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ABSTRACT Neddylation, as a reversible post-translational modification (PTM), plays a role in various
cellular processes. Defects in neddylation are related to human diseases. Detecting neddylation sites is nec-
essary for revealing the mechanisms of protein neddylation. As identifying such sites through experimental
methods is expensive and time-consuming, it is essential to develop in silico methods to predict neddylation
sites. In this study, we constructed a few classifiers integrating various algorithms and encoding features.
However, they performed poorly (AUC=0.767), mainly due to the limited number (~1000) of identified
neddylation sites. The large number (>100,000) of other lysine PTM sites inspired us to employ a deep
transfer learning (DTL) strategy for performance improvement. We constructed a predictor, dubbed DTL-
NeddSite, which adopted the DTL-based convolution neural network using the one-hot encoding approach.
Specifically, the massive number of lysine PTM sites were used to build the source model, followed by
the fine-tuning of the target model using neddylation sites. DTL-NeddSite compared favourably with the
corresponding model without the DTL strategy in cross-validation and independent tests. For instance, the
AUC value increased to 0.818. Contrary to a general DTL model that combines frozen and unfrozen layers,
all the layers in DTL-NeddSite were unfrozen to re-train. We expect the DTL strategy to be widely used
in newly discovered modification types with limited known sites. Furthermore, DTL-NeddSite is freely
accessible at https://github.com/XuDeli123/DTL-NeddSite.

INDEX TERMS Neddylation, post-translational modification, modification site prediction, deep learning,
deep transfer learning.

I. INTRODUCTION

Neddylation is a post-translational modification (PTM) pro-
cess in which the ubiquitin-like protein NEDDS is covalently
attached to the lysine side chain of a target protein [1]. Protein
neddylation regulates many critical biological processes and
has become a novel anti-tumour therapeutic target [2], [3],
[4], [5], [6], [7], [8], [9]. Identifying protein neddylation
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sites is essential to explore their characteristics. Recently,
a few experimental approaches have been developed to study
proteome-wide neddylation sites [10], [11]. Nevertheless,
they have disadvantages, such as laboriousness and expan-
siveness. An alternative is the construction of in silico pre-
diction models.

Two predictors, NeddPred and NeddyPreddy [12], [13],
have been developed as the first attempt to predict neddy-
lated sites in protein sequences. Both predictors are based
on the same dataset, including 51 neddylation sites from
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FIGURE 1. Sequence patterns of neddylation-containing peptides, showing
enriched and depleted residues, were generated using the Two Sample Logo
program: (A) The pattern of the neddylation peptides using the previously

published dataset (51 samples) compared with our collected dataset (>1000
samples); (B) The pattern was based on the previous neddylation dataset and
non-modification peptides [12], [13]; (C) The pattern was based on our collected
neddylation and non-modification peptides (p<0.05, student’s t-test with

Bonferroni correction).

various organisms and 1031 non-neddylation sites. They
contain the same algorithmic architecture (i.e., a support
vector machine (SVM)), but they have different encoding
schemes. It has been observed that flanking sequences of
the neddylation sites are commonly flexible and enriched
with positively charged amino acids [12]. Nevertheless, they
have two limitations. First, the neddylation sites (51) for
model construction are limited and may not fully reflect the
neddylation characteristics. We compared these data with
1715 recently identified neddylation sites [10], [11] using
the Two Sample Logo program [14]. Figure 1A shows that
they are significantly different. Specifically, 11 residues are
enriched in the former at different positions (e.g., A@P-7
and L@P10), while no residue is enriched in the latter. Fur-
thermore, we compared each of them with K-centric pep-
tides without modification annotation, and we found that
they demonstrated different features (Figure 1B and 1C).
Therefore, it is essential to construct novel classifiers using
the latest and most extensive data. Second, the SVM algo-
rithm applied to the reported predictors is a type of tradi-
tional machine-learning (ML) algorithm. It has been found
that these algorithms demonstrate a relatively poorer level of
performance than deep learning (DL) algorithms in the field
of bioinformatics, such as the prediction of RNA-binding
sites [15] and PTM sites [16], [17], [18], [19]. There-
fore, it is necessary to develop prediction models based
on DL algorithms and to compare them with the reported
models.
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In this study, we collected known human neddylation sites
as a new dataset and constructed various prediction models
(Figure 2). The classifiers combined various algorithms (e.g.,
RF, SVM, CNN, and long short-term memory (LSTM)) and
different encoding features (e.g., one-hot and word embed-
ding). We split the dataset into cross-validation (CV) and
independent test datasets for model evaluation. The best
model was the convolution neural network with the one-hot
encoding approach (CNNpp). It had area-under-the-curve
(AUC) values of 0.767 and 0.771 in the cross-validation (CV)
and independent tests, respectively. Because nearly half of the
neddylation sites had in situ crosstalk with other lysine PTM
types, there existed commonalities between different lysine
PTM types. These commonalities may assist in the construc-
tion of new models with superior performance. Accordingly,
we applied a deep transferlearning (DTL) strategy to model
construction based on the large number (> 100,000) of known
lysine PTM sites. Specifically, the massive amount of human
lysine PTM data was used to pre-train a CNNpy classi-
fier, followed by fine-tuning using human neddylation sites.
The final model achieved an AUC value of 0.818. There-
fore, the CNNgoy classifier with the DTL strategy compared
favourably to the corresponding model that lacked such a
strategy. Interestingly, the DTL-based model demonstrated
better performance than did the Apriori algorithm. It also
showed good predictive ability when applied to a real situ-
ation. In summary, the massive number of lysine PTM sites
could improve the performance in predicting neddylation

51799



IEEE Access

D. Xu et al.:

DTL-NeddSite: A DTL Architecture for Prediction of Lysine Neddylation Sites

Dataset Pre-processing

Feature Encoding

; Collection of % r

o neddylation dataset X H _

' ' 1 P

= P

H >~ : Y 1

: v : ! A

' i H 1

: v : .

H H

H CD-HIT with 40% : H

1 sequence identit; H 5

: cq : y : >

i i ' i K

1 ' H

H AL -EDDRC H . A

' TCON! . YHQPF ! ' | |

\ MpoY .DSWLI i H T

H ng a H H

' L4 1

1 Positives Negatives H

1 b ' One-Hot
K

|
i
]
)
|
i
i T4 NeddSites
I
1
i
|
1
|
i
\

Online Tool Service

Classifier Construction

< P Deep transfer learning e

Wﬂ
W

" Source Model

| 1 M Fully connected|
RN ayer
s M

Convolution Layer

\
\

i

|

|

i

|

Fine-tuning ]

|

Target Model ;
]

|

i

|

|

b=

\ Convolution Layer y

FIGURE 2. The flowchart of model construction and evaluation.
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FIGURE 3. Schematic diagram of human neddylation dataset construction and pre-processing:
(A) Neddylation dataset construction; (B) Other lysine PTM dataset construction.

sites. The DTL-based model and the dataset are accessible
via https://github.com/XuDeli123/DTL-NeddSite.

Il. MATERIALS AND METHODS

A. DATASET CONSTRUCTION AND PRE-PROCESSING
Figure 3 shows the process of dataset construction. Specif-
ically, we collected 1715 experimentally verified lysine
neddylation sites on 934 human proteins from the litera-
ture [10], [11], [12]. After CD-HIT clustering [20], [21]
with a sequence identity of 40%, we obtained 715 pro-
tein clusters, which contained 1236 neddylation sites as
positives and 25,442 lysine non-modified sites. From these
non-modified sites, we randomly selected 1236 sites as the
negatives. Finally, we split the data into 11 groups: 10/11
(1124 positives and 1124 negatives) as the cross-validation

51800

dataset and 1/11 (112 positives and 112 negatives) as the
independent test dataset.

In order to estimate the optimal sequence window for
model construction, we set the sequence window to dif-
ferent sizes and compared them through ten-fold cross-
validation. We found that a window size of 41 had the best
result. This is consistent with our previous studies of lysine
PTM site prediction [17], [19], [22], [23], where predic-
tion performance increased with the protein sequence length
and reached a plateau when the length generally ranged
from 31 to 41. Accordingly, we represented each site using
a sequence window of 41 amino acids in length, with the
modified/unmodified “K” in the centre. If the central “K”
is located near the N-terminus or C-terminus of the protein
sequence, “X”’ residues are added to the sequence at the
affected terminus to ensure that the length is maintained.

VOLUME 11, 2023
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B. FEATURE ENCODING SCHEMES
1) ENCODING OF ENHANCED AMINO ACID COMPOSITION
(EAAC)
EAAC [24] calculates amino acid frequencies of a
fixed-length sequence window (the default length being
5), sliding continuously from each sequence’s N-terminus
to the C-terminus. Each sequence is encoded as a vector
of 740 (= (41 — 5 4+ 1) x 20) items. The related formula
for each sequence is listed below:
f (win, t) = Mwin
N (win)
€ {windowl, ..., window37},t € {A,...,Y}

ey

where N (win, t) is the number of the amino acid ¢ in the
sliding window (win), and N (win) is the length of the sliding
window (win) (i.e., 5).

2) ONe-HOT (OH) ENCODING

Every amino acid in a sequence is encoded by a
21-dimensional binary vector, where each position corre-
sponds to a specific amino acid, or “X’. In the vector
related to a given amino acid, the position corresponding
to the amino acid is set as 1, and the other positions are
set as 0. For example, the amino acid “A” is represented
by the vector ““100000000000000000000’’, according to the
alphabet “AVLIFWMPGSTCYNQHKRDEX.”

3) WORD EMBEDDING (WE) ENCODING

Word embedding [25] relies on the NUM encoding approach,
which maps each type of amino acid residue to an integer
(Zhang Y. et al., 2019). After the NUM encoding, each
integer is encoded into a predefined five-dimensional word
vector. Therefore, each sequence is encoded as a vector
of 205 (=41 x 5) items.

C. THE ARCHITECTURE OF MACHINE-LEARNING MODELS
Machine-learning algorithms are commonly used in predict-
ing PTM sites. They include random forest (RF) and SVM.
RF integrates multiple independent decision trees, and each
decision tree produces a result. RF selects the result with the
most votes as its final result by counting the results of each
decision tree. This study set the number of decision trees to
150. By contrast, SVM is proposed from the optimal classifi-
cation surface in the case of linear separability. Specifically,
the input space is transformed into a high-dimensional space
where the optimal linear classification surface is obtained.
This transformation is realized by defining an appropriate
inner product function. RF-based and SVM-based classifiers
were developed using the Python module ““sklearn”.

D. THE ARCHITECTURE OF DEEP LEARNING MODELS

Deep learning (DL) models have shown performance supe-
rior to traditional ML models for predicting PTM sites [22],
[26]. Here, we constructed four DL models integrating the
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DL algorithm (i.e., CNN or LSTM) with the encoding
approach (i.e., OH or WE).

1) THE CNN MODEL WITH ONE-HOT ENCODING
We constructed a CNN model based on OH encoding
(CNNopn), including the following four layers (Figure 4A):

1) Input layer. Each sequence of information is converted
into a feature vector with OH encoding.

2) Convolution layer. This layer includes three con-
volution sublayers and three max-pooling sublayers
arranged alternately. There are 128 convolution kernels
with the sizes of 1, 3 and 9 for the first, second and
third convolution sublayers, respectively. The rectified
linear unit (ReLU) is regarded as the activation func-
tion of each convolution sublayer. In the max-pooling
sublayers, the parameters’ pool_size and padding are
set as 2 and ‘“‘same’’, respectively.

3) Fully connected layer. This layer contains a dense
sublayer with 64 neural units without flattening and a
global average pooling sublayer to calculate and pro-
duce an average value.

4) Output layer. This layer contains a single neuron
to produce the probability score (within the range
from O to 1), indicating the likelihood of neddylation.
If the probability score of an input sequence is greater
than a specified threshold, the central lysine in the
sequence is predicted to be neddylated.

2) THE CNN MODEL WITH WORD EMBEDDING ENCODING
This CNNwg model contains five layers. The input layer
receives sequences with a window size of 41 and maps each
amino acid type to an integer. Next, each integer is converted
into a five-dimensional word vector in the embedding layer.
The remaining three layers are the same as the second, third
and fourth layers of CNNoy (Figure 4B).

3) THE LSTM MODEL WITH ONE-HOT ENCODING

As a recurrent neural network, LSTM [27], [28] can selec-
tively remember patterns for a long time, which is ideal for
processing sequential data. We constructed the LSTM model
with the OH encoding approach (LSTMop), containing the
following five layers (Figure 4C):

1) Input layer. Each sequence is converted into a feature
vector with OH encoding.

2) Recurrent layer. This layer consists of two LSTM sub-
layers. Each sublayer contains 41 sequentially con-
nected LSTM cells, corresponding to the residues of
the input sequence. The LSTM cells in the first/second
sublayer contain 128/256 hidden neuron units, respec-
tively. Every cell of the first sublayer processes the
information from the corresponding amino acid, and
each cell of the second sublayer processes the infor-
mation from that of the first sublayer cell. Lastly, the
vector from the 41st LSTM cell in the second LSTM
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FIGURE 4. The architectures of (A) CNNgy; (B) CNNyg: (C) LSTMgy; and (D) the

DTL-based CNNgy.

sublayer is regarded as the output of the LSTM layer,
representing the features of the input peptide sequence.
Flatten layer. This layer collapses the spatial dimen-
sions of the input into a one-dimensional linear vector.
Full connection layer. This layer contains 32 neurons
with the rectified linear unit (ReLLU) as the activation
function.

Output layer. This layer contains a single neuron, acti-
vated by the “Sigmoid” function, to produce probabil-
ity scores.

3)

4)

5)

4) THE LSTM MODEL WITH WORD EMBEDDING ENCODING
The LSTM algorithm based on word embedding encoding
(LSTMwgE) consists of six layers. The input layer receives
the sequence with a window size of 41 and maps each amino
acid type to an integer using NUM encoding. In the embed-
ding layer, each integer of the vector from the input layer is
converted and encoded into a five-dimensional word vector.

51802

The remaining four layers are the same as the second through
fifth layers of LSTMopg.

E. THE ARCHITECTURE OF THE DEEP TRANSFER
LEARNING MODELS

Deep transfer learning (DTL) can leverage knowledge
learned in previous tasks (i.e., source tasks) based on a mas-
sive semi-related dataset and apply it to new related tasks
(target tasks) that have limited target data [29], [30], [31],
[32], [33], [34], [35]. We used the DTL strategy for model
construction (Figure 4D). Specifically, a source model is
pre-trained using massive amounts of lysine PTM data, fol-
lowing by fine-tuning through gradually unfrozen parame-
ters, starting from the last layer using the limited neddylation
sites.

F. THE STRATEGY FOR AVOIDING OVERFITTING
In DL architectures, the “ReLLU” function [36] was used
as the activation function for the convolution and fully
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connected sublayers to avoid gradient dispersion during train-
ing. The maximum number of training cycles was set through
the optimized number of epochs (300) and the batch size
(256 for CNNpug and CNNwg; 512 for LSTMpy and
LSTMwg) to ensure that the loss function value converged.
The RMSprop algorithm [37] was used to optimize the
model parameters. The loss rate was 50% in the convolution
and fully connected layers to avoid overfitting. In addition,
an early stop strategy was applied to stop the training process
when the verification accuracy did not increase in 50 consec-
utive iterations.

G. PERFORMANCE EVALUATION STRATEGIES

We used five measures (e.g., sensitivity (Sn), specificity (Sp),
Matthews correlation coefficient (MCC), accuracy (ACC),
and area under the curve (AUC)) to evaluate the performance
of the prediction model. The definitions of Sn, Sp, ACC, and
MCC are given as follows:

TP
Sn=— )
TP + FN
Sp— TN 3)
P = IN + FP
TP + TN
ACC = + @)
TP + FP+TN + FN
TPxTN —TN x FP
McC

~ JTPFN)x (TN + FP) x (TP+FP)x (IN 1 FN)
)

In the above formulas, TP, TN, FP, and FN are the number
of true positives, true negatives, false positives, and true
negatives, respectively. Generally, the closer the AUC value
is to 1, the better the model’s performance.

IIl. RESULTS

A. CONSTRUCTION OF THE NEDDYLATION DATASET AND
EVALUATION OF VARIOUS CLASSIFIERS

We collected 1715 experimentally verified lysine neddylation
sites on 934 human proteins [10], [11], [12] (Figure 3A).
To remove the redundant proteins, we grouped the proteins
into 715 clusters using CD-HIT [20], [21] with a sequence
identity of 40% as the threshold. We considered the protein
with the most neddylation sites in each cluster as representa-
tive. To this end, we obtained 1236 neddylation sites of the
715 representatives as positive sites. The remaining 37,464
lysine residues of the same representatives were considered
as potential negative sites.

A lysine residue may undergo different types of PTM. For
example, the lysine K 774 on protein TIF18 is annotated with
ubiquitination, SUMOylation and neddylation [10], [38],
[39]. We reason that lysine sites annotated with any PTM
type are more likely to be neddylated than those without
any PTM annotation. Thus, the former is inappropriate to
consider as a negative sample, as compared to the latter.
From potential negative lysine sites, we removed 12,022
lysine sites with PTM annotations according to PLMD [40],
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leading to the retention of 25,442 lysine sites. We randomly
selected 1236 lysine sites from the retained data as neg-
atives to balance the positives and negatives (Figure 3A).
The data were further divided into CV dataset #1 (1124
positives and 1124 negatives) and Independent test dataset #1
(112 positives and 112 negatives) (Figure 3A).

Many computational approaches for predicting PTM sites
are generally based on traditional ML algorithms (e.g., RF
and SVM) combined with various features encoded from pep-
tide sequences. In this study, we constructed four predictors
by integrating two encoding schemes (i.e., EAAC and one-
hot) and two ML algorithms (i.e., RF and SVM), respec-
tively. Moreover, deep learning algorithms have recently
been applied in the field of PTM site prediction and have
demonstrated superior performance [16], [41], [42]. Accord-
ingly, we developed four different DL predictors, integrating
CNN (or LSTM) with the encoding approach OH (or WE).
We compared the eight models using the ten-fold CV set #1
and independent test #1 (Table 1). The CNN model with the
OH encoding (CNNpy) showed the best performance. For
example, it had average AUC and MCC values of 0.767 and
0.402 for the CV. These values were similar to those in the
independent test (AUC: 0.771; MCC: 0.400) (Table 1 and
Figure 5), suggesting the robustness of the CNNpy model.

P=0.019
P=0.870 P=0363 ,_, ..o
P=0.001 ar
ors T i

0.76¢

0.74:
P=0.025 P=0.992
0.72;
0.70+
068 g __
0.66-

064

Value

o & o Nl O & &
R A N TP
Model

~
&

FIGURE 5. Performance comparison of the classifiers constructed using
Cross-validation dataset #1 in Independent test #1. A paired student’s
t-test was calculated to estimate the statistical difference between the
neighbouring classifiers.

B. THE DEEP TRANSFER LEARNING STRATEGY IMPROVES
PREDICTIVE PERFORMANCE

It is known that a predictor’s performance is positively asso-
ciated with the training data size [22]. The mediocre per-
formance of CNNpy may be due to the limited number of
neddylated sites. In contrast with unmodified lysine sites,
neddylated sites are similar to lysine sites with other PTM
annotations. For example, half of the identified neddylated
sites are annotated with other modifications. Because of
the availability of a massive number of lysine PTM sites,
we attempted to introduce the transfer learning strategy into
the CNNop architecture.
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TABLE 1. Performance comparisons of different models for NEDD site predictions.

Model AUC Sn Sp ACC MCC
Ten-fold Cross-validation #1 SVMoy 0.639+0.035 0.506+0.051 0.687+0.002 0.596+0.029 0.196+0.050
SVMEnac 0.673+0.028 0.571+0.053 0.686+0.002 0.628+0.027 0.259+0.053
RFoy 0.666+0.033 0.558+0.065 0.670£0.016 0.614+0.031 0.229+0.061
RFgaac 0.736+0.039 0.666+0.066 0.664+0.015 0.665+0.034 0.330+0.069
LSTMyg 0.733+0.028 0.645+0.052 0.689+0.002 0.667+0.025 0.334+0.050
LSTMoy 0.72120.021 0.621+0.044 0.689+0.001 0.655+0.022 0.31140.043
CNNye 0.742+0.027 0.661+0.065 0.689:£0.001 0.675+0.032 0.3510.064
CNNoy 0.767+0.024 0.712+0.047 0.689+0.001 0.700+0.023 0.402:+0.047
Independent test #1 SVMoy 0.663+0.015 0.549+0.045 0.687+0.000 0.618+0.022 0.238+0.044
SVMEnsc 0.683+0.009 0.569+0.035 0.687:£0.000 0.628+0.017 0.258+0.034
RFoy 0.683+0.018 0.5830.041 0.670+0.015 0.627+0.020 0.255+0.040
RFganc 0.746+0.019 0.673+0.047 0.670+0.013 0.671+0.024 0.344+0.049
LSTMyg 0.749+0.021 0.644+0.039 0.687+0.000 0.666+0.019 0.332+0.038
LSTMoy 0.735+0.030 0.646+0.061 0.687+0.000 0.666+0.030 0.334+0.060
CNNyg 0.732+0.032 0.634+0.069 0.6870.000 0.661+0.034 0.323+0.068
CNNoy 0.7710.011 0.712+0.033 0.687+0.000 0.700+0.016 0.400-+0.033

*The abbreviations (e.g., CNN, OH and Sn) are described in the “Materials and Methods” section. For example, the CNN classifiers with the one-hot
encoding approach are named CNNoy. Ten models were constructed using ten different validation data sets in Ten-fold Cross-validation #1. The ten models'

average performance and standard deviation were calculated for Cross-validation dataset #1 and for Independent test dataset #1, respectively.

We constructed the source model using the human lysine
modification sites from the PLMD database [40]. We col-
lected 80,027 lysine modification sites from 9381 human
proteins after CD-HIT clustering with a sequence identity of
40% as the threshold. A total of 79,369 modification sites
were retained after removing the neddylation datasets. Sim-
ilarly, an exact number (79,369) of lysine non-modification
sites was randomly selected from the same proteins as the
negatives. Both lysine modification and non-modification
sites constituted our PTM dataset (Figure 3B). Note that this
dataset did not contain any data from the neddylation-related
datasets (including the CV and independent test datasets),
thereby avoiding potential interference in the model eval-
uation. The lysine PTM dataset was randomly separated
into a training dataset with 141,754 samples (70,877 mod-
ified/unmodified samples) and a test dataset with 14,174
samples (7087 modified/unmodified samples). We built and
tested the CNNpp-based source model using the training and
test datasets, respectively. The source model had an AUC
value of 0.729. We further examined the performance of the
source model for predicting neddylation sites using Inde-
pendent test dataset #1 (Figure 3B). Its AUC value (0.768)
is larger than 0.729, suggesting that neddylation may have
distinctive characteristics compared with other lysine PTM
types. This AUC value is similar to that (0.771) of the CNNoy
model constructed using CV neddylation dataset #1 (Table 2).
To some extent, it indicates the resemblance between neddy-
lation and other PTM types.

In the fine-tuning step, the weights (knowledge) learned
by the source model were transferred to the target model that
was later optimized using newly labelled data. The target
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models were trained and evaluated in this study using the
neddylation CV dataset #1. We conducted four target models
with various combinations of frozen and unfrozen layers
(Figure 6). The weights of the frozen layers in the source
model were transferred to the target model without change
whereas the weights of the unfrozen layers could be modified.
The first target model (T1) contained the frozen convolution
and unfrozen fully connected layers (Figure 6A). From the
second T2 to the fourth T4, the convolutional sublayers were
unfrozen sequentially in reverse order, along with the con-
stant unfrozen fully connected layer (Figure 6B—6D). Their
AUC values increased with the number of unfrozen layers,
from T1 as 0.804 to T4 as 0.818 (Table 2). A similar observa-
tion was also made using Independent test dataset #1 (Table 2)
for model evaluation. Therefore, T4, with unfrozen, fully
connected and convolution layers, had the best performance.

C. CONSTRUCTION OF SPECIFIC MODELS FOR
RECOGNITION OF NEDDYLATION FROM LYSINE

PTM SITES

Because half of the reported neddylation sites engage in
in situ crosstalk with other PTM types, we reason that many
of the known lysine PTM sites may engage in crosstalk with
neddylation. As a large number (>100,000) of lysine PTM
sites has been experimentally identified [40], it is neces-
sary to differentiate the neddylation sites from lysine PTM
sites. Accordingly, we constructed the related independent
test dataset (#2), where 112 neddylation peptides were col-
lected from Independent test dataset #1 and 112 lysine PTM
peptides were randomly selected from the test dataset of the
lysine PTM dataset (Figure 3B).
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FIGURE 6. The architectures of four target models with combinations of various
frozen and unfrozen layers: (A) The target model with a fully connected layer
unfrozen; (B) The model with a fully connected layer and the last convolutional
sublayer unfrozen; (C) The model with a fully connected layer and the last two
convolutional sublayers unfrozen; (D) The model with convolutional and fully

connected layers unfrozen.

TABLE 2. The performance (AUC values) of the CNNgy model, the CNNgy -based source model and target models with various combinations of frozen

and unfrozen layerss.

Target models

The first two The first

Dataset CNNon Source model  All convolutional . . All convolutional
convolutional convolution layer
layers frozen layers unfrozen
layers frozen frozen
Ten-fold Cross-validation #1 0.767+0.024 0.790+0.020 0.804+0.034 0.806+0.020 0.812+0.032 0.818+0.020
Independent test dataset #1 0.771+0.011 0.768 0.800+0.010 0.805+0.011 0.816+0.012 0.818+0.009
Independent test dataset #2 0.652+0.014 0.471 0.588+0.009 0.633+0.008 0.650+0.013 0.652+0.011

* CNNon was constructed using Cross-validation dataset #1. The source model was built using the training dataset of the lysine PTM dataset. The four target

models were fine-tuned using Cross-validation dataset #1.

We examined the performance of the CNNopy model, the
source model and the four target models built using Indepen-
dent test dataset #2. Out of the six target models, the CNNoy
model and T4 had the greatest AUC value of 0.652 (Table 2).
Because of their mediocre performance, we attempted to
build new models with superior performance. Accordingly,
we constructed CV dataset #2 for model training and assess-
ment, which included the 1124 neddylation sites from CV
dataset #1 and 1124 PTM sites from the test dataset of the
lysine PTM dataset (Figure 3).

We constructed and examined the CNNpy model using
CV dataset #2. We also constructed and evaluated four tar-
get models (T1-T4) based on the source model developed

VOLUME 11, 2023

above (Figure 6). The AUC value of CNNppy was 0.659 and
increased gradually from 0.669 to 0.698 for T1 to T4 in CV
dataset #2 (Table 3). Therefore, T4 had the best performance
among these five models. T4 also showed superior perfor-
mance in Independent test #2 (Table 3). In summary, T4 could
effectively recognize neddylation from lysine PTM sites.
Furthermore, we compared CNNpy and T4 using four
more metrics (i.e., ACC, Sn, Sp and MCC). Since these met-
rics are related, we set the Sp value as the same (around 0.689)
and used the remaining metrics to compare prediction perfor-
mance (Table 4). T4 had larger Sn, ACC and MCC values than
did CNNoppy in terms of the ten-fold cross-validation datasets
(#1 and #2) and the independent test datasets (#1 and #2).

51805



IEEE Access

D. Xu et al.: DTL-NeddSite: A DTL Architecture for Prediction of Lysine Neddylation Sites

TABLE 3. The performance (AUC values) of the source model CNNgy and target models with various combinations of frozen and unfrozen layers:.

Target models

The first two

The first

Dataset CNNon Source model  All convolutional . . All convolutional
convolutional convolution layer
layers frozen layers unfrozen
layers frozen frozen
Ten-fold Cross-validation #2 0.659+0.026 0.545+0.035 0.669+0.025 0.680+0.029 0.688+0.025 0.698+0.033
Independent test dataset #2 0.649+0.025 0.471 0.688+0.006 0.671+0.012 0.682+0.017 0.687+0.007
Independent test dataset #1 0.697+0.027 0.768 0.743+0.016 0.750+0.013 0.755+0.016 0.697+0.027

* CNNoy was constructed using Cross-validation dataset #2. The source model was built using the training dataset of the lysine PTM dataset. The four

target models were fine-tuned using Cross-validation dataset #2.

TABLE 4. Performance comparison of CNNgy and target model T4.

Dataset Model Sn Sp ACC MCC
CNNon 0.712+0.047 0.689+0.001 0.700+0.023 0.402+0.047
Ten-fold Cross-validation #1
______________________________________ T4 077550044 0.68940.001 0.732+0.022 = 0467+0.047
CNNonu 0.7124+0.033 0.687+0.000 0.700+0.016 0.400+0.033
Independent test dataset #1
T4 0.788+0.031 0.687+0.000 0.737+0.015 0.478+0.033
CNNou 0.54140.049 0.689+0.001 0.615+0.024 0.2334+0.047
Ten-fold Cross-validation #2
S T 0.580+0.068 0.689+0.001  __ 0.634:0.034 0270+0.066 __
CNNon 0.495+0.052 0.687+0.000 0.591+0.026 0.185+0.051
Independent test dataset #2
T4 0.538+0.023 0.687+0.000 0.612+0.011 0.228+0.023
For example, in Independent test dataset #1, the ACC value A
of CNNopy is 0.712, and that of T4 is 0.788 (p-value=0.0020,

N . Method AUC Sn Sp ACC
student’s t-test). In summary, T4 had a performance superior — T == = =
to that of CNN, OH- Cross-validation ~ NeddPred 097 079 097 097

To comprehensively evaluate our models, we changed the . BYMO L0000 TP O OEOO
ratio of the cross-validation and the independent test datasets frispendentiot Rty 0 o o .
from 10:1 to 5:1, reconstructed the DTL model and assessed §VMeanc 099:002  095:015 095001  095:001
its performance. We found that this change did not affect B ROG curve
the model’s performance. For instance, the AUC values, 101

before and after the change, are similar for CV dataset #1
(p-value = 0.495, student’s t-test) and for Independent test
dataset #1 (p-value = 0.200, student’s t-test). Therefore, our
DTL model is robust.

D. MODEL EVALUATION BY COMPARISON OR PRACTICAL
APPLICATION

We compared our model with two reported classifiers
(i.e., NeddPred and NeddyPreddy). The two classifiers were
based on the small dataset (i.e., 51 neddylation sites). Because
the characteristics of the neddylation sites from this small
dataset are different from those of the neddylation sites from
our dataset (Figure 1A), we were suspicious of the perfor-
mances of these models for predicting the newly identified
neddylation sites. As we failed to reproduce the classifiers,
we constructed a model to represent them. The representa-
tive model was SVMEaac, which performed similarly to the
previous models based on the small dataset (Figure 7A). The
performance (AUC=0.48) of SVMgaac using Independent
test #1 was similar to that of random prediction (Figure 7B),
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FIGURE 7. Evaluation of the reported classifiers: (A) Performance
comparison of NeddyPreddy, NeddPred and SVMgpac using the previous
small dataset; (B) Prediction performance of SVMgppcusing Independent
test #1 of this study and an independent test collected in the previous
small dataset.

suggesting that the reported models fail to predict newly iden-
tified neddylation sites. Furthermore, as the representative
SVMgaac performed more poorly than CNNpy, developed
using our dataset (Table 1), the previously reported models
might not perform well either.
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Apriori is an algorithm for frequent item set mining and
association rule learning over relational databases [43], [44].

We used the Apriori algorithm to explore the relationship
between elements in the neddylation samples of Dataset #1.
We set a support level of 25% (or 45%) and a confidence
level of 90% (or 99%) [43], [44], but we did not find any
association rules. This indicates that there is no strong asso-
ciation within the dataset. When we reduced the support
level to 2.5% and the confidence level to 15%, we found
four association rules: {L@P-1, G@P1}, {K@P3, K@P5},
{K@P-11, K@P3} and {L@P-1, E@P16} (See Table S1 for
details). In Dataset #1, 7% (=86/1236) of the positives and
4.4% (=55/1236) negatives meet one of the four rules.

We used the Apriori algorithm to predict neddylation sites,
where the samples meeting these rules were predicted as
positive and the rest were considered negative. As a result, the
Specificity value was 0.96, Sensitivity was 0.07 and Accuracy
was 0.51. We evaluated the performance of the T4 model with
a fixed Specificity of 0.96. Its Sensitivity (0.29) was larger
than that (0.07) of the Apriori algorithm, and its Accuracy
(0.62) was larger than that (0.51) of the Apriori algorithm
as well. Therefore, the T4 model compares favourably to the
Apriori algorithm.

We further attempted to evaluate the T4 model’s perfor-
mance in a real-world situation. As we did not find new
neddylation data in the literature, we could not use them as
a benchmarking dataset. Nevertheless, we examined T4 by
separating our dataset into two sub-datasets based on their
different origins: a large one with 1101 neddylation sites
identified from the HCT-116 cell line [11] and a small one
with 607 neddylation sites reported from the HET-293 cell
line [10]. Because the datasets were generated from differ-
ent cell lines by different research groups, they were truly
independent. We used the large dataset to reconstruct our
model and evaluated its performance using the small dataset.
Its AUC value was 0.735, which is significantly larger than
random prediction (AUC=0.5), indicating that our model
captured the general characteristics of neddylation and has
good predictive ability. Meanwhile, we admit that data from
different experiments are subject to variation, and more data
are required to improve the model performance.

IV. DISCUSSION

In this study, we collected newly identified human neddy-
lation sites (>1000) and constructed several models based
on different algorithms and distinct encoding features. The
CNNoppn model showed the best performance. Nevertheless,
its performance was lower than expected due to data limita-
tions. To increase its performance, we introduced information
on a massive number of lysine PTM sites using the DTL
strategy. Specifically, the source model was built using the
lysine PTM sites and then fine-tuned as target models using
the known neddylation sites. The DTL model T4 showed
superior performance, in which all the layers were unfrozen
during the fine-tuning step. This phenomenon was also
discovered in DTL-DephosSite, which was developed for
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TABLE 5. Performance (AUC) of the target models with different source
models trained using various lysine PTM types.

PTM types used for Ten-fold Cross- Independent
source model training* validation #1 test #1
A mixture of PTM types 0.793+0.028 0.798+0.014
Ubiquitination 0.795+0.032 0.804+0.011
Acetylation 0.780+0.026 0.778+0.015
SUMOylation 0.779+0.029 0.792+0.010

* In each training dataset, the number of PTM sites was fixed as 5674.

predicting dephosphorylation sites [45]. These two models
differ from general DTL models with good performance
where frozen and unfrozen layers are combined [46], [47].
Whether this phenomenon is common in the predictors of
PTM sites remains to be investigated.

We compared DTL model T4 and the CNNpg model
to determine why the former performed better. The differ-
ences between them are the weights of the convolution and
fully connected layers before training. The initial weights
in the CNNpy model are random, whereas those in T4
are pre-trained from the source model. In other words, the
pre-trained weights captured the information of lysine PTMs
that contain neddylation characteristics and boosted the pre-
diction performance through knowledge transfer. Therefore,
the pre-trained weights demonstrated advantages over the
random weights.

The massive amount of human lysine PTM data was essen-
tial for constructing the DTL model for neddylation site
prediction. The data were mainly contributed by three PTM
types: SUMOylation (5674 sites), ubiquitination (23,413
sites) and acetylation (60,342 sites). We compared the three
PTM types to explore which would be best for construct-
ing the source model. To fairly compare them, we fixed
the number of modified sites as 5674 (the number of
reported SUMOylation sites in PLMD). Accordingly, we ran-
domly selected 5674 lysine PTM sites, SUMOylation sites,
ubiquitination sites and acetylation sites as positive samples,
respectively. Negative samples were selected using the same
procedure as listed above. Based on each PTM type, we con-
structed the base model and target model T4. The four target
models performed similarly in ten-fold CV and independent
tests (Table 5). Moreover, Their AUC values were smaller
than that (0.818) of the target model, where the massive lysine
PTM training dataset (including 70,877 PTM sites) was used
for constructing the source model (p-value < 0.030, student’s
t-test). Therefore, the performance of the target model is
positively related to the number of PTM sites used for source
model construction.

Our developed DTL model demonstrated superior per-
formance in predicting neddylation sites. This observation
shows the advantages of the DTL algorithm for modelling
based on small data sets. It is also consistent with the appli-
cation of the DTL strategy that reuses a previously learned
model on a new project with a small amount of data. The DTL
strategy may be widely used in the PTM field as many PTM
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types are identified with limited modification data, such as
lysine and arginine phosphorylation [48].

V. CONCLUSION

This study demonstrates the advantage of the DTL strategy
for constructing a neddylation prediction model. Although
the identified neddylation sites are limited, integrating a mas-
sive number of lysine PTM sites improved the prediction
performance. The DTL strategy is particularly suitable for
PTM types with limited identified sites. Therefore, we would
like to see it widely used on the newly discovered modifier
types, such as lysine and arginine phosphorylation.
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