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ABSTRACT In this work, we establish a novel dynamical model to address the aggregation problem of
the multi-agent system on manifolds. At first, with the help of local coordinate charts, we describe the
multi-agent system as a manifold, which is part of the ambient space. Then, we convert the aggregation
problem of agents into an optimization issue to minimize the volume of a virtual manifold, and we show that
evolving along its mean curvature field can minimize the virtual manifold’s volume. Finally, we implement
our approach for the multi-agent system on the sphere and non-homogeneous manifold. Several numerical
simulations are also performed to verify our theoretical analysis.

INDEX TERMS Aggregation, minimal volume, multi-agent system, Riemannian geometry, synergistic
behaviors.

I. INTRODUCTION
Synergistic behaviors of multi-agent systems are ubiquitous
in our natural and manufactured complex systems and have
many features such as aggregation, velocity alignment, and
collision avoidance. In the case of Euclidean space, the emer-
gence of synergistic behaviors has been extensively studied
in plenty of works such as the pivotal Artificial Potential
Field model in [1] and [2], the Vicsek type model in [3], [4],
and [5], the Kuramoto type model in [6], [7], and [8] and the
Cucker-Smale (C-S) type model in [9]. Nevertheless, such
models barely consider the curvature effects of the space,
which may affect the emergence of synergistic behaviors of
multi-agent systems moving in a more complicated manifold.
In more recent years, the emergence of synergistic behaviors
of multi-agent systems on manifolds has been an active field
of interest due to its numerous applications in manufacturing,
aerospace technologies, and robotics. In order to address
this problem, models dealing with aggregation, velocity
alignment, and collision avoidance on manifolds have been
proposed. In order to realize the aggregation of multi-agent
systems on sphere, a second-order dynamic model based
on the classic Kuramoto model is introduced in [6], [10],
and [8]. In order to achieve velocity alignment of multi-agent
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systems on various manifolds, an extended Cucker-Smale
(C–S)model is provided in [11], [12], and [13]. The collisions
avoidance task of a multi-agent system on general manifolds
has been considered in [14], [15], [16], [17], and [18], and
an artificial potential on a general manifold is designed to
ensure that agents will avoid collisions within some desired
tolerance. In general, these models cannot describe all of
the significant features of synergistic behaviors of multi-
agent systems entirely, and some of their applications are
limited.

However, the second-order dynamic model in [10] has
many deficiencies. Firstly, the multi-agent system and
ambient space need to be embedded in a Euclidean space,
and the evolution of agents is described by the global
descartes coordinate chart. Therefore, the dynamical system
of agents has to satisfy some specific form due to geometric
constraints. Besides, it is difficult to keep the agents moving
in the ambient space when the dynamical system is solved
numerically. Last but not least, the Kuramoto-type models
can not be implemented on other manifolds except sphere and
some specific cases. In order to address these deficiencies,
a general framework based on Riemannian geometry is
introduced by us to realize multi-agent systems’ aggregation
onmanifolds. In order tomake the agents continuously evolve
in the ambient space, we use local charts to describe themulti-
agent system, and the agents are naturally part of the ambient
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space. Furthermore, we convert the aggregation problem of
the agents into an optimization problem of minimizing the
volume of a specific manifold. Then, we find out the desired
direction to minimize the virtual manifold’s volume and
establish a novel dynamic model to describe the aggregation
behavior of agents on manifolds.

In summary, we convert a multi-objective optimization
problem (swarm’s aggregation and shortest path length)
under geometric constraints into a problem of minimizing the
volume of a manifold, and we realize swarm’s cooperative
aggregation behaviors on the unit sphere and a curved surface
similar to a hilly terrain; compared to previous research,
our method and theory are more proper and practicable for
engineering implementations. The remainder of this paper
is structured as follows. In section II, preliminaries on
Riemannian geometry are introduced, and some concepts
describing the movement in Euclidean space are interpreted
in the language of Riemannian geometry. Section III deals
with the proof of our main theoretical results and the
construction of our model. Then, in section IV, we implement
our approach for themulti-agent systems on the sphere and on
a non-homogeneous manifold. Several numerical simulations
are also performed by us to verify our approach’s rationality.
Finally, section V is devoted to a summary of our main results
and discussing some remaining open problems for future
work.

II. REVIEW OF RIEMANNIAN GEOMETRY
In this section, some standard concepts and symbols from
Riemannian geometry that are used in the sequel are
presented. Moreover, concepts in mechanics are reinterpreted
in the language of Riemannian geometry, such as velocity,
acceleration, and evolution of agents.

In our approach, the multi-agent system is treated as a
manifold, denoted as M. Each manifold is locally home-
omorphic to a Euclidean space with the same dimension.
Therefore, for any given point p belongs to M we can
find a homeomorphism ζ on a local neighborhood U , and
ζ determine the one-to-one correspondence between U and
the Euclidean space. According to the correspondence, each
point in U is designated a unique Euclidean coordinate
denoted as {x i}ni=1, n is the dimension ofM. If ζ is infinitely
differentiable, which means ζ ∈ C∞(M), thenM is called
a smooth manifold. {x i}ni=1 is called the local chart on U ,
and the tangent space of M is defined to be TpM =

{
∂

∂x1
, ∂

∂x2
, · · · , ∂

∂xn }. The union TM = ∪
p∈M

TpM is called

the tangent bundle of M. A vector field defined on M is

denoted as X =

n∑
i=1

Xi ∂∂xi and Xp ∈ TpM,∀p ∈ M, the

union of the vector fields is TM.

1) Riemann metric tensor
For any manifold M the inner product of tangent
bundle vectors is determined by a second order non-
negative symmetric tensor gij called themetric tensor of
M, and each component is defined by gij = ⟨

∂
∂xi ,

∂
∂xj ⟩.

2) Velocity and acceleration of agents on manifolds
The velocity v of an agent on any point p of manifold
M is a tangent vector, which lies in TM, and the
acceleration of the agent is defined by the covariant
derivatives onM. The covariant derivative of any two
vector field is defined as follow:

DXY =

n∑
i,j,k=1

(Xi
∂Yk
∂x i

+ 0kijXiYj)
∂

∂xk
(1)

where the Riemann connection coefficients 0kij are cal-
culated from the Riemannian metric and its derivatives:

0kij =
1
2
gkl(∂igjl + ∂jgil − ∂lgij). (2)

Moreover, the covariant derivative along a curve
γ (t) ⊂ M is defined as follow:

DtV = V̇ j ∂

∂x j
+ V jDγ̇

∂

∂x j

= (V̇ k
+ V jγ̇ i0kij)

∂

∂xk
. (3)

If we substitute the tangent vector of γ as the velocity
v of the agent, then we will get the acceleration of the
agent Dvv = (v̇k + vjv̇i0kij)

∂
∂xk on manifold.

3) Evolution of the multi-agent systems described by
the smooth flow map
In order to describe the evolution of the multi-agent
systems in nonlinear space, a smooth flow map from
M× [0,T ] to the ambient space is naturally defined to
be (the same definition in [19])

8 : M× [0,T ] → E
8t (M) = Mt ⊂ E .

and the velocity of agents is exactly the pushforward
(the same definition in [21]) of the tangent vector ∂

∂t ,
which is Wt = (8t )∗( ∂∂t ). The volume of the system at
time t is exactly the volume of submanifold Mt , that
is V (t) =

∫
Mt

d�t , where �t is the volume element
ofMt .

4) Length of the track of an agent on manifolds
The track of an agent is described by a smooth curve
γ on the manifold, which is defined by an infinitely
differentiable map on the manifold γ : t ∈ [0, 1] →

M. The length of the track is

L(γ (t)) =

∫ 1

0

√
gij(t)γ̇ i(t)γ̇ j(t)dt. (4)

where gij is the Riemannian metric tensor of the mani-
fold, and γ̇ i(t), γ̇ j(t) are the i-th and j-th component of
the tangent vector of the curve at time t .

5) Gauss formula formula of submanifold
There is a significant formula for submanifold in
Riemannian geometry, which will be used in the sequel
proof. The Gauss formula for submanifold is as follow:

DF∗YF∗(X ) = F∗(DYX ) + h(X ,Y ), ∀X ,Y ∈ T(M).

(5)
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TABLE 1. Nomenclature.

All of this preliminaries listed can be found in the refer-
ences [20], [21], [22], and the nomenclature used in this paper
is given in Table 1.

III. AGGREGATION OF THE MULTI-AGENT SYSTEM WITH
THE MEAN CURVATURE FIELD
In the Artificial Potential Field model [2], a virtual artificial
potential field Uart (x) is constructed to control the motion of
the agent. The agents move in the direction of the gradient
of Uart (x), which is called virtual forces Fart (x). Inspired
by the philosophy of the Artificial Potential Field approach,
we construct time-varying virtual manifolds M̃t for the
multi-agent systems and use virtual manifold’s volume Ṽ (t)
to describe the state of the system. Ṽ (t) play the role as
that the artificial potentialUart (x) plays in Artificial Potential
Field approach. Similar to the motion of agents in a potential
field tends to minimize the potential functions Uart (x), the
evolution of agents in our approach tends to minimize the
volume of the virtual manifolds M̃t .
There are two main procedures in our approach. At first,

we figure out that the direction of the mean curvature vector
will minimize Ṽt after some calculations. Then, the mean
curvature vector is projected into the tangent space of Mt ,
and the model is finally attained by taking the length of the
track into consideration. The first subsection is devoted to
proving that evolution in the direction of the mean curvature
vector will minimize the volume of M̃t .

A. MINIMIZATION OF THE VOLUME OF THE VIRTUAL
MANIFOLD M̃t
Our approach treats the multi-agent system as a manifold
M in ambient space. Firstly, we construct some specific
virtual manifolds M̃t concerned with different problems,
such as obstacle avoidance, velocity alignment, and enclosing
a target. Then, in order to obtain the smooth flow map 9 for
agents, we need to attain 9̃ at first. The key is to find the
velocity field of 9̃, which minimizes the volume Ṽt of the
virtual manifold M̃t . Following this train of thought, we try
to find the direction that will minimize the volume of a virtual
manifold in the sequel.

Evolution of the virtual manifold M̃t is described by a
smooth flow map defined as follows:

8̃ : M̃× [0,T ] → E,
8̃t (M̃) = M̃t ⊂ E . (6)

The velocity field of the virtual manifold is exactly the
pushforward (defined in [19]) of the tangent vector ∂

∂t , which
is W̃t = (8̃t )∗( ∂∂t ). The volume of the virtual manifold at time
t is Ṽ (t) =

∫
M̃t

d�̃t , where �̃t is the volume element of M̃t .
Then, the desired velocity vector field for the virtual manifold
M̃t is W̃t ∈ TMt .

We prove that if W̃t = Ht , then the volume Ṽ (t) of the
virtual manifold will decay and converge to a non-negative
constant. The process to attain the results is shown in the
proof of Theorem 1:
Theorem 1: If the velocity field (8̃t )∗( ∂∂t ) = W̃t of the

virtual manifold is αHt , ⟨Ht ,Ht ⟩ > 0, α > 0 and ∂M̃t =

∅, for arbitrary t ∈ [0,+∞), then the volume Ṽ (t) of the
virtual manifold M̃t will decay monotonically.

Proof: The first-order derivative of volume of the virtual
manifold Ṽ ′(t) is computed as follow:

Ṽ ′(t) =
∂

∫
M̃t

d�̃t

∂t

=

∫
M̃t

∂
√
G̃t
∂t

du1 ∧ · · · ∧ dun

=

∫
M̃t

1

2
√
G̃t

∂G̃t
∂t

du1 ∧ · · · ∧ dun

=

∫
M̃t

1

2
√
G̃t

(
∑
i,j

(̃at )ij
∂ (̃gt )ij
∂t

)du1 ∧ · · · ∧ dun

=
1
2

∫
M̃t

∑
i,j

(̃gt )ij
∂ (̃gt )ij
∂t

d�̃t . (7)

where {ui}ni=1 is the local coordination of virtual manifold,
�̃t =

√
G̃tdu1 ∧ · · · ∧ dun, G̃t is the determinant of the

corresponding metric matrix (̃gt )ij. (̃at )ij is the cofactor of
(̃gt )ij in the determinant G̃t , (̃gt )ij is the i, j-th element of the
inverse of the metric matrix g̃t .
Since

∂ (̃gt )ij
∂t

=
∂⟨(Xt )i, (Xt )j⟩

∂t
= ⟨D ∂

∂t
(Xt )i, (Xt )j⟩ + ⟨(Xt )i,D ∂

∂t
(Xt )j⟩, (8)

where (Xt )i = (8̃t )∗( ∂∂ui ),and D is the covariant derivative in
the ambient space, we have

Ṽ ′(t) =

∫
M̃t

∑
i,j

(̃gt )ij⟨D ∂
∂t
(Xt )i, (Xt )j⟩d�̃t . (9)

Using the equation

D ∂
∂t
(Xt )i = D ∂

∂ui
W̃t + (8̃t )∗([

∂

∂t
,
∂

∂ui
])

= D ∂

∂ui
W̃t , (10)
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where the Lie-bracket of ∂
∂t and ∂

∂ui is [ ∂
∂t ,

∂
∂ui ] = 0 and

(8̃t )∗([ ∂∂t ,
∂
∂ui ]) = (8̃t )∗(0) = 0.

Hence, we gain the equation as follow:

Ṽ ′(t) =

∫
M̃t

∑
i,j

(̃gt )ij⟨D ∂

∂ui
W̃t , (Xt )j⟩d�̃t . (11)

According to the formula

⟨D ∂

∂ui
W̃t , (Xt )j⟩ =

∂

∂ui
⟨W̃t , (Xt )j⟩ − ⟨W̃t ,D ∂

∂ui
(Xt )j⟩, (12)

we make a step further and get

Ṽ ′(t) =

∫
M̃t

∑
i,j

(̃gt )ij
[
∂

∂ui
⟨W̃t , (Xt )j⟩

− ⟨W̃t ,D ∂

∂ui
(Xt )j⟩

]
d�̃t . (13)

The Gauss formula (equation (5)) implies

⟨W̃t ,D ∂

∂ui
(Xt )j⟩ = ⟨W̃t , (8̃t )∗(D̃

t
∂

∂ui

∂

∂ui
)⟩

+ ⟨W̃t , ht (
∂

∂ui
,
∂

∂uj
)⟩, (14)

then, we obtain

Ṽ ′(t) =

∫
M̃t

∑
i,j

(̃gt )ij
{
∂

∂ui
⟨W̃t , (Xt )j⟩

− ⟨W̃t , (8̃t )∗(Dt
∂

∂ui

∂

∂ui
)⟩−⟨W̃t , ht (

∂

∂ui
,
∂

∂uj
)⟩

}
d�̃t .

(15)

where ht is the Second Fundamental Form of the
submanifold M̃t .

Lemma 1:
∑

i,j (̃gt )
ij
{
∂
∂ui ⟨W̃t , (Xt )j⟩ − ⟨W̃t , (8̃t )∗

(D̃
t
∂

∂ui

∂
∂ui )⟩

}
is the divergence of some tangent vector field

Yt ∈ TMt .
Proof: Let

Yt =

∑
i,j

(̃gt )ij⟨W̃t , (8̃t )∗(
∂

∂uj
)⟩
∂

∂ui
. (16)

be a tangent vector field in TMt . Then, after calculating the
divergence of Yt we have

div(Yt ) =

∑
i,j

∂((̃gt )ij(Yt )j)
∂ui

+

∑
i,j,k

(0̃t )iji(gt )
jk (Yt )k

=

∑
i,j

(
∂ (̃gt )ij

∂ui
(Yt )j + (̃gt )ij

∂(Yt )j
∂ui

)

+

∑
i,j,k

(0̃t )iji (̃gt )
jk (Yt )k

=

∑
i,j

(̃gt )ij
{
∂(Yt )j
∂ui

−

∑
k

(0̃t )kij(Yt )k

}

=

∑
i,j

(̃gt )ij
{
∂

∂ui
⟨W̃t , (Xt )j⟩

− ⟨W̃t , (8̃t )∗(D̃
t
∂

∂ui

∂

∂ui
)⟩

}
. (17)

Thus, the proof is finished.
The mean curvature vector of the M̃t in ambient space is

defined as follow:

Ht =

∑
i,j

1
n
(̃gt )ijht (

∂

∂ui
,
∂

∂uj
),

TakingHt and div(Yt ) into equation (15), we obtain

Ṽ ′(t) =

∫
M̃t

(div(Yt ) − n⟨Ht , W̃t ⟩)d�̃t , (18)

Using theDivergence Theorem in [21] formanifolds, we have∫
M̃t

div(Yt )d�̃t = −

∫
∂M̃t

⟨Yt , nt ⟩dṼ t
∂M̃t

, (19)

since ∂M̃t = ∅,
∫
M̃t

div(Yt )d�̃t = 0, finally we obtain

Ṽ ′(t) = −n
∫
M̃t

⟨Ht , W̃t ⟩d�̃t . (20)

Substituting W̃t with αHt , α > 0, we have Ṽ ′(t) =

−nα
∫
M̃t

⟨Ht ,Ht ⟩d�̃t , for ⟨Ht ,Ht ⟩ > 0,∀p ∈ M̃t , hence
we get Ṽ ′(t) < 0. Thus, the proof is finished.

As we’ve proved, if the virtual manifold M̃t evolves
exactly along the direction of Ht , then the first order
derivative of the volume Ṽ ′(t) < 0. As the consequence, the
volume Ṽ (t) of the virtual manifold will decay. This finishes
the proof, and we figure out the desired velocity field W̃t for
the virtual manifold. We will establish a second-order model
for agents using these results in subsection III-B.

B. THE SECOND-ORDER MULTI-AGENT SYSTEM MODEL
BASED ON MEAN CURVATURE VECTOR
In order to obtain the smooth flow map 9 for the agents.
The mean curvature vector Ht must be projected into the
tangent space TM due to the evolution of agents is limited on
the manifoldM. Moreover, agents are supposed to move in
a shorter path, especially in geodesics when the projection
of the mean curvature vector is zero. This means that if
P(Ht ) = 0, then the acceleration Dvv of the agents must be
0. Finally, a second-order dynamic model for the multi-agent
system is obtained as follows:

Dvv = αP(Ht )

v =
∂u
∂t

v
∣∣
t=0 = v(0)

u
∣∣
t=0 = u(0)

∀p ∈ M, (21)

where v, u are the velocity and position of the agent
respectively, Dvv is the covariant derivative of v on M, Ht
is the mean curvature vector of the virtual manifold M̃t , P is
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the projection operator that projects the vector into the tangent
space ofMt .
After some preliminary analysis, we can find that the

solutions of system (21) will converge to a stable state
asymptotically. This is becausewhen the agents are very close
to each other, the volume of a virtual manifold is very small,
and ∥P(Ht )∥ is close to 0; thus each agent moves in geodesic.
These lead agents move far away from each other, then the
norm of ∥P(Ht )∥ increases, and agents aggregate together
again under the effects of it. As a result, the accelerations and
velocities descend to a small constant asymptotically. In order
to verify our theoretical analysis, some simulations on sphere
are performed in section IV.

IV. AGGREGATION OF MULTI-AGENT SYSTEM
ON SPHERE
For definiteness, we consider the multi-agent’s aggregation
problem on sphere, which is commonly considered in appli-
cations. At first, we construct a virtual manifold according
to our theory. Then, numerical simulations for a system of
100 agents on S2 (sphere of 2-dimension) are performed, and
some dynamic variables are analyzed.

A. CONSTRUCTION OF THE VIRTUAL MANIFOLD FOR S2

The spherical coordination(ψ, θ), ψ ∈ [0, π], θ ∈ [0, 2π )
is chosen to describe the position of agents on sphere. The
smooth flow map of the original manifold S2 is defined to be

8t : (ψ, θ) → (sinψ cos θ, sinψ sin θ, cosψ). (22)

The tangent space TS2 is consisted with two vectors as
follow:

∂

∂ψ
= (cosψ cos θ, cosψ sin θ,− sinψ)

∂

∂θ
= (− sinψ sin θ, sinψ cos θ, 0).

In R3, we have the equation Ht = λtNt , where Nt is the
normal vector of M. In order to make the agents aggregate
to the centroid of the system, we construct a virtual manifold
M̃t with geometric intuition as follow:

8̃t : (ψ, θ) → (φ̃t sinψ cos θ, φ̃t sinψ sin θ, φ̃t cosψ)

(23)

where

φ̃t (θ, ψ) = β[1 + sin(
3π
2

+
dp,pc
2

)], 0 ≤ dp,pc ≤ π. (24)

dp,pc = arccos(cosψ cosψc+ cos(θ − θc) sinψ sinψc) is the
geodesic distance between p = (ψ, θ) and the centroid point

of the system is pc = (ψc, θc). θc =

∑
i
θi

N and ψc =

∑
i
ψi

N .

Then, the Riemannian metric g̃t of M̃t is carried out to be

(̃gt )θθ = (φ̃t )2 sin2 ψ + (
∂φ̃t

∂θ
)2

(̃gt )θψ =
∂φ̃t

∂θ

∂φ̃t

∂ψ
(25)

(̃gt )ψψ = (
∂φ̃t

∂ψ
)2 + φ̃2t .

Themean curvature vectorHt is calculated using the equation

Ht = 1M̃t
8̃t

=



(̃gt )ij
∂28̃1

t
∂xi∂xj −

∑n
l=1 (̃gt )

ij(0̃t )lij
∂8̃1

t
∂xl

...

(̃gt )ij
∂28̃k

t
∂xi∂xj −

∑n
l=1(̃gt )

ij(0̃t )lij
∂8̃k

t
∂xl

...

(̃gt )ij
∂28̃n+1

t
∂xi∂xj −

∑n
l=1 (̃gt )

ij(0̃t )lij
∂8̃n+1

t
∂xl


. (26)

and the projection of mean curvature vector P(Ht ) to the
tangent space TS2 is figured out to be:

P(Ht ) = ⟨Ht ,
∂

∂ψ
⟩
∂

∂ψ
+ ⟨Ht ,

∂

∂θ
⟩
∂

∂θ
. (27)

In order to verify our approach, some simulations are
performed in next subsection.

B. NUMERICAL SIMULATION OF AGGREGATION
BEHAVIOR ON S2

The initial positions {pi}Ni=1 of agents are randomly chosen
on S2 with ∥pi(t)∥ = 1, and the initial velocities {vi}Ni=1 are
randomly generated from the tangent space TS2 with norms
ranging from 0.1 to 0.5. After many repeated experiments,
some good combinations of parameters in our system were
found. The parameter in the ordinary system (21) is set to be
α = 10, and the parameter in construction of virtual manifold
in equation (24) is set to be β = −2. Since the system
evolves on the sphere, with ∥pi(t)∥ = 1,∀i = 1, · · · ,N ,∀t ∈

[0,∞)], the norm of centroid ∥pc(t)∥ = ∥
∑
i

pi(t)
N ∥ can be

used to approximate the volume of the system. If the agents
aggregate to an identical point, we have lim

t→+∞
∥pc(t)∥ = 1,

otherwise, lim
t→+∞

∥pc(t)∥ = 0 as distance among agents

grows. Therefore, this quantity is considered as the criterion
of agents’ aggregation in [10]. Besides, position variance
and its logarithm also reflect the system’s volume, and both
are plotted in our simulation results. Moreover, in order to
analyze the dynamic of agents, the evolution of velocities
{∥vi∥}Ni=1 and logarithm of accelerations {ai = P(Ht )}Ni=1 are
also plotted. In order to illustrate our approach, the virtual
manifold at t = 0s is plotted in Fig 1. As time goes by, the
virtual manifold will change according to the movements of
agents.

From Fig 2(a) to Fig 2(b), the positions of the agents
at different times are plotted. The red plane represents the
agent, the blue arrow indicates the mean curvature vector
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FIGURE 1. Time-varying virtual manifold M̃t .

FIGURE 2. Evolution of Multi-agent system on S2.

and the green dot designates the centroid of agents in these
figures. We can find that agents aggregate to an identical
point asymptotically. This confirms the analytical results in
section III.

In Fig 3, we plot the norm of the centroid pc(t), and
we can see, ∥pc(t)∥ approaches 1 asymptotically as time
goes to infinity. It means that agents collect to an exact
point asymptotically. In Fig 3(a), since ∥pc(t)∥ is very close
to 1, we plot log(1 − ∥pc(t)∥) to show the increasing of
∥pc(t)∥ more clearly. The value of log(1 − ∥pc(t)∥) decays
asymptotically, and it also implies that lim

t→+∞
∥pc(t)∥ = 1.

Both the two variables show that the agents aggregate
asymptotically as time goes by.

In Fig 4(a) and Fig 4(b), we plotted the position
variance and the logarithm of the position variance of
agents, respectively. Besides the norm of centroid point
∥pc(t)∥, position variance ρ(t) also plays a significant
role in describing the dynamics of the system. As we
can see in the figures, the position variance decrease to

FIGURE 3. Evolution of ∥pc∥ and log(1 − ∥pc∥) on sphere.

FIGURE 4. Evolution of ρ(t) and log ρ(t) on sphere.

zero asymptotically, and the logarithm of position variance
goes down to −∞ asymptotically, which exactly meets the
analytical result. This result also implies agents aggregate
together asymptotically.

In Fig 5(a) and Fig 5(b), we plot the norm of velocities
vi(t) = (ψ̇i(t), θ̇i(t)) and the logarithm of norm of velocities
log ∥vi(t)∥ of agents respectively. From the figures above,
we can see that the norm of velocities decreases to a small
constant asymptotically with an unknown rate, and the norm
of the velocities becomes identical asymptotically. This result
implies that different agents’ behavior tends to be consistent
asymptotically.

Finally, in order to analyze the acceleration of agents
at different stages, the evolution of ∥P(Ht )∥ is plotted in
Fig 5(c). From the picture above, we can see that the norm
of accelerations decreases to a small value asymptotically,
which is consistent with the evolution of the velocities of
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FIGURE 5. Evolution of the multi-agent system’s velocities and
accelerations on S2.

FIGURE 6. Evolution of Multi-agent system on a non-homogeneous
manifold.

agents. Once again, this consequence implies that different
agents’ behaviors tend to be synergistic asymptotically.

It is obvious to observe that oscillations occur in all of these
quantities we plotted. This is because when the agents are
very close to each other, ∥P(Ht )∥ is close to 0; thus, each
agent moves in geodesic, and agents move far away from
each other, then, the norm of ∥P(Ht )∥ increases and agents
aggregate together under the effects of P(Ht ). As a result,
all of these dynamic variables will converge to a constant
asymptotically.

C. NUMERICAL SIMULATION OF AGGREGATION
BEHAVIOR ON A NON-HOMOGENEOUS MANIFOLD
In order to the advantages of our approach over the
second-order Kuramoto model in [10], we implement our
approach for multi-agent system moving on a hilly terrain-
like manifold, which is a non-homogeneous surface with
many peaks. Cartesian coordinates (x, y) is chosen as the local
charts, and the basis of the tangent space TM is {

∂
∂x ,

∂
∂y }. The

ambient space is embedded into R3 with the map defined as
follow:

(x, y) → (x, y, sin x cos y+ 0.5 sin 0.3x2 cos 0.1y2). (28)

The tangent vector is carried out to be

∂

∂x
= (1, 0, cos x cos y+ 0.3x cos 0.3x2 cos 0.1y2)

∂

∂y
= (0, 1,− sin x sin y− 0.1y sin 0.3x2 sin 0.1y2)

With the results in section III, the virtual manifold M̃t is
constructed through the smooth flow map 8̃t as follow:

(x, y) → (x, y, β[(x − xc)2 + (y− yc)2]γ ). (29)

where (xc, yc), xc =

∑
i
xi

N , yc =

∑
i
yi

N is the centroid point of
the multi-agent system. The Riemann metric g̃t of M̃t is

(̃gt )xx = 1 + (2βγ (x − xc)[(x − xc)2 + (y− yc)2]γ−1)2

(̃gt )xy = 4β2γ 2(x − xc)(y− yc)[(x − xc)2 + (y− yc)2]2γ−2

(̃gt )yy = 1 + (2βγ (y− yc)[(x − xc)2 + (y− yc)2]γ−1)2.

(30)

Themean curvature vectorHt is calculated using the equation
(26) and the projection of mean curvature vector P(Ht ) to the
tangent space TMt is figured out to be:

P(Ht ) = ⟨Ht ,
∂

∂x
⟩
∂

∂x
+ ⟨Ht ,

∂

∂y
⟩
∂

∂y
. (31)

1) SYSTEM PARAMETERS AND THE SIMULATION RESULTS
The initial positions {xi}Ni=1 of agents is randomly chosen
on M, and each component of initial velocities {vi}Ni=1 are
randomly generated from the tangent space TM with range
from 0.5 to 2. In our simulations, the parameter in the
ordinary system (21) is set to be α = 200, and the parameters
in equation (29) is set to be β = 5, γ = 1.5.

In Fig 6, we plot the positions of agents at different times
t = 0s, t = 5s, t = 50s, t = 200s (the red planes represent
the positions of the agents and the blue arrows designate
the mean curvature vectors). We can see that the agents is
randomly distributed in the manifold at t = 0s, and the agents
aggregate to an identical point as time goes to infinity. This
result implies the system aggregate asymptotically as time
goes by.

Since the norm of centroid point is not suitable to describe
the aggregation dynamic of agents evolves on the non-
compact manifold M, we need other quantities to describe
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FIGURE 7. Evolution of ρ(t) and log ρ(t) on a non-homogeneous manifold.

FIGURE 8. Evolution of the multi-agent system’s velocities and
accelerations on a non-homogeneous manifold.

the aggregation dynamic of the system. In Fig 7(a) and
Fig 7(b), we plot the position variance and the logarithm of
position variance respectively. As the Fig 7(b) represents, the

position variance ρ(t) =

N∑
i,j=1

√
(xi−xj)2

N 2 descends at first and

tends to zero asymptotically, which is consistent with our
analytical conclusion lim

t→∞
V (t) = 0, thus implying the agents

evolve to aggregate asymptotically. The logarithm of position
variance descends to zero asymptotically. Both of the results
confirm that the multi-agent system reach a aggregation state.

In Fig 8(a), we plot the logarithm of velocities’ norm
{∥vi∥}Ni=1 of the agents. From the figures above, we can see
that the norms of velocities decrease to a small constant
asymptotically with an unknown rate, and the norm of the
velocities become identical gradually; this implies all of the
agents in the system evolve in the same way, thus, leading to
aggregation behaviors. The evolution of accelerations’ norm

of agents is represented by log plot in Fig 8(b). We can find
that the velocities and accelerations of the agents have the
same dynamic behaviors, and both two variables converge
to a small constant asymptotically. The numerical results are
consistent with our theory analysis in III and, especially, the
results on the sphere are consistent with that of the second-
order Kuramoto model on the sphere.

V. CONCLUSION
In this paper, firstly, we use the local charts to describe the
manipulation of the agents on manifolds. The local charts
make the agents satisfy geometric constraints naturally. Then,
we convert the aggregation problem of agents on manifolds
into an optimization issue of minimizing the virtual mani-
fold’s volume. We show that the mean curvature field will
minimize the volume of the virtual manifolds. Furthermore,
we propose a novel approach describing the multi-agent
system’s aggregation behaviors on general manifolds with
the mean curvature fields. To this end, we implement our
approach to the multi-agent system’s aggregation on the
sphere and a non-homogeneous manifold. Finally, we per-
form some numerical simulations, and the corresponding
numerical results are consistent with our theoretical analysis.
The numerical results show that our approach has the same
results in [10] on the sphere and has excellent performance
on a non-compact and non-homogeneous manifold. In con-
clusion, our approach properly describes agents’ aggregation
behaviors on general manifolds without adding additional
equations or other terms which is used to make the motion
of agent confined to the ambient spaces to our model. What’
more, the implementation of our approach on describing other
synergistic behaviors of multi-agent systems on manifolds
will also be considered in our future works and there still
many interesting but difficult issues that are still unsolved;
such as the collective behaviors of multi-agents moving on
manifolds with switchable topology, time delays and various
communication methods.
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