1,2}.perfor{cost}.x(end,:)
;
fis2 = FUZZY2([1,1,1,
Results.str{str}.step{step}.perfor{cost}.x(end,:)
]);
out = sim(‘str1.slx’);
Results.str{str}.step{step}.perfor{cost}.y = out.sim
out.Data;
Results.str{str}.step{step}.perfor{cost}.t = out.sim
out.Time;
Results.str{str}.step{step}.perfor{cost}.stepinto =
stepinfo(out.simout.Data,out.simout.Time,1);
end
save(‘ResultsP1’, ‘Results’)
%% information Structure 2
load_system(‘str2.slx’);
str = 2; step = 1;
for cost = 1:5
X = [Results.str{str}.step{step}.perfor{cost}.x(end,
:),1,1];
fis3 = FUZZY3([1 1 1 1 1 1 1]);
out = sim(‘str2.slx’);
Results.str{str}.step{step}.perfor{cost}.y = out.sim
out.Data;
Results.str{str}.step{step}.perfor{cost}.t = out.sim
out.Time;
Results.str{str}.step{step}.perfor{cost}.stepinto =
stepinfo(out.simout.Data,out.simout.Time,1);
end
save(‘ResultsP1’, ‘Results’)
str = 2; step = 2;
for cost = 1:5
X = Results.str{str}.step{step}.perfor{cost}.x(end,:
);
fis3 = FUZZY3([1 1 1 1 1 1 1]);
out = sim(‘str2.slx’);
Results.str{str}.step{step}.perfor{cost}.y = out.sim

out.Data;
Results.str{str}.step{step}.perfor{cost}.t = out.sim
out.Time;
Results.str{str}.step{step}.perfor{cost}.stepinto =
stepinfo(out.simout.Data,out.simout.Time,1);
end
save(‘ResultsP1’, ‘Results’)
str = 2; step = 3;
for cost = 1:5
X = Results.str{str}.step{1,2}.perfor{cost}.x(end,:)
;
fis3 = FUZZY3([Results.str{str}.step{step}.perfor{co
st}.x(end,:), 1, 1,1 ]);
out = sim(‘str2.slx’);
Results.str{str}.step{step}.perfor{cost}.y = out.sim
out.Data;
Results.str{str}.step{step}.perfor{cost}.t = out.sim
out.Time;
Results.str{str}.step{step}.perfor{cost}.stepinto =
stepinfo(out.simout.Data,out.simout.Time,1);
end
save(‘ResultsP1’,‘Results’)
str = 2; step = 4;
for cost = 1:5
X = Results.str{str}.step{1,2}.perfor{cost}.x(end,:)
;
fis3 = FUZZY3([Results.str{str}.step{1,3}.perfor{cos
t}.x(end,:),
Results.str{str}.step{step}.perfor{cost}.x(end,:)
]);
out = sim(‘str2.slx’);
Results.str{str}.step{step}.perfor{cost}.y = out.sim
out.Data;
Results.str{str}.step{step}.perfor{cost}.t = out.sim
out.Time;
Results.str{str}.step{step}.perfor{cost}.stepinto =
stepinfo(out.simout.Data,out.simout.Time,1);
end
save(‘ResultsP1’,‘Results’)
str = 2; step = 5;
for cost = 1:5
X = Results.str{str}.step{1,2}.perfor{cost}.x(end,:)
;
fis3 = FUZZY3([1,1,1,1,
Results.str{str}.step{step}.perfor{cost}.x(end,:)
]);
out = sim(‘str2.slx’);
Results.str{str}.step{step}.perfor{cost}.y = out.sim
out.Data;
Results.str{str}.step{step}.perfor{cost}.t = out.sim
out.Time;
Results.str{str}.step{step}.perfor{cost}.stepinto =
stepinfo(out.simout.Data,out.simout.Time,1);
end
save(‘ResultsP1’, ‘Results’)
%% information structure 3
load (‘ResultsP1’)
num = 9;
denum = [1 3 11 9];
load_system(‘str3.slx’);
str = 3; step = 1;
for cost = 1:5
X = [Results.str{str}.step{step}.perfor{cost}.x(end
,:),1,1];
if
numel(Results.str{str}.step{step}.perfor{cost})>0
[fis1, fis2] = FUZZY4([1 1 1 1 1 1 1 1 1 1]);
out = sim(‘str3.slx’);
Results.str{str}.step{step}.perfor{cost}.y = out.sim
out.Data;
Results.str{str}.step{step}.perfor{cost}.t = out.sim
out.Time;
Results.str{str}.step{step}.perfor{cost}.stepinto =
stepinfo(out.simout.Data,out.simout.Time,1);
end
end
save(‘ResultsP1’, ‘Results’)
str = 3; step = 2;
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for cost = 1:5
X = Results.str{str}.step{step}.perfor{cost}.x(end,:);
if
numel(Results.str{str}.step{step}.perfor{cost})>0
[fis1, fis2] = FUZZY4([1 1 1 1 1 1 1 1 1 1]);
out = sim(‘str3.slx’);
Results.str{str}.step{step}.perfor{cost}.y = out.sim
out.Data;
Results.str{str}.step{step}.perfor{cost}.t = out.sim
out.Time;
Results.str{str}.step{step}.perfor{cost}.stepinto =
stepinfo(out.simout.Data,out.simout.Time,1);
end
end
save(‘ResultsP1’, ‘Results’)
clear
clc
num = 9;
denum = [1 3 11 9];
load (‘ResultsP1’);
load_system(‘str3.slx’);
str = 3; step = 3;
for cost = 2:3
X = Results.str{str}.step{1,2}.perfor{cost}.x(end,:);
if
numel(Results.str{str}.step{step}.perfor{cost})>0
[fis1,
fis2] = FUZZY4([Results.str{str}.step{step}.perfor{c
ost}.x(end,:), 1, 1,1,1 ]);
out = sim(‘str3.slx’);
Results.str{str}.step{step}.perfor{cost}.y = out.sim
out.Data;
Results.str{str}.step{step}.perfor{cost}.t = out.sim
out.Time;
Results.str{str}.step{step}.perfor{cost}.stepinto =
stepinfo(out.simout.Data,out.simout.Time,1);
end
end
save(‘ResultsP1’, ‘Results’)
str = 3; step = 4;
for cost = 2:3
X = Results.str{str}.step{1,2}.perfor{cost}.x(end,:)
;
if
numel(Results.str{str}.step{step}.perfor{cost})>0
[fis1,
fis2] = FUZZY4([Results.str{str}.step{1,3}.perfor{co
st}.x(end,:),
Results.str{str}.step{step}.perfor{cost}.x(end,:)
]);
out = sim(‘str3.slx’);
Results.str{str}.step{step}.perfor{cost}.y = out.sim
out.Data;
Results.str{str}.step{step}.perfor{cost}.t = out.sim
out.Time;
Results.str{str}.step{step}.perfor{cost}.stepinto =
stepinfo(out.simout.Data,out.simout.Time,1);
end
end
save(‘ResultsP1’,‘Results’)
str = 3; step = 5;
for cost = 2:3
X = Results.str{str}.step{1,2}.perfor{cost}.x(end,:);
if
numel(Results.str{str}.step{step}.perfor{cost})>0
[fis1,
fis2] = FUZZY4([1,1,1,1,1,1
Results.str{str}.step{step}.perfor{co
st}.x(end,:) ]);
out = sim(‘str3.slx’);
Results.str{str}.step{step}.perfor{cost}.y = out.sim
out.Data;
Results.str{str}.step{step}.perfor{cost}.t = out.sim
out.Time;
Results.str{str}.step{step}.perfor{cost}.stepinto =
stepinfo(out.simout.Data,out.simout.Time,1);
end
end

save(‘ResultsP1’,‘Results’)
%% Functions
function [C] = optimPID1
global G str step Results cost
% Initial parameters using stability based tuning
if step ==1
PID = pidtune(G,‘PID’);
switch str
case 1
A = 1;D = PID.Ki;CC = abs(PID.Kp+sqrt(PID.Kp^2-
4*PID.Kd*PID.Ki));B = PID.Kd/CC;
x0 = [A, B,CC, D]; %x1 = [0 0 0 0];x2 = [7 7 7 7];
case 2
A = PID.Kp;B = PID.Kd;D = PID.Ki;CC = 1;
x0 = [A, B,CC, D];% x1 = [0 0 0 0];x2 = [7 7 7 7];
case 3
A1 = PID.Kp/2;A2 = PID.Kp/2;B = PID.Kd;D = PID.Ki;CC = 1;
x0 = [A1,A2, B,CC, D]; %x1 = [0 0 0 0 0];x2 = [7 7 7 7];
end
C = runfmincon1(@obj_FOPID2,x0);
end
if step ==2
x0 = [Results.str{str}.step{1}.perfor{cost}.x(end,:)
,1,1];% x1 = [x1,0.7, 0.7];x2 = [x2, 1.3, 1.3];
C = runfmincon1(@obj_FOPID2,x0);
end
end
function [history] = runfmincon1(obj,x0)
i = 1;
history.x = [];
history.fval = [];
options = optimset(‘OutputFcn’,@outfun,...
‘Algorithm’,‘active-set’);
fminsearch(obj,x0,options)
function stop = outfun(x,optimValues,state)
stop = false;
switch state
case ‘iter’
history.fval = [history.fval; optimValues.fval];
xx = abs(x);
if size(x,2)>4
xx(5:6) = min(1.5,xx(5:6));
end
history.x = [history.x; xx];
i = i+1;
otherwise
end
end
end
function [obj] = obj_FOPID2 (BCD)
global cost
BCD = abs(BCD);
for ii = 1:size(BCD,1)
[t,y] = stepf(BCD(ii,:));
dt = [t(2:end),t(end)]-t;
e = 1-y;
switch cost
case 1 %ISE
Value = sum(e.^2.*dt);
case 2 % ITSE
Value = sum((t.*e).^2.*dt);
case 3 % IT2SE
Value = sum((t.^2.*e).^2.*dt);
case 4 %‘IAE’
Value = sum(abs(e).*dt);
case 5% ‘MPC’
Value = (0.4*sum(abs(e).*dt)+0.4*sum(e.^2.*dt)+0.2*s
um((t.*e).^2.*dt));
end
obj(ii) = Value+simple_constraint(BCD);
end
end
function [tv,out] = stepf (BCD)
global Gff str
BCD = abs(BCD);
t1 = 0;t2 = 60;dt = 0.2;
wh = 100;ws = 0.01;
kf = (wh/ws);

53460 VOLUME 11, 2023



M. M. Al-Momani et al.: Optimal Nonlinear Type-2 Fuzzy FOPID Control Design

k = 1:2:kf+1;
out = [];
ii = 1;
t = t1;
w = k.*ws;
s = sqrt(-1)*w;
G = Gff(s);
switch str
case 1
A = abs(BCD(1));B = abs(BCD(2));
C = abs(BCD(3));D = abs(BCD(4));
if numel(BCD)>4
L = min(abs(BCD(5)),1.5);Mu = min(1.5,abs(BCD(6)));
else
L = 1;Mu = 1;
end
CCG = (A+B.*s.^Mu).*((C+D./s.^L));
case 2
A = abs(BCD(1));B = abs(BCD(2));
C = abs(BCD(3));D = abs(BCD(4));
if numel(BCD)>4
L = min(abs(BCD(5)),1.5);Mu = min(1.5,abs(BCD(6)));
else
L = 1;Mu = 1;
end
CCG = (A+B.*s.^Mu+D./s.^L).*C;
case 3
A1 = abs(BCD(1))/2;A2 = abs(BCD(1))/2;B = abs(BCD(2));
C = abs(BCD(3));D = abs(BCD(4));
if numel(BCD)>5
L = min(abs(BCD(5)),1.5);Mu = min(1.5,abs(BCD(6)));
else
L = 1;Mu = 1;
end
CCG = (A1+A2+B.*s.^Mu+D./s.^L)*C;
end
R = real(G.*CCG./(1+G.*CCG));
I = 0;%imag(G.*CCG./(1+G.*CCG));
II = 1e-3;
while t<t2
out(ii) = sum(R.*sin(w.*t)./k+I.*cos(w.*t)./k)*4/pi;
tv(ii) = t;
ii = ii+1;
t = t+dt;
end
end
function [ceq] = simple_constraint(BCD)
BCD = abs(BCD);
global G str step
switch step
case 1
s = tf(‘s’);
switch str
case 1
CCG = (BCD(1)+BCD(2)*s)*(BCD(3)+BCD(4)/s);
case 2
CCG = (BCD(1)+BCD(2)*s+BCD(4)/s)*BCD(3);
case 3
CCG = (BCD(1)+BCD(2)*s+BCD(4)/s)*BCD(3);
end
case 2
s = fotf(‘s’);
switch str
case 1
CC = (BCD(1)+BCD(2)*s^BCD(6))*(BCD(3)+BCD(4)/s^BCD(5
));
case 2
CC = (BCD(1)+BCD(2)*s^BCD(6)+BCD(4)/s^BCD(5))*BCD(3)
;
case 3
CC = (BCD(1)+BCD(2)*s^BCD(6)+BCD(6)/s^BCD(5))*BCD(3)
;
end
CCG = oustapp(CC,5);
end
TF = CCG*G;
[Gm,Pm,Wcg,Wcp,S] = margin(TF);
if S==0

ceq = 100;
else
ceq = 0;
end
if Wcp>5
ceq = ceq+Wcp-5;%abs(TF(j*omega_c))-1;
end
if Pm<30
ceq = ceq+30-Pm;
end
if Gm<2
ceq = ceq+2-Gm;
end
end
function H = optimPID2
global str step cost Results
switch str
case 1
switch step
case 3
X0 = [1,1,1];
H = runfmincon(@obj_Fuzzy_FOPID_str1,X0);
case 4
H = runfmincon(@obj_Fuzzy_FOPID_str1,[1,1,0,0]);
case 5
H = runfmincon(@obj_Fuzzy_FOPID_str1,[1 1,0,0]);
end
case 2
switch step
case 3
H = runfmincon(@obj_Fuzzy_FOPID_str1,[1,1,1,1]);
case 4
H = runfmincon(@obj_Fuzzy_FOPID_str1,[1,1,1,0,0,0]);
case 5
H = runfmincon(@obj_Fuzzy_FOPID_str1,[1,1,1,0,0,0]);
end
case 3
H = runfmincon(@obj_Fuzzy_FOPID_str1,[1,1,1,1,1,1]);
case 4
H = runfmincon(@obj_Fuzzy_FOPID_str1,[1,1,1,1,0,0,0,
0]);
case 5
H = runfmincon(@obj_Fuzzy_FOPID_str1,[1,1,1,1,0,0,0,
0]);
end
end
function [history] = runfmincon(obj,x0)
i = 1;
history.x = [];
history.fval = [];
options = optimset(‘OutputFcn’,@outfun,‘Maxiter’,25);%,...
NewTLBO(obj,x0,options)
function stop = outfun(x,optimValues,state)
stop = false;
switch state
case ‘iter’
history.fval = [history.fval; optimValues.fval];
history.x = [history.x; x];
i = i+1;
otherwise
end
end
end
function obj = obj_Fuzzy_FOPID_str1(X)
ii = 1;
global cost step Results str
load_system(‘str1.slx’);
switch str
case 1
switch step
case 3
fis2 = FUZZY2([X(ii,:) 1 1 0 0]);
case 4
fis2 = FUZZY2([Results.str{str}.step{3}.perfor{cost}
.x(end,:), X(ii,:) ]);
case 5
fis2 = FUZZY2([1 1 1 X(ii,:) ]);
end
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assignin (‘base’,‘fis2’,fis2)
out = sim(‘str1.slx’);
e = 1-out.simout.Data;
t = out.simout.Time;
dt = [t(2:end);20]-t;
case 2
switch step
case 3
fis3 = FUZZY3([X(ii,:) 1 1 1,1,0,0,0,0]);
case 4
fis3 = FUZZY3([Results.str{str}.step{3}.perfo
r{cost}.x(end,:), X(ii,:) ]);
case 5
fis3 = FUZZY3([1, 1, 1,1, X(ii,:) ]);
end
assignin (‘base’,‘fis3’,fis3)
out = sim(‘str2.slx’);
e = 1-out.simout.Data;
t = out.simout.Time;
dt = [t(2:end);20]-t;
case 3
switch step
case 3
[fis1,fis2] = FUZZY4([X(ii,:), 1, 1, 1, 1,0,0,0,0]);
case 4
[fis1,fis2] = FUZZY4([Results.str{str}.step{3}.perfo
r{cost}.x(end,:), X(ii,:) ]);
case 5
[fis1,fis2] = FUZZY4([1, 1, 1,1,1,1, X(ii,:) ]);
end
assignin (‘base’,‘fis1’,fis1)
assignin (‘base’,‘fis2’,fis2)
out = sim(‘str3.slx’);
e = 1-out.simout.Data;
t = out.simout.Time;
dt = [t(2:end);20]-t;
end
switch cost
case 1%‘ISE’
Value = sum(e.^2.*dt);
case 2%‘ITSE’
Value = sum((t.*e).^2.*dt);
case 3%‘IT2SE’
Value = sum((t.^2.*e).^2.*dt);
case 4%‘IAE’
Value = sum(abs(e).*dt);
case 5% ‘FFF’
Value = 0.4*sum(abs(e).*dt)+0.4*sum(e.^2.*dt)+0.2*su
m((t.*e).^2.*dt);
end
obj = Value;
end
function [FIS1] = FUZZY2(X)
L = X(1:3);
alpha = X(4:5);
beta = X(6:7);
alpha = min(alpha,[1 1]);
alpha = max(alpha,[0.1 0.1]);
beta = min(beta,[1 1]);
beta = max(beta,[0.0 0.0]);
L = min(L,[7 7 7]);
L = max(L,[0.1 0.1 0.1]);
fis1 = sugfis;
L1 = L(1);
L2 = L(2);
Lo = L(3);
p1 = 1/(1+L1);
p2 = 1/(1+L2);
po1 = 1/(Lo^2*(Lo+1)+Lo+1);
po2 = po1*(Lo+1);
po3 = Lo*(po2-po1)+po2;
fis1 = addInput(fis1,[-10e4 10e4],‘Name’,‘E’);
fis1 = addInput(fis1,[-10e4 10e4],‘Name’,‘delE’);
% fis1 = addInput(fis1,[0 10*td],‘Name’,‘T’);
fis1 = addMF(fis1,‘E’,‘trimf’,[-11e4 -10e4 -
10e4*p1 ],‘Name’,‘NB’);
fis1 = addMF(fis1,‘E’,‘trimf’,[-10e4 -10e4*p1
0],‘Name’,‘NM’);

fis1 = addMF(fis1,‘E’,‘trimf’,[-10e4*p1 0 10e4*p1
],‘Name’,‘Z’);
fis1 = addMF(fis1,‘E’,‘trimf’,[0 10e4*p1
10e4],‘Name’,‘PM’);
fis1 = addMF(fis1,‘E’,‘trimf’,[p1*10e4 10e4
11e4],‘Name’,‘PB’);
fis1 = addMF(fis1,‘delE’,‘trimf’,[-11e4 -10e4 -
10e4*p2 ],‘Name’,‘NB’);
fis1 = addMF(fis1,‘delE’,‘trimf’,[-10e4 -10e4*p2
0],‘Name’,‘NM’);
fis1 = addMF(fis1,‘delE’,‘trimf’,[-10e4*p2 0
10e4*p2 ],‘Name’,‘Z’);
fis1 = addMF(fis1,‘delE’,‘trimf’,[0 p2*10e4
10e4],‘Name’,‘PM’);
fis1 = addMF(fis1,‘delE’,‘trimf’,[p2*10e4 10e4
11e4],‘Name’,‘PB’);
fis1 = addOutput(fis1,[-10e4 10e4],‘Name’,‘U’);
fis1 = addMF(fis1,‘U’,‘constant’, -
10e4,‘Name’,‘NBB’);
fis1 = addMF(fis1,‘U’,‘constant’-
10e4*po3,‘Name’,‘NB’);
fis1 = addMF(fis1,‘U’,‘constant’,-
10e4*po2,‘Name’,‘NM’);
fis1 = addMF(fis1,‘U’,‘constant’,-
10e4*po1,‘Name’,‘N’);
fis1 = addMF(fis1,‘U’,‘constant’, 0.0,‘Name’,‘Z’);
fis1 =
addMF(fis1,‘U’,‘constant’,po1*10e4,‘Name’,‘P’);
fis1 =
addMF(fis1,‘U’,‘constant’,po2*10e4,‘Name’,‘PM’);
fis1 =
addMF(fis1,‘U’,‘constant’,po3*10e4,‘Name’,‘PB’);
fis1 =
addMF(fis1,‘U’,‘constant’,10e4,‘Name’,‘PBB’);
rules = [...
"E==NB & delE==NB => U = NBB"; ...
"E==NB & delE==NM => U = NB"; ...
"E==NB & delE==Z => U = NM"; ...
"E==NB & delE==PM => U = N"; ...
"E==NB & delE==PB => U = Z"; ...
"E==NM & delE==NB => U = NB"; ...
"E==NM & delE==NM => U = NM"; ...
"E==NM & delE==Z => U = N"; ...
"E==NM & delE==PM => U = Z"; ...
"E==NM & delE==PB => U = P"; ...
"E==Z & delE==NB => U = NM"; ...
"E==Z & delE==NM => U = N"; ...
"E==Z & delE==Z => U = Z"; ...
"E==Z & delE==PM => U = P"; ...
"E==Z & delE==PB => U = PM"; ...
"E==PM & delE==NB => U = N"; ...
"E==PM & delE==NM => U = Z"; ...
"E==PM & delE==Z => U = P"; ...
"E==PM & delE==PM => U = PM"; ...
"E==PM & delE==PB => U = PB"; ...
"E==PB & delE==NB => U = Z"; ...
"E==PB & delE==NM => U = P"; ...
"E==PB & delE==Z => U = PM"; ...
"E==PB & delE==PM => U = PB"; ...
"E==PB & delE==PB => U = PBB"; ...
];
fis1 = addRule(fis1,rules);
FIS1 = convertToType2(fis1);
for i = 1:length(FIS1.Inputs)
for j =
1:length(FIS1.Inputs(i).MembershipFunctions)
FIS1.Inputs(i).MembershipFunctions(j).LowerLag =
beta(i);
FIS1.Inputs(i).MembershipFunctions(j).LowerScale =
alpha(i);%scale(i,j);
end
end
end
function [FIS1] = FUZZY3(X)
L = X(1:4);
alpha = X(5:7);
beta = X(8:10);
alpha = min(alpha,[1 1 1]);
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alpha = max(alpha,[0.1 0.1 0.1]);
beta = min(beta,[1 1 1]);
beta = max(beta,[0.0 0.0 0.0]);
L = min(L,[7 7 7 7]);
L = max(L,[0.1 0.1 0.1 0.1]);
fis1 = sugfis;
L1 = L(1);
L2 = L(2);
L3 = L(3);
Lo = L(4);
p1 = 1/(1+L1);
p2 = 1/(1+L2);
p3 = 1/(1+L3);
po5 = 1/(Lo+1-Lo/(Lo+1-Lo/(Lo+1-Lo/(Lo+1-Lo/(Lo+1)))));
po4 = po5/(Lo+1-Lo/(Lo+1-Lo/(Lo+1-Lo/(Lo+1))));
po3 = po4/(Lo+1-Lo/(Lo+1-Lo/(Lo+1)));
po2 = po3/(Lo+1-Lo/(Lo+1));
po1 = po2/(Lo+1);
fis1 = addInput(fis1,[-10e4 10e4],‘Name’,‘E’);
fis1 = addInput(fis1,[-10e4 10e4],‘Name’,‘delE’);
fis1 = addInput(fis1,[-10e4 10e4],‘Name’,‘IE’);
fis1 = addMF(fis1,‘E’,‘trimf’,[-11e4 -10e4 -
10e4*p1 ],‘Name’,‘NB’);
fis1 = addMF(fis1,‘E’,‘trimf’,[-10e4 -10e4*p1
0],‘Name’,‘NM’);
fis1 = addMF(fis1,‘E’,‘trimf’,[-10e4*p1 0 10e4*p1
],‘Name’,‘Z’);
fis1 = addMF(fis1,‘E’,‘trimf’,[0 10e4*p1
10e4],‘Name’,‘PM’);
fis1 = addMF(fis1,‘E’,‘trimf’,[p1*10e4 10e4
11e4],‘Name’,‘PB’);
fis1 = addMF(fis1,‘delE’,‘trimf’,[-11e4 -10e4 -
10e4*p2 ],‘Name’,‘NB’);
fis1 = addMF(fis1,‘delE’,‘trimf’,[-10e4 -10e4*p2
0],‘Name’,‘NM’);
fis1 = addMF(fis1,‘delE’,‘trimf’,[-10e4*p2 0
10e4*p2 ],‘Name’,‘Z’);
fis1 = addMF(fis1,‘delE’,‘trimf’,[0 p2*10e4
10e4],‘Name’,‘PM’);
fis1 = addMF(fis1,‘delE’,‘trimf’,[p2*10e4 10e4
11e4],‘Name’,‘PB’);
fis1 = addMF(fis1,‘IE’,‘trimf’,[-11e4 -10e4 -
10e4*p3 ],‘Name’,‘NB’);
fis1 = addMF(fis1,‘IE’,‘trimf’,[-10e4 -10e4*p3
0],‘Name’,‘NM’);
fis1 = addMF(fis1,‘IE’,‘trimf’,[-10e4*p3 0 10e4*p3
],‘Name’,‘Z’);
fis1 = addMF(fis1,‘IE’,‘trimf’,[ 0 10e4*p3
10e4],‘Name’,‘PM’);
fis1 = addMF(fis1,‘IE’,‘trimf’,[p3*10e4 10e4
11e4],‘Name’,‘PB’);
fis1 = addOutput(fis1,[-10e4 10e4],‘Name’,‘U’);
fis1 = addMF(fis1,‘U’,‘constant’, -
10e4,‘Name’,‘mf1’);
fis1 = addMF(fis1,‘U’,‘constant’, -
10e4*po5,‘Name’,‘mf2’);
fis1 = addMF(fis1,‘U’,‘constant’, -
10e4*po4,‘Name’,‘mf3’);
fis1 = addMF(fis1,‘U’,‘constant’, -
10e4*po3,‘Name’,‘mf4’);
fis1 = addMF(fis1,‘U’,‘constant’, -
10e4*po2,‘Name’,‘mf5’);
fis1 = addMF(fis1,‘U’,‘constant’, -
10e4*po1,‘Name’,‘mf6’);
fis1 = addMF(fis1,‘U’,‘constant’,0, ‘Name’,‘mf7’);
fis1 =
addMF(fis1,‘U’,‘constant’, po1*10e4,‘Name’,‘mf8’);
fis1 =
addMF(fis1,‘U’,‘constant’, po2*10e4,‘Name’,‘mf9’);
fis1 =
addMF(fis1,‘U’,‘constant’, po3*10e4,‘Name’,‘mf10’);
fis1 =
addMF(fis1,‘U’,‘constant’, po4*10e4,‘Name’,‘mf11’);
fis1 =
addMF(fis1,‘U’,‘constant’, po5*10e4,‘Name’,‘mf12’);
fis1 =
addMF(fis1,‘U’,‘constant’, 10e4,‘Name’,‘mf13’);
rules = [...

"IE==NB & E==NB & delE==NB => U = mf1"; ...
"IE==NB & E==NB & delE==NM => U = mf2"; ...
"IE==NB & E==NB & delE==Z => U = mf3"; ...
"IE==NB & E==NB & delE==PM => U = mf4"; ...
"IE==NB & E==NB & delE==PB => U = mf5"; ...
"IE==NB & E==NM & delE==NB => U = mf2"; ...
"IE==NB & E==NM & delE==NM => U = mf3"; ...
"IE==NB& E==NM & delE==Z => U = mf4"; ...
"IE==NB& E==NM & delE==PM => U = mf5"; ...
"IE==NB& E==NM & delE==PB => U = mf6"; ...
"IE==NB& E==Z & delE==NB => U = mf3"; ...
"IE==NB& E==Z & delE==NM => U = mf4"; ...
"IE==NB& E==Z & delE==Z => U = mf5"; ...
"IE==NB& E==Z & delE==PM => U = mf6"; ...
"IE==NB& E==Z & delE==PB => U = mf7"; ...
"IE==NB& E==PM & delE==NB => U = mf4"; ...
"IE==NB& E==PM & delE==NM => U = mf5"; ...
"IE==NB& E==PM & delE==Z => U = mf6"; ...
"IE==NB& E==PM & delE==PM => U = mf7"; ...
"IE==NB& E==PM & delE==PB => U = mf8"; ...
"IE==NB& E==PB & delE==NB => U = mf5"; ...
"IE==NB& E==PB & delE==NM => U = mf6"; ...
"IE==NB& E==PB & delE==Z => U = mf7"; ...
"IE==NB& E==PB & delE==PM => U = mf8"; ...
"IE==NB& E==PB & delE==PB => U = mf9"; ...
"IE==NM& E==NB & delE==NB => U = mf2"; ...
"IE==NM& E==NB & delE==NM => U = mf3"; ...
"IE==NM& E==NB & delE==Z => U = mf4"; ...
"IE==NM& E==NB & delE==PM => U = mf5"; ...
"IE==NM& E==NB & delE==PB => U = mf6"; ...
"IE==NM& E==NM & delE==NB => U = mf3"; ...
"IE==NM& E==NM & delE==NM => U = mf4"; ...
"IE==NM& E==NM & delE==Z => U = mf5"; ...
"IE==NM& E==NM & delE==PM => U = mf6"; ...
"IE==NM& E==NM & delE==PB => U = mf7"; ...
"IE==NM& E==Z & delE==NB => U = mf4"; ...
"IE==NM& E==Z & delE==NM => U = mf5"; ...
"IE==NM& E==Z & delE==Z => U = mf6"; ...
"IE==NM& E==Z & delE==PM => U = mf7"; ...
"IE==NM& E==Z & delE==PB => U = mf8"; ...
"IE==NM& E==PM & delE==NB => U = mf5"; ...
"IE==NM& E==PM & delE==NM => U = mf6"; ...
"IE==NM& E==PM & delE==Z => U = mf7"; ...
"IE==NM& E==PM & delE==PM => U = mf8"; ...
"IE==NM& E==PM & delE==PB => U = mf9"; ...
"IE==NM& E==PB & delE==NB => U = mf6"; ...
"IE==NM& E==PB & delE==NM => U = mf7"; ...
"IE==NM& E==PB & delE==Z => U = mf8"; ...
"IE==NM& E==PB & delE==PM => U = mf9"; ...
"IE==NM& E==PB & delE==PB => U = mf10"; ...
"IE==Z& E==NB & delE==NB => U = mf3"; ...
"IE==Z& E==NB & delE==NM => U = mf4"; ...
"IE==Z& E==NB & delE==Z => U = mf5"; ...
"IE==Z& E==NB & delE==PM => U = mf6"; ...
"IE==Z& E==NB & delE==PB => U = mf7"; ...
"IE==Z& E==NM & delE==NB => U = mf4"; ...
"IE==Z& E==NM & delE==NM => U = mf5"; ...
"IE==Z& E==NM & delE==Z => U = mf6"; ...
"IE==Z& E==NM & delE==PM => U = mf7"; ...
"IE==Z& E==NM & delE==PB => U = mf8"; ...
"IE==Z& E==Z & delE==NB => U = mf5"; ...
"IE==Z& E==Z & delE==NM => U = mf6"; ...
"IE==Z& E==Z & delE==Z => U = mf7"; ...
"IE==Z& E==Z & delE==PM => U = mf8"; ...
"IE==Z& E==Z & delE==PB => U = mf9"; ...
"IE==Z& E==PM & delE==NB => U = mf6"; ...
"IE==Z& E==PM & delE==NM => U = mf7"; ...
"IE==Z& E==PM & delE==Z => U = mf8"; ...
"IE==Z& E==PM & delE==PM => U = mf9"; ...
"IE==Z& E==PM & delE==PB => U = mf10"; ...
"IE==Z& E==PB & delE==NB => U = mf7"; ...
"IE==Z& E==PB & delE==NM => U = mf8"; ...
"IE==Z& E==PB & delE==Z => U = mf9"; ...
"IE==Z& E==PB & delE==PM => U = mf10"; ...
"IE==Z& E==PB & delE==PB => U = mf11"; ...
"IE==PM& E==NB & delE==NB => U = mf4"; ...
"IE==PM& E==NB & delE==NM => U = mf5"; ...
"IE==PM& E==NB & delE==Z => U = mf6"; ...
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"IE==PM& E==NB & delE==PM => U = mf7"; ...
"IE==PM& E==NB & delE==PB => U = mf8"; ...
"IE==PM& E==NM & delE==NB => U = mf5"; ...
"IE==PM& E==NM & delE==NM => U = mf6"; ...
"IE==PM& E==NM & delE==Z => U = mf7"; ...
"IE==PM& E==NM & delE==PM => U = mf8"; ...
"IE==PM& E==NM & delE==PB => U = mf9"; ...
"IE==PM& E==Z & delE==NB => U = mf6"; ...
"IE==PM& E==Z & delE==NM => U = mf7"; ...
"IE==PM& E==Z & delE==Z => U = mf8"; ...
"IE==PM& E==Z & delE==PM => U = mf9"; ...
"IE==PM& E==Z & delE==PB => U = mf10"; ...
"IE==PM& E==PM & delE==NB => U = mf7"; ...
"IE==PM& E==PM & delE==NM => U = mf8"; ...
"IE==PM& E==PM & delE==Z => U = mf9"; ...
"IE==PM& E==PM & delE==PM => U = mf10"; ...
"IE==PM& E==PM & delE==PB => U = mf11"; ...
"IE==PM& E==PB & delE==NB => U = mf8"; ...
"IE==PM& E==PB & delE==NM => U = mf9"; ...
"IE==PM& E==PB & delE==Z => U = mf10"; ...
"IE==PM& E==PB & delE==PM => U = mf11"; ...
"IE==PM& E==PB & delE==PB => U = mf12"; ...
"IE==PB& E==NB & delE==NB => U = mf5"; ...
"IE==PB& E==NB & delE==NM => U = mf6"; ...
"IE==PB& E==NB & delE==Z => U = mf7"; ...
"IE==PB& E==NB & delE==PM => U = mf8"; ...
"IE==PB& E==NB & delE==PB => U = mf9"; ...
"IE==PB& E==NM & delE==NB => U = mf6"; ...
"IE==PB& E==NM & delE==NM => U = mf7"; ...
"IE==PB& E==NM & delE==Z => U = mf8"; ...
"IE==PB& E==NM & delE==PM => U = mf9"; ...
"IE==PB& E==NM & delE==PB => U = mf10"; ...
"IE==PB& E==Z & delE==NB => U = mf7"; ...
"IE==PB& E==Z & delE==NM => U = mf8"; ...
"IE==PB& E==Z & delE==Z => U = mf9"; ...
"IE==PB& E==Z & delE==PM => U = mf10"; ...
"IE==PB& E==Z & delE==PB => U = mf11"; ...
"IE==PB& E==PM & delE==NB => U = mf8"; ...
"IE==PB& E==PM & delE==NM => U = mf9"; ...
"IE==PB& E==PM & delE==Z => U = mf10"; ...
"IE==PB& E==PM & delE==PM => U = mf11"; ...
"IE==PB& E==PM & delE==PB => U = mf12"; ...
"IE==PB& E==PB & delE==NB => U = mf9"; ...
"IE==PB& E==PB & delE==NM => U = mf10"; ...
"IE==PB& E==PB & delE==Z => U = mf11"; ...
"IE==PB& E==PB & delE==PM => U = mf12"; ...
"IE==PB& E==PB & delE==PB => U = mf13"; ...
];
fis1 = addRule(fis1,rules);
FIS1 = convertToType2(fis1);
for i = 1:length(FIS1.Inputs)
for j =
1:length(FIS1.Inputs(i).MembershipFunctions)
FIS1.Inputs(i).MembershipFunctions(j).LowerLag =
beta(i);
FIS1.Inputs(i).MembershipFunctions(j).LowerScale =
alpha(i);%scale(i,j);
end
end
end
function [FIS1, FIS2] = FUZZY4(X)
L = X(1:3);alpha = X(7:8);beta = X(11:12);
alpha = min(alpha,[1 1]);
alpha = max(alpha,[0.1 0.1]);
beta = min(beta,[1 1]);
beta = max(beta,[0.0 0.0]);
L = min(L,[7 7 7]);
L = max(L,[0.1 0.1 0.1]);
fis1 = sugfis;
L1 = L(1);
L2 = L(2);
Lo = L(3);
p1 = 1/(1+L1);
p2 = 1/(1+L2);
po1 = 1/(Lo^2*(Lo+1)+Lo+1);
po2 = po1*(Lo+1);
po3 = Lo*(po2-po1)+po2;
fis1 = addInput(fis1,[-10e4 10e4],‘Name’,‘E’);

fis1 = addInput(fis1,[-10e4 10e4],‘Name’,‘delE’);
fis1 = addMF(fis1,‘E’,‘trimf’,[-11e4 -10e4 -
10e4*p1 ],‘Name’,‘NB’);
fis1 = addMF(fis1,‘E’,‘trimf’,[-10e4 -10e4*p1
0],‘Name’,‘NM’);
fis1 = addMF(fis1,‘E’,‘trimf’,[-10e4*p1 0 10e4*p1
],‘Name’,‘Z’);
fis1 = addMF(fis1,‘E’,‘trimf’,[0 10e4*p1
10e4],‘Name’,‘PM’);
fis1 = addMF(fis1,‘E’,‘trimf’,[p1*10e4 10e4
11e4],‘Name’,‘PB’);
fis1 = addMF(fis1,‘delE’,‘trimf’,[-11e4 -10e4 -
10e4*p2 ],‘Name’,‘NB’);
fis1 = addMF(fis1,‘delE’,‘trimf’,[-10e4 -10e4*p2
0],‘Name’,‘NM’);
fis1 = addMF(fis1,‘delE’,‘trimf’,[-10e4*p2 0
10e4*p2 ],‘Name’,‘Z’);
fis1 = addMF(fis1,‘delE’,‘trimf’,[0 p2*10e4
10e4],‘Name’,‘PM’);
fis1 = addMF(fis1,‘delE’,‘trimf’,[p2*10e4 10e4
11e4],‘Name’,‘PB’);
fis1 = addOutput(fis1,[-10e4 10e4],‘Name’,‘U’);
fis1 = addMF(fis1,‘U’,‘constant’,-
10e4, ‘Name’,‘NBB’);
fis1 = addMF(fis1,‘U’,‘constant’,-
10e4*po3, ‘Name’,‘NB’);
fis1 = addMF(fis1,‘U’,‘constant’,-
10e4*po2, ‘Name’,‘NM’);
fis1 = addMF(fis1,‘U’,‘constant’,-
10e4*po1, ‘Name’,‘N’);
fis1 = addMF(fis1,‘U’,‘constant’,0.0, ‘Name’,‘Z’);
fis1 =
addMF(fis1,‘U’,‘constant’,po1*10e4, ‘Name’,‘P’);
fis1 =
addMF(fis1,‘U’,‘constant’,po2*10e4, ‘Name’,‘PM’);
fis1 =
addMF(fis1,‘U’,‘constant’,po3*10e4, ‘Name’,‘PB’);
fis1 =
addMF(fis1,‘U’,‘constant’,10e4,‘Name’,‘PBB’);
rules = [...
"E==NB & delE==NB => U = NBB"; ...
"E==NB & delE==NM => U = NB"; ...
"E==NB & delE==Z => U = NM"; ...
"E==NB & delE==PM => U = N"; ...
"E==NB & delE==PB => U = Z"; ...
"E==NM & delE==NB => U = NB"; ...
"E==NM & delE==NM => U = NM"; ...
"E==NM & delE==Z => U = N"; ...
"E==NM & delE==PM => U = Z"; ...
"E==NM & delE==PB => U = P"; ...
"E==Z & delE==NB => U = NM"; ...
"E==Z & delE==NM => U = N"; ...
"E==Z & delE==Z => U = Z"; ...
"E==Z & delE==PM => U = P"; ...
"E==Z & delE==PB => U = PM"; ...
"E==PM & delE==NB => U = N"; ...
"E==PM & delE==NM => U = Z"; ...
"E==PM & delE==Z => U = P"; ...
"E==PM & delE==PM => U = PM"; ...
"E==PM & delE==PB => U = PB"; ...
"E==PB & delE==NB => U = Z"; ...
"E==PB & delE==NM => U = P"; ...
"E==PB & delE==Z => U = PM"; ...
"E==PB & delE==PM => U = PB"; ...
"E==PB & delE==PB => U = PBB"; ...
];
fis1 = addRule(fis1,rules);
FIS1 = convertToType2(fis1);
for i = 1:length(FIS1.Inputs)
for j =
1:length(FIS1.Inputs(i).MembershipFunctions)
FIS1.Inputs(i).MembershipFunctions(j).LowerLag =
beta(i);
FIS1.Inputs(i).MembershipFunctions(j).LowerScale =
alpha(i);%scale(i,j);
end
end
L = X(4:6);alpha = X(9:10);beta = X(13:14);
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alpha = min(alpha,[1 1]);
alpha = max(alpha,[0.1 0.1]);
beta = min(beta,[1 1]);
beta = max(beta,[0.0 0.0]);
L = min(L,[7 7 7]);
L = max(L,[0.1 0.1 0.1]);
fis2 = sugfis;
L1 = L(1);
L2 = L(2);
Lo = L(3);
p1 = 1/(1+L1);
p2 = 1/(1+L2);
po1 = 1/(Lo^2*(Lo+1)+Lo+1);
po2 = po1*(Lo+1);
po3 = Lo*(po2-po1)+po2;
fis2 = addInput(fis2,[-10e4 10e4],‘Name’,‘E’);
fis2 = addInput(fis2,[-10e4 10e4],‘Name’,‘delE’);
fis2 = addMF(fis2,‘E’,‘trimf’,[-11e4 -10e4 -
10e4*p1 ],‘Name’,‘NB’);
fis2 = addMF(fis2,‘E’,‘trimf’,[-10e4 -10e4*p1
0],‘Name’,‘NM’);
fis2 = addMF(fis2,‘E’,‘trimf’,[-10e4*p1 0 10e4*p1
],‘Name’,‘Z’);
fis2 = addMF(fis2,‘E’,‘trimf’,[0 10e4*p1
10e4],‘Name’,‘PM’);
fis2 = addMF(fis2,‘E’,‘trimf’,[p1*10e4 10e4
11e4],‘Name’,‘PB’);
fis2 = addMF(fis2,‘delE’,‘trimf’,[-11e4 -10e4 -
10e4*p2 ],‘Name’,‘NB’);
fis2 = addMF(fis2,‘delE’,‘trimf’,[-10e4 -10e4*p2
0],‘Name’,‘NM’);
fis2 = addMF(fis2,‘delE’,‘trimf’,[-10e4*p2 0
10e4*p2 ],‘Name’,‘Z’);
fis2 = addMF(fis2,‘delE’,‘trimf’,[0 p2*10e4
10e4],‘Name’,‘PM’);
fis2 = addMF(fis2,‘delE’,‘trimf’,[p2*10e4 10e4
11e4],‘Name’,‘PB’);
fis2 = addOutput(fis2,[-10e4 10e4],‘Name’,‘U’);
fis2 = addMF(fis2,‘U’,‘constant’, -
10e4,‘Name’,‘NBB’);
fis2 = addMF(fis2,‘U’,‘constant’, -
10e4*po3,‘Name’,‘NB’);
fis2 = addMF(fis2,‘U’,‘constant’, -
10e4*po2,‘Name’,‘NM’);
fis2 = addMF(fis2,‘U’,‘constant’, -
10e4*po1,‘Name’,‘N’);
fis2 = addMF(fis2,‘U’,‘constant’,0.0, ‘Name’,‘Z’);
fis2 =
addMF(fis2,‘U’,‘constant’, po1*10e4,‘Name’,‘P’);
fis2 =
addMF(fis2,‘U’,‘constant’, po2*10e4,‘Name’,‘PM’);
fis2 =
addMF(fis2,‘U’,‘constant’, po3*10e4,‘Name’,‘PB’);
fis2 =
addMF(fis2,‘U’,‘constant’,10e4, ‘Name’, ‘PBB’);
rules = [...
"E==NB & delE==NB => U = NBB"; ...
"E==NB & delE==NM => U = NB"; ...
"E==NB & delE==Z => U = NM"; ...
"E==NB & delE==PM => U = N"; ...
"E==NB & delE==PB => U = Z"; ...
"E==NM & delE==NB => U = NB"; ...
"E==NM & delE==NM => U = NM"; ...
"E==NM & delE==Z => U = N"; ...
"E==NM & delE==PM => U = Z"; ...
"E==NM & delE==PB => U = P"; ...
"E==Z & delE==NB => U = NM"; ...
"E==Z & delE==NM => U = N"; ...
"E==Z & delE==Z => U = Z"; ...
"E==Z & delE==PM => U = P"; ...
"E==Z & delE==PB => U = PM"; ...
"E==PM & delE==NB => U = N"; ...
"E==PM & delE==NM => U = Z"; ...
"E==PM & delE==Z => U = P"; ...
"E==PM & delE==PM => U = PM"; ...
"E==PM & delE==PB => U = PB"; ...
"E==PB & delE==NB => U = Z"; ...
"E==PB & delE==NM => U = P"; ...

"E==PB & delE==Z => U = PM"; ...
"E==PB & delE==PM => U = PB"; ...
"E==PB & delE==PB => U = PBB"; ...
];
fis2 = addRule(fis2,rules);
FIS2 = convertToType2(fis2);
for i = 1:length(FIS2.Inputs)
for j = 1:length(FIS2.Inputs(i).MembershipFunctions)
FIS2.Inputs(i).MembershipFunctions(j).LowerLag =
beta(i);%0.0;
FIS2.Inputs(i).MembershipFunctions(j).LowerScale =
alpha(i);%scale(i,j);
end
end

end

APPENDIX B
MATLAB SIMULINK

FIGURE 22. Structure 1.

FIGURE 23. Structure 2.

FIGURE 24. Structure 3.
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