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ABSTRACT The progressive conversion of conventional bus fleets into full-electric fleets have gained
focus in recent years, instilled by awareness about the environment and significant trends of urbanization.
Public transport operators in major cities worldwide have put efforts into fulfilling this change. However,
an efficient electrification process is still a challenge for most operators. This paper aims to propose an E-
Bus vehicle model that estimates the actual energy consumption. The proposed model is implemented on
the case study of a real bus line for Local Public Transport (LPT) and considers all technical characteristics
of the vehicle. Real-time input data are represented by real driving cycles of the actual bus fleet and slope
profile of the line. Real-time input data allow to establish directly the influence on the energy consumed
during real operations. As simulation results, the global energy consumption and battery State of Charge
(SOC) are then computed for the whole daily service operations. The simulation results are validated with
the real data available and several scenarios are then considered within the simulations. Based on the results
obtained, further improvements are proposed and discussed aiming to optimize the utilization of bus fleet,
regarding both vehicles scheduling and new charging solutions.

INDEX TERMS Charging infrastructure, electric bus, energy consumption, local public transport, state of
charge, vehicle scheduling.

LIST OF ABBREVIATIONS
D Derivative controller.
EB Electric Bus.
EV Electric Vehicle.
HVAC Heating, Ventilation and Air.

Conditioning.
I Integral controller.
LPT Local Public Transport.
OC Opportunity Charging.
OEM Original Equipment Manufacturer.
P Proportional controller.
PD Proportional Derivative controller.
PID Proportional Integral Derivative

controller.
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approving it for publication was Kuo-Ching Ying .

PTO Public Transport Operator.
SOC State of Charge.
WLTP Worldwide-harmonized Light-duty

vehicles Test Procedure.

NOMENCLATURE
A Frontal vehicle area.
APP% Accelerator pedal position.
BPP% Brake pedal position.
CD Aerodynamic drag coefficient.
Cb Braking torque.
Closs Driveline torque losses.
Cm Motor torque.
Cm,reg Regenerative braking torque.
Cnet Net propulsive torque.
Crated Motor nominal torque.
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Ebat Nominal electrical energy capacity of
the battery.

Fb Total braking force.
Fbd Disk friction braking force.
Fin Inertia force.
Ft,net Net tractive force.
Kr Rolling resistance coefficient.
Paux Electric power absorbed by on-board

auxiliary systems.
Pdischarge Total discharge power of the

battery.
Pdischarge,real/ideal Real/ideal discharge power of the.

battery.
Ploss Internal power losses of the battery.
Pm Electric motor power required by the

propulsion system.
Prated Motor nominal power.
Idischarge Battery discharging current.
Raero Aerodynamic resistance.
Rg Gravitational resistance force.
Rinternal Internal battery resistance.
Rr Rolling resistance.
Voc Open-circuit voltage.
a Instantaneous vehicle acceleration.
f Regeneration factor.
g Gravity acceleration.
m Total vehicle mass.
rw Wheel radius.
v Instantaneous vehicle velocity.
ηm Motor efficiency.
θ Slope angle.
ρair Air density
τg Gear ratio.
ω Angular motor speed.
ωreg,th Threshold value of angular motor

speed for regenerative braking torque.

I. INTRODUCTION
Decreasing environmental impact of human and industrial
activities is pushing worldwide cities and local govern-
ments to put into practice a variety of solutions oriented to
reduce the pollution in urban areas. Some of them regard
directly the Local Public Transport (LPT), considering poli-
cies like the rearrangement of the service offered between
urban and suburban areas or a zoning process [1]. But for
sure, themost implemented solution regards the improvement
in the electrification of vehicle fleet in LPT. Since the elec-
trification is somehow intrinsic for railways or underground
transportation systems, the main challenge is nowadays rep-
resented by the total conversion of LPT’s road vehicle fleets
to Electric Vehicles (EVs). This is mainly centered around
the metropolitan areas of the world because of increasing
trends in urbanization; in fact, it is expected a growth up to
two-thirds of global population to be living aroundmetropoli-
tan areas [2]. Until recently, accepting this evolution has been
difficult due to the high upfront investment and limited range

of EVs. The technological advancement and several govern-
ment policies have allowed a successful implementation of
the transition to full-electric bus fleets in major cities. This
global trend has been increasing substantially over the recent
years, since most cities are looking for solutions to improve
air quality and reduce CO2 emissions. In fact, environmental
pollution in large cities is approximately 20%due to the trans-
portation system [3]. Consequently, the cities have been eager
to step up their efforts in a complete and progressive renewal
of LPT bus fleets. From the perspective of decarbonization,
green public mobility has indisputable advantages; these go
from the reduction of carbon emissions to the real possibili-
ties for public administrations and Public Transport Operators
(PTOs) to reduce operating and maintenance costs and offer
a high-quality service to their customers. Achieving global
decarbonization goals and transforming a city into a smart
city are two intrinsically related goals.

This paper aims to develop a simulation model of energy
demand for an Electric Bus (E-Bus or EB) able to estimate the
energy requirements for the normal daily service operation.
The paper is oriented to describe in details the methodol-
ogy used, exploiting further developments with respect to
the starting results obtained previously [4]. In particular,
novelty of the present work is emphasized by the different
simulation scenarios performed, through whose results the
optimal utilization of bus vehicle fleet is reached. The vehicle
model includes the vehicle parameterization and it is based on
already existing local driving scenarios. A general overview
andmethodology of modeling the vehicle and energy demand
developed in Simulink is provided, focusing on all the subsys-
tems. The case study is represented by a real bus route served
with E-Buses described by the technical characteristics of the
vehicle and of the route. The model has been implemented on
the route chosen and the simulation results validated on real
data. The model can be also employed to assess some mod-
ifications on the charging operations and helps to evaluate a
different daily vehicle schedule.

II. STATE OF THE ART
Electrification of LPT has faced immense challenges over
the last decade. In a urban context, the opening of a railway
rapid mass transit line can offer a significant reduction of
pollutant of about 4% [5]. The most limiting factor is as
obvious the great economic expenses related to the design
and construction of such urban railway lines. Therefore, the
focus must move to bus vehicles circulating into the LPT
network [6]. Many advancements have been developed for
technical requirements in E-Bus market, battery and tech-
nologies, designing new efficient charging infrastructure and
planning processes in transport companies. The battery tech-
nologies have advanced quite significantly thus leading to
lower the corresponding prices per kWh. Combined with
the need of a CO2-free environment, the whole industrial
world has been moving at a rapid pace towards electrifica-
tion. An efficient E-Bus system design has been discussed
in academic literature in a quite extensive manner, with
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significant contributions from a number of experts in auto-
motive engineering, energy engineering, automotive Original
Equipment Manufacturers (OEMs), and nevertheless from
PTOs. In recent years, the development of smart charging
solutions and decreasing battery prices have enabled local
PTOs to proceed with the conversion of conventional vehicles
into a full-electric bus fleet [7], [8].

The highly increasing demand of zero-emission pub-
lic transport buses and competitive external pressure has
enforced the E-Bus market growth. China currently rep-
resents the leader with 99% of global E-Bus fleet (about
460,000) in service [8]. The actual E-Bus market in Europe
is still growing and taking up roots in several cities, which
are transforming part of their network now served by EVs
only. After beginning with redundant vehicles and prototype
testing, the first dedicated bus routes were electrified as
part of the ZeEUS project such as in Barcelona, Bonn and
Munster [9]. The next level has been completed by the sub-
network electrification, with E-Buses operated only along
several lines. There are examples of European cities that have
started employing their technology towards a practical imple-
mentation, promoting and inspiring several cities around the
world to face this change. Some remarkable examples are
Vienna, London, and Eindhoven, the first few cities in Europe
to begin sub-network operations at very early stages [9], [10],
[11]. A completely electric LPT bus network is the final goal
and is being targeted in several cities across the continent. The
rise of E-Buses in Europe still continues: after 2,210 electric
buses in 2020, a further 3,282 electric buses - in each case
excluding trolleybuses - were newly registered in 2021, with
manufacturers competing for market shares. Among 14,990
new public buses registered in 2021 in the European mar-
kets, 59.4% are already equipped with alternative drives [12].
Lithium-ion battery pack prices-per-kWh reduced by 89% in
2021 if compared with 2010, a 6% drop from 2020. Based
on historical trends, it has been predicted that average battery
pack prices should be below 100 $/kWh by 2024. It is at this
turning point that the OEMs would be able to produce and
sell mass-market EVs being strongly competitive to internal
combustion vehicles in some specific marketplaces [13].

Advancement in battery technologies have played a major
role, as battery lifetime is one themain parameters considered
by any PTO when planning a switch from conventional to E-
Bus fleet. A battery is typically considered to have reached
the end of life when it has less than 80% of its initial capacity,
rather than being completely exhausted. The warranted end-
of-life capacity is an important factor to consider, as the lower
the capacity at the end of its life, the fewer miles a E-Bus
can drive [7]. The battery life cycle can be improved by
introducing new technologies like solid-state batteries, which
provide high life cycle, low thermal degradation and low
degradation due to charging cycles, since the electrolyte is
solid if compared with Li-ion batteries [14].

Also charging infrastructure plays a very crucial role in E-
Bus system design, since every vehicle needs battery charge
at regular intervals. Depending on the charging frequency and

FIGURE 1. Interdependence of E-Bus system design processes.

the charging power, two concepts can be distinguished: depot
charging and opportunity charging [11]. Depot charging is
also used during longer dwell times throughout the day, in a
very similar way to Diesel bus operating scheme. The depot
charging idea empowers a centralization of infrastructure in
the depot. Typically, vehicle demand is different during peak
and off-peak hours, and thus the energy demand. This can
be accommodated to charge the vehicles at the depot during
off-peak hours. Due to the low range limit of most E-Buses,
depot charging is not entirely sufficient to complete the daily
operations requirements. Opportunity charging helps in such
cases by on-route charging and thus extending the depot
charging effectiveness. This solution is suitable for terminal
stops due to longer dwell times. This makes the vehicle inde-
pendent of the installed vehicle battery capacity. The design
of opportunity chargers depends highly on the location and
complexity of the construction of such infrastructure. So, the
schedule planning of the E-Bus transportation system must
account for frequent visits to charging terminals, ensuring
proper duration of dwell times [15]. However, the E-Bus
technology, charging infrastructure and vehicle scheduling
depend on the local scenario. Thus, every PTO must adapt
the electrification process to achieve the targets. The literature
references regarding the topic of E-Bus transportation system
and charging infrastructure are briefly collected in Table 1,
where the main differences, paybacks and drawbacks with
respect to the aim of the present work are underlined.

III. GENERAL OVERVIEW
The service scheduling influences the technical design of
vehicles and infrastructure and defines the entire framework
of the scenario. This is established by the driving range and
the dwell time duration at potential charging locations [11],
[26], [27], [28], [29]. On the other hand, vehicle scheduling is
limited by technical constraints of the E-Buses, such as lim-
ited battery capacity which decreases the operational range,
and charging infrastructure, as depicted in Figure 1.

Vehicle scheduling is a fundamental aspect in operational
planning as it focuses strongly on:

• costs, determining the vehicles purchase based on the
required fleet size and the operational expenditure of the
buses;
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FIGURE 2. Example of normalized driving cycle (WLTP).

• maintenance scheduling, since vehicles must com-
plete all inspections, complying with their maintenance
plan [30], [31].

An efficient E-Bus design scheme must consider:
• the development of a mathematical model for a full-
electric vehicle,

• an accurate modelisation of the energy consumption of
E-Buses considering the route topology, weather condi-
tions, and traffic flow, the operational requirements of
power distribution networks,

• the optimal definition of the configuration for both on-
board battery packs and chargers [32].

Therefore, a model for calculating E-Bus energy consump-
tion on specific real routes has been created to evaluate
the vehicle energy demand and infrastructure improvements.
General data related to the existing local scenarios have been
recorded through Phyphox phone application [33]. Since the
energy demand depends on the route characteristics, as well
as on the technical configuration of the vehicle, sampled
dataset is constituted by the real-time speed profile and
route elevation profile of the bus line considered. The actual
standards prescribe to consider reference driving cycles to
evaluate energy consumption, such as WLTP (Worldwide-
harmonized Light-duty vehicles Test Procedure) in use in EU
since 2015. These reference cycles provide the same testing
conditions for different vehicles, thus leading to estimate the
energy consumption for each and allowing a direct compari-
son between each other. Conversely, in this case a real driving
cycles are acquired, thus to evaluate directly the impact of real
operations on the overall energy consumption, considering
both peak and off-peak periods during the day and among
different days. In this way, the whole E-Bus system can be
set up, meaning that not only the vehicle-related parameters
but also the charging infrastructure can be designed optimally
for the purposes.

IV. ENERGY DEMAND MODEL
The proposed model for the estimation of E-Bus energy con-
sumption has been developed in Matlab-Simulink and con-
siders a reference real driving cycle and the slope profile for
the selected route as input data. A longitudinal driver block is
implemented to process the input data. The characterization

FIGURE 3. Energy demand model for Battery Electric Bus vehicle.

FIGURE 4. Longitudinal driver block.

of the vehicle considers propulsion, battery, braking and driv-
eline subsystems [34]. The proposed Simulinkmodel consists
of 6 subsystems in total that describe the vehicle energy
consumption and is graphically depicted in Figure 3.

A. LONGITUDINAL DRIVER BLOCK
The Longitudinal driver block implements a longitudinal
speed-tracking controller. The model uses this block to model
the response of a real driver, generating the commands nec-
essary to track a longitudinal driving cycle. Based on the
feedback of the simulated speed, acquired real-time slope
and reference speed profiles, the block generates the dynamic
normalized response of a driver, i.e. acceleration and braking
pedal commands that can vary from 0 to 1. The blockworks as
a Proportional Integral Derivative (PID) controller and adapts
the acceleration and brake pedal position to follow the real
bus speed profile. The choice to set a PID in spite that a PD
or a simple P controller is based on the stability reached by
such controller with respect to PD and P, which can generate
unstable response. Moreover, since the simulation scenarios
are based on real bus operations, it is meaningless to consider
a normalized reference driving cycle. As aforementioned,
these driving cycles are mainly designed to evaluate the
energy consumption of different vehicles based on a standard
framework. The inputs to the driver system block are shown
in Figure 4.

B. BRAKE SYSTEM
The Brake system block computes the friction braking force
as output, based on the brake pedal position coming from
the Longitudinal driver block as input. The braking force
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is computed and braking command is converted into the
desired braking force, being known the tyre-road adhesion
coefficient. Since the electric vehicle is capable to generate
a braking action also by the electric motor, according to a
regeneration braking factor, the desired brake force is then
divided into two main components:

• the friction braking force developed by brake disks,
• the regenerative brake force developed by electric motor
working as current generator.

Since the regenerative braking is not effective at low
speeds, usually a threshold value is chosen in the range
of 10÷25 km/h. Below this threshold value, only friction
braking force is applied, while above this threshold both
friction and regenerative braking contributions are applied,
as reported in (1) [35].

Fb =


BPP% (1 − f )Fbd ifω > ωreg,th

BPP%Fbd ifω ≤ ωreg,th

(1)

where:
• BPP% is the percentage of brake pedal position,
• Fb is the total braking force,
• Fbd is the disk friction braking force,
• f is the regeneration factor,
• ω is the actual angular motor speed,
• ωreg,th is the threshold value of angular motor speed for
regenerative braking torque.

C. PROPULSION SYSTEM
The accelerator pedal position provided by the driver block
acts as an input also to Propulsion system block, which com-
putes a corresponding positive torque for each time instant,
as reported in Figure 5. Two working areas can be distin-
guished within the motor diagram, as depicted by Figure 5b:

1) Increasing motor power (or constant motor torque)
2) Constant motor power.
The constant motor torque value is computed according to

this distinction and reported in (2). In particular, the motor
torque analytical formulation is given as the minimum value
between the two working conditions.

Cm = min
(
Crated ;

Prated
ω

)
· ηmAPP% (2)

where:
• APP% is the percentage of accelerator pedal position,
• Cm is the motor torque,
• Crated is the motor nominal torque,
• Prated is the motor nominal power,
• ηm is the motor efficiency,
• ω is the angular motor speed.

During starting phases, angular motor speed is very low
(ω → 0), thus the value computed by Prated

ω → ∞. This leads
to consider a constant output motor torque. Conversely, when
motor power is kept constant, motor torque starts to decrease

FIGURE 5. Propulsion system block for E-Bus vehicle model: (a) input and
output variables and (b) motor diagram.

due to increasing speed with a hyperbolic relation given by
Cm =

Prated
ω .

When braking phase is deployed, the corresponding BPP%
command becomes greater than zero while APP% = 0.
Therefore, the propulsion block stops to compute the motor
torque and generates only braking torque, whose analytical
formulation is given in (3).

Cb =


BPP% · f τgCm,reg ifω > ωreg,th

0 ifω ≤ ωreg,th

(3)

where
• Cb is the braking torque
• Cm,reg is the regenerative braking torque,
• τg is the gear ratio.

Net propulsive torque is obtained by subtracting braking
torque from motor torque, according to (4).

Cnet = Cm − Cb (4)

where Cnet is the net propulsive torque, either motor or
braking.

The utility of (4) is related to account for the correct sign
of either motor or regenerative braking torque in Longitu-
dinal Vehicle Dynamics block. In particular, as previously
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FIGURE 6. Auxiliary consumption.

remarked, only one between accelerator and brake pedals will
be active, and therefore Cnet will depend only on one single
contribution of propulsion torque. The amount of electric
motor power and the net motor torque transmitted to the
driveline are the output of this block.

D. BATTERY SYSTEM
The Battery system block requires as input the total power of
discharge Pdischarge reported in (5), as the sum of:

• the electric motor power required by the propulsion
system Pm,

• the electric power absorbed by on-board auxiliary sys-
tems Paux .

Pdischarge = Pm + Paux (5)

On-board auxiliaries include several electrical components
that are briefly summarized by Figure 6 and hereby listed:

• for high voltage auxiliaries
– Power steering,
– Air compressor,
– Heating, Ventilation and Air Conditioning (HVAC)

system.
• for low voltage auxiliaries

– Lighting system,
– Battery and motor cooling system,
– Infotainment, Passenger Information Display.

The battery is represented by a real independent voltage
source (or series-equivalent dipole) formed by:

• an ideal voltage source, defined as an open-circuit volt-
age Voc,

• the internal battery resistance Rinternal .
According to (6), the real (or net) discharge power of the

battery is equal to the difference between ideal discharge
power and the battery losses, linked to its internal resistance.

Pdischarge,real = Pdischarge,ideal − Ploss (6)

where:
• Pdischarge,real/ideal is the real/ideal discharge power of the
battery,

• Ploss is the amount of internal power losses of the battery.
The battery Pdischarge,ideal is modeled according to the rela-
tionship reported in (7). Since the series-equivalent dipole is
formed by the series of an ideal voltage source and the bat-
tery own internal resistance, the power losses are considered
according to (8).

Pdischarge,ideal = VocIdischarge (7)

Ploss = RinternalI2discharge (8)

Thus, it is possible to build up the main relationship stated
in (6) with (7), (8) and it is possible to retrieve the discharge
current according to the analytical solution of (6) as reported
in (9).

Idischarge =

Voc −

√
V 2
oc − 4Pdischarge,realRinternal

2Rinternal
(9)

where Idischarge is the discharging current of the battery.
The battery State of Charge (SOC) can be evaluated

according to (10) as a function of the rated energy capacity
measured in kWh.

SOCbatt =

−

∫ T

0
VocIdischargedt

Ebatt
· 100 (10)

where Ebat is the nominal electrical energy capacity of the
battery.

The SOC provides the current battery status expressed in
percentage values where 0% indicates fully discharged and
100% indicates fully charged battery. In this model, to mini-
mize battery degradation and ensure safe battery operation:

• the upper SOC limit is set to 80% of full battery charge,
• the lower SOC limit is set to 20% of full battery
charge [36].

E. DRIVELINE SYSTEM
The net motor torque computed in Propulsion system, the
friction brake force from the Brake system and the instanta-
neous simulated vehicle speed act as input data to the Drive-
line system block. The simulated vehicle speed is here used to
estimate the amount of friction losses due to driveline. Start-
ing from the net propulsive torque, the positive tractive force
supplied by the driveline to the tires is calculated according
to (11).

Ft,net =
τg

rw
(Cnet − Closs) − Fbd (11)

where
• Ft,net is the net tractive force,
• Closs expresses the driveline friction losses as torque,
• rw is the wheel radius.

The net tractive force delivered by the driveline and acting on
the vehicle is the output of this block and acts as input for the
Longitudinal vehicle dynamics block.
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FIGURE 7. Longitudinal Forces on a bus in motion.

F. LONGITUDINAL VEHICLE DYNAMICS BLOCK
The Longitudinal Vehicle Dynamics block receives the net
tractive force in input and compares it with the sum of motion
resistances opposing the direction of motion. In every time
step of the trip, as shown in Figure 7 the vehicle motion
mainly depends on the following contributions:

• the rolling resistance Rr (12),
• the aerodynamic force Raero (13),
• the resistance force due to the slope Rg (14),
• the inertia force Fin, for which the maximum vehicle
mass is considered (15).

Rr = Krmg cos θ (12)

Raero =
1
2
ρairCDAv2 (13)

Rg = mg sin θ (14)

Fin = ma (15)

where:
• m is the total vehicle mass,
• g is the gravity acceleration,
• Kr is the rolling resistance coefficient,
• ρair is the air density,
• CD is the aerodynamic drag coefficient,
• A is the frontal area of the vehicle,
• v is the instantaneous vehicle velocity,
• a is the instantaneous vehicle longitudinal acceleration,
• θ is the instantaneous slope angle.

Therefore, this system calculates the acceleration of the vehi-
cle and, consequently, the simulated speed according to (16)
that describes the longitudinal vehicle motion.

a =
Ft,net −

(
Rr + Raero + Rg

)
m

(16)

Both physical quantities v, a are then fed back to Longi-
tudinal driver, Brake system and Driveline blocks, useful to
perform internal calculations for subsequent simulation steps.

V. CASE STUDY: A REAL BUS ROUTE
The vehicle model has been tested and validated on a refer-
ence route. Then, simulation runs have been performed based
on the reference route chosen. The case study considers a real
route in Northern Italy already served by E-Buses. The route

FIGURE 8. Bus route considered, 29 stops, length 8.5 km: (a) map and (b)
altitude profile.

is 8,5 km long and depicted in Figure 8a, while Figure 8b
depicts the altitude profile of the route considered fromwhich
the slope profile is derived through numerical way.

For this specific bus route, speed and altitude profiles
have been recorded for various roundtrips at different hours
of the day and different days of the week using Phyphox
mobile application [33]. The need to have real data instead
of generalized data is due to the fact that the evaluation
of energy demand here depends on the operating and route
characteristics as well as on the technical configuration of
the vehicle. A valuable option is to consider a measurement
campaign in which every eligible bus is operated under worst-
case conditions on the selected bus route. However, such a
test operation would lead to increase the operative costs and
furthermore, worst-case service conditions are not present
throughout the year. Hence, measurement data are collected
from existing bus route operations and processed into a local
scenario through the numerical model. The use of generalized
and averaged data (as normalized driving cycles) could in
this case affect the final results excluding the most significant
influences. The major challenge here is to identify the energy
demand-affecting parameters, as for example the speed pro-
file. Therefore, the actual speed profile from real operations
as well as the slope of the route served and selected are
sampled.

The services are characterized by peak and off-peak hours
related to working and weekend days. The service peak hours
are 7:00 to 9:00 AM and 5:00 to 7:00 PM. The bus service and
energy consumption depend on the daily period of service,
with sensible variations among them. Figure 9a depicts the
velocity profile related to a working day service-peak hour,
while Figure 9b represent the same information acquired
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FIGURE 9. Speed profiles of a working day service: (a) peak hour, (b)
off-peak hour service.

FIGURE 10. Speed profiles of a weekend day service: (a) peak hour
service, (b) off-peak hour service.

for off-peak hours on working day. For weekends service,
Figure 10a depicts the velocity profile for the peak hours
whereas Figure 10b reports the same for off-peak hours.

It can be observed that as far as the speed profiles are
concerned, during off-peak services the maximum speed is
about 70 km/h for weekends whereas on working days it
reaches only 50 km/h. Moreover, the dwell times vary a lot
and are smaller for the weekends. Comparing peak hours, the
maximum speed reached by the bus is respectively 55 and
40 km/h for weekends and working days, dwell times at stops
are larger during peak hours of working days while dwell
times at terminal stops are larger in peak hours of weekend
services. These variations have a great impact on the energy
consumption of the E-Bus. In addition to vehicle, motor,
battery specifications and speed and altitude profiles, also
several other simulation parameters depending on the driving

TABLE 2. Simulation parameters.

conditions are required for the model set-up and are listed in
Table 2 [37], [38], [39], [40], [41].

The simulation model assumes a dry tyre-road adhesion
coefficient, since real data were recorded on dry weather con-
ditions [40]. As aforementioned, the model implements a par-
allel braking system based on a direct combination between
friction-based and regenerative braking torques. Regenera-
tive brake factor represents the percentage of braking force
delivered by regenerative braking. The regenerative brak-
ing threshold velocity is set at 15 km/h [38]. Aerodynamic
drag and rolling resistance coefficients have been chosen
and set according to [40]. Although various factors affect
the energy consumption of a E-Bus trip, the average energy
consumption rate of 1.41 kWh/km has been considered for
auxiliary systems, which is based on the results obtained by
employing E-Buses in a regular city bus route under a real-
world evaluation experiment [41]. The relatively high value
of auxiliaries energy consumption chosen allows to stress the
simulation scenario for the output results provided by the
vehicle model. Simulations are run through the model and
prompt the energy discharged by the motor, the regenerated
energy, and battery SOC. For every simulation, one roundtrip
data has been considered with 4 minutes of dwell time at the
terminal stop as an average of the acquired data.

VI. MODEL VALIDATION
During the day, the buses run in service during both peak
and off-peak hours, thus the daily energy demand can be
simulated using a combination of these roundtrip simulations.
This information can be used to determine the daily energy
demand from the buses for this route and thus, suggest any
modification to the service if required for the improvement
of the operations from feasibility, efficiency and financial
point of view. In order to validate the data obtained from the
developed model, real data of the E-Buses operating on the
route among five working days have been recorded. The data
referred to each bus in daily operations consists of:

• Bus number,
• Date of service,
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TABLE 3. Prepared test data for validation.

TABLE 4. Prepared simulation scenarios of test data.

• Start of service time,
• End of service time,
• Discharged energy,
• Regenerated energy,
• Battery SOC.

These data were collected at depot before and after the ser-
vice. Also the time of exiting from and returning to the depot
has been considered. To simplify the process, test data have
been prepared as shown in Table 3 based on the choice of
six relevant bus services. Thus, from EB-1 to EB-6, the start
and end of the service times cover the service durations of
each bus running on working days. The discharged energy,
regenerated energy and battery used test-data have been pre-
pared by averaging the data of all the buses for 5 days that
correspond to the similar duration of service and number of
peak and off-peak roundtrips taken.

For the prepared test data, simulation scenarios have been
created as shown in Table 4 based on the combination of peak
and off-peak roundtrips during their service time. Duration
on-line corresponds to the time spent in running along the
path specified for the route. Duration off-line corresponds
to the time spent in dwelling at the initial stop after each
roundtrip and the time spent to reach the initial stop from
the depot and going back to the depot itself after the last
roundtrip.

After performing simulations based on the six EBs
selected, the simulation results have been compared with the
test data and depicted in Figure 11.

FIGURE 11. Error between real and simulated data: (a) discharged and
regenerated energy, (b) Battery used.

The simulation results are close to the test data with mean
errors within 3-6% for discharged energy, regenerated energy
and battery used data. The sources of error are related to
unavailable velocity profiles and driving behavior for the
off-line duration paths. Moreover, the simulation data are
obtained as a combination of roundtrips that belong either to
peak hours or off-peak hours, whereas in reality there are few
roundtrips which lie both in peak and off-peak region. Hence,
since minimal errors emerged after data comparison phase,
the model is meant as validated.

VII. RESULTS AND DISCUSSION
The model hereby presented has been then used to simulate
the running behaviour of an EB running during a whole day
of observation according to two distinct scenarios:

1) starting from real driving cycle data,
2) following the own timetable of the route considered.

A. REAL DRIVING CYCLE DATA
Simulations are run starting from real driving cycles acquired
and reported in Figures 9, 10 as input data. The observations
from the simulation results are shown in Table 5 for both
the working days and weekends. In this way, it is possible to
appreciate the difference between the two working conditions
of an E-Bus.

As it can be observed, on working days the energy dis-
charged is higher during peak hours as more time is spent to
cover the same distance. On weekend days, a higher energy
consumption is observed as the vehicle reaches higher maxi-
mum speeds for longer durations. In particular, off-peak shifts
show higher energy discharged due to the higher maximum
speed reached. Higher regeneration percentage is observed
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TABLE 5. Roundtrip simulation results – working and weekend days.

during off-peak hours in both day types, because with higher
speeds the duration of braking is longer and stronger than
in the cases of peak hours: this leads to higher regeneration
of kinetic energy available. Moreover, the lower maximum
speed reached in peak hours on working and weekend days
allows to regenerate a smaller amount of kinetic energy by
the electric motor if compared with weekend days service
operations. During roundtrips, energy consumption is about
8-11% of battery nominal capacity, being higher during peak
hours of working days and off-peak hours on weekend days.
It can be concluded that an E-Bus can cover 8-10 roundtrips
along the route considered with a fully charged battery.

B. TIMETABLE SCENARIO
The model estimates the battery SOC used for each EB
running, according to the initial timetable set for the bus
route. Based on the simulation results, also additional con-
siderations related to vehicle scheduling can be proposed.
Timetable and results of the first simulation run are reported
in Table 6.

It can be observed that EBs n◦ 1, 2, 3, 5, 6, 7, 8 have a
substantial amount of battery left after the end of their service
in the morning. Moreover, observing the service scheduling,
it has been found that EBs n◦ 1, 2 and 5 stay in the depot while
others are employed on services, also on other routes. Thus,
based on the information about the start and end of service
times, a modification could be performed by replacing EBs n◦

11, 12 and 16with 2, 5 and 1 respectively with their remaining
battery SOC after the first service scheduled. This solution
is proposed since service duration of EBs n◦ 1, 2, 5 do not
overlap with each other. Having rearranged the scheduling
service, a second simulation run can be performed to assess
the new solution, considering the continuity of SOC between
two subsequent services. The battery SOC simulations results
have been listed in Table 7.

According to the results of the second simulated service,
the remaining SOC for each bus is well above 20%, previ-
ously set as the lower limit for the battery. Thus, the pro-
posed re-scheduling is both feasible and profitable as three
buses were removed from the service. These EBs could
then be used to provide services on other routes if needed.

TABLE 6. Battery Status for buses.

TABLE 7. Battery SOC simulation results after re-scheduling.

The numerical model presented shows strong potentialities
to support numerically the proposal of a modification in
the usual fleet scheduling, starting from the results obtained
by the actual configuration. In addition, as a consequence
of the numerical analysis, the energy demand model here
developed can be exploited also to increase the effectiveness
of electrification process planning.

C. IMPLEMENTATION OF OPPORTUNITY CHARGING
As a consequence of the analysis shown in Table 7, sim-
ulation results point out that EB-4 runs for two services
and the service duration of EB-10 lies between the two
services of EB-4. After the very first rearrangement, it was
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TABLE 8. Battery SOC without Opportunity Charging.

TABLE 9. Battery SOC with Opportunity Charging.

found that just replacing EB-10 with EB-4 would not be
sufficient, since the remaining SOC of EB-4 after three ser-
vices would lie below the SOC lower limit as reported in
Table 8.

So, a possible solution to this critical point can be repre-
sented by the implementation of Opportunity Charging (OC)
infrastructure. This solution is not present on the bus route
considered but it can be derived from 200 kW pantographs
chargers already installed on other routes. The implementa-
tion of OC has been performed for EB-4 as a case study in
order to remove EB-10 from schedule. This solution has been
then implemented into the simulation, considering 4 min-
utes of dwell time at the terminal stop, with the following
partition:

• 1 minute for charging connection/disconnection,
• 2 minutes for charging operation at 200 kW constant
nominal power.

The simulation has been carried out separately for the three
services and results are shown in Figure 12a for the Service 1,
Figure 12b for Service 2 and Figure 12c for Service 3 respec-
tively as depicted in Table 9.
As prompted by the new updated scenario in Figure 12,

with OC solution implemented, each EB starts the subsequent
service with the remaining SOC from the previous service
accomplished. Therefore, EB-4 starts its daily service with
100% fully charged battery and undergoes two OCs (red-
circled), ending its service with a SOC equals to 87.03%. The
second daily service is then accomplished after two OCs with
a battery SOC of 75.29%. The last and longer daily service
is executed and completed with 7 OCs and a remaining SOC
equal to 32.94%. As reported in Table 9, EB-4 can provide
three services with OCs with more than 30% of battery SOC
remaining at the end of last service.With careful observations
from the output results provided by the E-Bus model with
implementation of OC solutions, 4 buses have been removed
from the daily service of the route. Thus, a similar approach
can be adopted also for other bus lines, thus improving the

FIGURE 12. EB Simulations with Opportunity Charging for (a) service 1,
(b) service 2, (c) service 3.

efficiency of the vehicle scheduling. Moreover, the daily
public transport services can be providedwith a lower number
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of vehicles than the actually used. In this way, buses that have
been removed from the schedule can be destined to serve
other critical bus lines, thus helping to sustain the passenger
demand and to increase route capacity.

VIII. CONCLUSION
An energy demand model for E-Buses was developed in
Matlab-Simulink to preliminary evaluate the vehicle energy
consumption during normal service operations. The modeli-
sation of each vehicular subsystem of interest was provided,
with particular focus on propulsion and battery energy stor-
age. A longitudinal driver model was introduced as a PID
controller, in order to replicate the driving cycle of a real bus
driver, sampled through Phyphox mobile app. The model was
then validated on available real data from daily service, prov-
ing to replicate effectively the real behaviour of the vehicle
with minimal errors. As an unexpected payback, the output
results provided made possible to re-schedule the service,
thus optimizing the vehicle utilization and fleet SOCmanage-
ment. The capability of the model are emphasized through the
assessment of smart charging solutions based on the energy
requirement of the vehicle in service on the chosen route.
Moreover, this work provides how a numerical vehicle model
can act as a tool to help the electrification planning for an
existing LPT network and can be implemented for analyzing
any route served with conventional buses. It helps to estimate
the energy demand of an equivalent E-Bus and provides help
in both the evaluation of vehicle type and number for starting
their services. For future developments, similar studies can be
extended to other non-electrified routes of the network served
with conventional vehicles, thus improving the actual vehicle
scheduling of the route. An efficient electrification can be
carried out to achieve the target of full-electric conversion of
the fleet.
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