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ABSTRACT This study investigated the potential of recognising arousal in motor activity collected by wrist-
worn accelerometers. We hypothesise that emotional arousal emerges from the generalised central nervous
system which embeds affective states within motor activity. We formulate arousal detection as a statistical
problem of separating two sets - motor activity under emotional arousal and motor activity without arousal.
We propose a novel test regime based onmachine learning assuming that the two sets can be distinguished if a
machine learning classifier can separate the sets better than random guessing. To increase the statistical power
of the testing regime, the performance of the classifiers is evaluated in a cross-validation framework, and to
test if the classifiers perform better than random guessing, a repeated cross-validation corrected t-test is used.
The classifiers were evaluated on the basis of accuracy and Matthew’s correlation coefficient. The suggested
procedures were further compared against a traditional multivariate paired Hotelling’s T-squared test. The
classifiers achieved an accuracy of about 60%, and according to the proposed t-test were significantly better
than random guessing. The suggested test regime demonstrated higher statistical power than Hotelling’s
T-squared test, and we conclude that we can distinguish between motor activity under emotional arousal and
without it.

INDEX TERMS Affect recognition, emotion detection, motor activity, arousal, soccer, machine learning,
hypothesis testing, time series analysis.

I. INTRODUCTION
The nervous shaking of a hand, sweaty palms, and tight jaws
are indicators of human affection. While we are often able
to keep a straight face during emotional trigger scenarios,
the body reveals an instant motor expression [1], [2]. The
research field of affect recognition focusses on exposing
affective states within physiological signals which allows
computers to recognise affect, known as affect computing
coined by Picard [3]. In this work, we focus on motor
activity as a physiological signal, how it embeds affective
states, and how we can recognise these states. Affect recog-
nition can generally be distinguished between behavioural
recognition and recognition based on physiological sig-
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nals [4]. Behavioural recognition focusses on facial expres-
sion, eye tracking, and interaction with the smartphone or
text. Physiological signals cover sensors of various biolog-
ical reactions, such as heart rate, blood volume pulse, skin
responses, respiration, and brain activity. Most of the enu-
merated signals capture the affective state through instant
physiological expression. Emotions originate or result in
changes in the physiological signal [2]. These signals can
be investigated in unimodal or multimodal analysis [5],
[2], [4]. Unimodal analysis takes into account only one
indicator of affect expression, like heart rate alone. Conse-
quently, themultimodal analysis combines various indicators.
In recent years, studies have shown that multimodal analysis
performs better than unimodal analysis [6].

The rapid technological development of wearable sensors
and their continuous integration into commercial and private
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use leads to large collections of physiological data. Affect
recognition can be seen as a pattern recognition task that
first identifies and then classifies or quantifies the affective
state within a signal. Although affective computing originated
in the early nineteen-nineties, the task of affect recogni-
tion remains challenging. Affect is a psychological construct
defined by Russell J. and others, and a weakly defined latent
artefact-like affect is difficult to extract from often noisy
sensor signals [6], [7].

The ground truth for supervised classification tasks is hard
to obtain. Experiments to measure affect range from strict
laboratory settings to more real-life scenarios, depending on
the research question. However, the experimental results are
difficult to transfer to real situations, whereas experiments in
real situations lead tomore noise and difficulty in determining
the ground truth. This partly impedes the generalisability of
the methods and models researched [6]. In addition, tech-
nical difficulties arise with data collection. The choice of
appropriate sensors is concerned with intrusiveness, costs,
and noise [6]. Affect computing also combines many research
fields such as signal processing, image compression, com-
puter vision, texture modelling, statistical physics, machine
learning, and cognitive psychology [5], [6], [8].

This work presents three main contributions. We studied
the potential for affect recognition in motor activity collected
by wrist-worn accelerometers. We hypothesise that motor
activity embeds affective states, like the other physiologi-
cal signals mentioned above. Our hypothesis is grounded in
an evidence-based theory postulating that aroused activation
emerges from a primitive and elementary mammalian neural
force, as generalised central nervous system (CNS) arousal.
This system regulates behavioural reactions to environmental
developments, expresses emotional states, and is observable
as both autonomic and motoric activation [9], [10]. Further-
more, motor activity has previously been proven to be a
beneficial tool for categorising various mood disorders.
Pathological mood states, such as depression and mania,
could be considered conditions of sustained emotional reac-
tions [11], [12]. The first contribution and the main goal
of this work is to demonstrate that the muscular response
emerging from the expression of emotional arousal can be
measured in motor activity data, which to our knowledge has
never been investigated before. Our second contribution is
an experiment we conducted to collect data and prove our
hypothesis. We collected the motor activity of ten soccer
fans during a live television soccer game, all gathered at the
same location. The choice of a soccer game as an emotional
stimulus allowed us to create a closed environment for the
experiment that was still as natural as possible. This experi-
mental design can be easily extended, and other physiological
signals can be measured. We defined a scored goal in the
soccer game as an intense emotional stimulus to a fan, which
is confirmed in other studies [13]. We assumed to recognise
the affect within themotor activity if wemanaged to segregate
the intervals of goals and intervals without any noteworthy
events.

Our aim is to significantly differentiate between emo-
tionally stimulated intervals of motor activity and control
intervals. Accordingly, the third main contribution is a novel
test regime based on machine learning. We assume that a
machine learning classifier that performs significantly better
than random guessing will make a correspondingly signifi-
cant distinction between two sets. We introduced a repeated
lower-bound cross-validated corrected t-test for classification
performancemetrics. The t-test uses the correction term intro-
duced by Bengio and Grandvalet [14]. We applied different
machine learning methods for binary classification. Due to
a small sample size of 80 samples, we chose k-fold cross-
validation to assess the classification results. The multivariate
Hotelling’s T-squared test was used as a baseline for our
proposed test regime. The code for the data pre-processing,
experiments, and statistical testing regime is available on
Github [15]. The data is available through the Open Science
Framework [16].

In summary, the main contributions are as follows.
• We suggest that the CNS emerges arousal as an expres-
sion of emotional states and showed that this arousal is
measurable in motor activity.

• We conducted a real-world experiment in a closed envi-
ronment to measure motor activity in response to emo-
tional stimuli. The motor activity of ten soccer fans
watching a soccer game (from their favourite team) live
on television is recorded and the data is made publicly
available.

• We contribute with a novel statistical test regime based
on machine learning to test if two sets of data are out-
comes from different statistical distributions.

In the remainder of the paper, we will first discuss concepts
of affect recognition and related work, followed by a detailed
description of our method and experiments. Finally, we dis-
cuss and present the results, followed by the conclusions and
future work.

II. CONCEPTS OF AFFECT RECOGNITION
Before moving on to the topic of affect recognition, we intro-
duce the expressions affect and emotion. Although termi-
nology is often used interchangeably [2], we would like
to use a consistent definition for each of the expressions.
Russell J. defines affect as a neurophysiological state that is a
primitive, non-reflective, and non-directed feeling [7], a def-
inition that resembles Pfaff’s hypothesis about generalised
CNS arousal [9], [10]. Affects can be linked to an object, and
thus become directed toward the object. Russell’s example is
the encounter of a bear with a person. The person feels fear,
upset, and discomfort caused by an object, the bear. Once
the affect is cognitively processed and directed at an object,
it becomes an attributed affect [7]. A compound of attributed
affects can build an emotion [1].

Generally, the various theoretical models of emotions are
divided into categorical or dimensional models. Categorical
models state that emotions can be organised into numer-
ous groups, a topic thoroughly discussed in the literature,
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throughout the ages. The ancient Roman philosopher Cicero
defined four categories of emotions, desire, delight, fear, and
distress [17]. Ekman, the pioneer of modern-time emotion
studies, argues for six basic emotions: anger, fear, sadness,
enjoyment, disgust, and surprise. The different basic emo-
tions are defined according to ‘‘the appraisal of a current
event which is influenced by one’s past history’’ [18]. A three-
dimensional model projects emotions onto a multidimen-
sional hyperplane. The two-dimensional circumplex model
suggested by Russell [7] has met great popularity and appli-
cation within the field of science and technology studies [2],
[19], [20], [21], [22]. Especially in the field of machine
learning within affect recognition, the model has been used to
create classification problems [20], [23], [24], [25]. The two
dimensions of the circumplex models are defined as valence
and arousal. Valency refers to an affective quality that ranges
from displeasure to pleasure. The arousal dimension is the
feeling of mobilisation and energy and ranges from uncon-
scious sleep to energetic enthusiasm [7]. Figure 1 illustrates
the two-dimensional circumplex model.

In an elementary biological understanding, emotions and
arousal are outcomes of ecological inputs assessed and pro-
cessed in the brain. Various centres in the cerebral cortex
receive visual, auditory, and olfactory signals, as well as taste
and skin sensations, and forward these sensory impressions
to the limbic brain structure for evaluation [26]. The lim-
bic system’s function is to institute emotional state, initiate
behaviour, recall learnt experiences, and store new mem-
ories [27]. The established emotional state is equal to the
level of generalised CNS arousal, and this is necessarily a
tremendously responsive system, to enable escaping poten-
tial dangers [10]. Within the brain, the CNS communicates
through neurons and hormones. Outside the brain, the CNS
communicates through the nerves of the peripheral nervous
system (PNS), both for the reception of sensory impressions
and for the generation of responsive actions. The hypotha-
lamus, a tiny area located deep in the brain, is the central
communication centre of the nervous system. Its main objec-
tive is to keep bodily functions and rhythms stable and safe.
Generalised CNS arousal communicates bodily functions
through two branches of the PNS, the autonomic (ANS) and
somatic (SNS) nervous systems. ANS regulates involuntary
muscles in the body and makes generalised CNS arousal
observable in heart rate, blood volume pulse, skin conduction,
and respiration. SNS controls voluntary muscles, therefore,
CNS arousal is recognisable in motor activity [26]. Conse-
quently, the relationship between generalised CNS arousal
observed in SNS (motor activity) and ANS (skin conduc-
tance and heart rate) has great potential for multimodal
analyses [28].

III. RELATED WORK
Emotion recognition encompasses a wide range of elicitation
methods, especially behavioural expressions that are only
remotely related to our work. Therefore, we focus on the

literature on emotion recognition based on physiological
signals. Already in the early nineteen nineties, statistical
approaches showed that different emotions can be elicited
from physiological signals. Levenson et al. demonstrated
that the autonomic nervous system differs for different emo-
tions. The authors applied multivariate analysis of variance
(MANOVA) on heart rate, skin conductance, finger pulse
transmission time, and finger pulse amplitude data [29].
Pecchinenda and Smith investigated skin conductance during
complex problem solving and identified statistically signifi-
cant differences for mean changes in skin conductance [30].
Scheirer used Hidden Markov models to detect periods of
frustration in skin conductivity and blood volume, which
performed significantly better than random guessing [31].
Vrana [32] conducted an experiment on negative emotions,
where participants were exposed to different images and their
EMG, heart rate, and skin conductance level was recorded.
The aim was to distinguish different negative emotional con-
texts. Using an ANOVAmodel, it was shown that disgust and
anger-triggering images could be distinguished according to
EMG. Heart rate was significantly higher for disgust, anger,
and joy than for pleasant images [32].

With the rise of machine learning, researchers can explore
more complex relationships within physiological signals.
Especially in research on electroencephalography (EEG),
machine learning algorithms have been applied. Mehmood et
al. extracted the Hjorth parameters of the EEG [33]. The Hjort
parameters are statistical properties of an EEG signal, namely
activity, mobility, and complexity [34]. The authors applied a
10-fold cross-validation for support vector machine (SVM)
and K-nearest neighbour algorithms (k-NN) and achieved
accuracy scores around 50% [33]. The authors spared to
report the standard deviation, hence it is not certain if the
classifiers actually performed better than random guessing.
In particular, because of this case, we introduced a lower-
bound statistical test for the classification of performance
scores in our study. Zheng et al. aimed to find EEG pat-
terns that were stable between sessions, as well as com-
mon across subjects. SVM and Graph regularised extreme
learning machine (GEM) were applied to extracted EEG
features, like power spectral density. GEM outperformed
SVM, and based on feature extraction, they show the impor-
tance of different features for different emotions [35]. One
observable physiological change that occurs, e.g. in excit-
ing or fearful situations, is the respiration rate. Wu et al.
segmented the respiration signal according to five distinct
emotions. The respiration signals of the 33 participants were
recorded while the participants were exposed to emotionally
related video clips. Time series features such as approximate
entropy, root mean square, complexity, etc. were extracted
from the respiration signal. The authors applied a KNN
classifier and a probabilistic neural network to distinguish
between various emotions [36]. As mentioned earlier, [6]
showed that the multimodal approach performs better than
the univariate approach. Still, it is important to investigate the
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FIGURE 1. The two-dimensional circumplex model by Russell. Emotions can be
understood as points in a two-dimensional space spanned by valence and arousal. The
illustration is inspired by the original by Russell [7].

potential affective expression within a single physiological
signal to include them or exclude them from a multimodal
model.

Kim et al. studied the possibility of recognising valence
and arousal within EMG, ECG, skin conductivity, and respi-
ration changes. Emotions were triggered by music. The study
applied linear discriminant analysis and an emotion-specific
multilevel dichotomous classification [37]. Verma et al. com-
pared a multimodal approach based on EEG with 32 chan-
nels and EEG combined with various physiological signals.
Twelve different emotions were constructed based on their
location in the two-dimensional circumplex model. Discrete
Wavelet Transformation was used for feature extraction. The
classifications were performed by SVM, Multilayer percep-
tron, KNN, and meta multiclass. When physiological sig-
nals were included, accuracy improved only slightly. As the
authors reported, their approach achieved an accuracy of
81.4%, and outperformed similar approaches on the same
dataset, which were 66.7% and 68.5%, respectively [38].

So far, we have introduced related work that does not
incorporate motor activity as a physiological signal to recog-
nise affects. However, motor activity recordings have been
applied as a baseline for affect recognition during physical
activity [2], [39]. Moreover, motor activity has been applied
for stress detection, where accelerometer data from smart-
phones was used to identify stressful periods. Ciman et al.
and Garcia et al. showed that stress could be detected based
on smartphone accelerometers [40], [41]. However, to the
best of our knowledge, we have not seen any studies that
investigated affect recognition in wrist-worn piezoelectric
accelerometers.

IV. STATISTICAL TESTING BASED ON
MACHINE LEARNING
Our hypothesis states that environmental stimuli trigger the
build-up of emotions. This built-up emotion is activated by
generalised CNS arousal, reflected in motor activity. In the
circumplex model, we can map an emotion to the dimension
of arousal and valence, and stronger emotions, such as joy
and anger, are associated with higher arousal. We assume that
general activation does not differentiate by valence, therefore
we only consider the arousal dimension. Eventually, our goal
is to separate the motor activity of emotionally stimulated sit-
uations from the motor activity in situations with the absence
of stimuli.

We suggest translating this into a statistical problem with
the aim of proving that motor activity is generated by two
distinct probability distributions. The probability distribution
of motor activity in the presence of emotional stimuli is
different from that in the absence of emotional stimuli. The
observations of each distribution are paired since the two
measurements - motor activity with and without emotional
stimuli - come from one participant but under different con-
ditions. Consider paired data in the form of (Xi0,Xi1). Xij is
the observation of a participant i and j refers to the class label
Yj = j, where j ∈ {0, 1}. The class labels in Y are binary and
denote the controlled and the emotionally stimulated motor
activity.

A. REPEATED CORRECTED K-FOLD CROSS-VALIDATION
T-TEST FOR LOWER BOUNDS
One of the main contributions of this paper is to intro-
duce a hypothesis testing regime based on machine learning.
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FIGURE 2. Two different problems for statistical testing.

The regime can test whether a machine learning classifier can
perform better than some given performance level. A promi-
nent example is to test if a classifier performs better than
random guessing, confirming that it is information in the
data that separates between the two (or more) classes. The
machine learning-based hypothesis testing regime does not
assume paired data. Therefore, we denote Zi = (Xij,Yj).
The classification error is derived from a loss function
L(Zn1 ,Zn2 ), where n1 and n2 are the training size and test
size, respectively. Consequently, Zn1and Zn2 are the super-
vised data tuples for training and testing. The loss function
can have different functional forms. In the case of a classifi-
cation problem, a common function is the indicator function
I[ŷ ̸= y], which derives the accuracy score. The generalised
classification error is defined as µ = E[L(Zn1i ,Zn2l )] [14].
Cross-validation is a resampling procedure to estimate the

generalised classification error µ̂. Cross-validation partitions

the data into K subsets. The model is trained on K − 1 sub-
sets and evaluated on the remaining subset. This procedure
can be repeated K times. Cross-validation is an especially
useful approach when the data sample size is small since
the performance will be tested on every datapoint. However,
it requires a high computational cost as a result of multiple
training runs. Let µ denote the classification performance
of the classifier. An unbiased estimate of the classification
error is derived as the average over the classification error of
each fold. J. Kim suggests that variability in the estimation of
classification errors can be reduced by repeating the complete
K-fold cross-validation multiple times [42]. Estimates of the
model performance are averaged over the repetitions and
the folds, and the resulting procedure is known as repeated
K-fold cross-validation. After establishing an understanding
of the generalised classification error and cross-validation,
we derive the test statistic for a hypothesis test for the lower
bounds of the classification error.

Given a hypothesis test that the expected classification
performance of a classifier is above some threshold µ0

H0 : µ = µ0

H1 : µ > µ0 (1)

Student’s t-test is a common approach

t =
µ − µ0

σ
(2)

However, to be able to use the statistic, the mean, µ, and
standard deviation, σ , of the distribution must be estimated.
Within the cross-validation framework, estimating the mean
classification error is not problematic, and an unbiased cross-
validation estimate is given by

µ̂RK =
1

R× K

R∑
r=1

K∑
k=1

µ̃kr (3)

where R denotes the number of repetitions of the com-
plete K-fold cross-validation. On the other hand, estimating
the variance of the classification error estimate has proven
to be a challenge, since cross-validation introduces sev-
eral dependencies [14]. Nadeau and Bengio [43] however,
showed that the classification error can be approximated in
the sense that the correlation between the classification errors
becomes n2

n1+n2
.

The estimator for the sample variance of the classification
errors is formulated in Equation 4, where ( 1

R×K +
n2
n1
) is called

the correction term.

Var[µ̂RK ] =

(
1

R× K
+
n2
n1

)
σ̃ 2 (4)

We determined the estimates for the mean and variance of the
error termµ in Equations 3 and 4. Based on the two estimates,
we derive the test statistics for the repeated corrected K-fold
cross-validation t-test for lower bounds in Equation 5.

t =

1
R×K

∑R
r=1

∑K
k=1(µ̂kr − µ0)√

( 1
R×K −

n2
n1
)σ̃ 2

(5)
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The test statistic follows a Student’s t-distribution with df =

K × R − 1 degrees of freedom. The classification error can
be derived from any measure of classification performance.
Repeating the K-fold cross-validation increases the number
of samples. The distribution of the samples approaches a
normal distribution according to the central limit theorem as
the number of samples increases.

The test statistic in Equation 5 is similar to the t-test
introduced by Nadeau and Bengio, but they used it for the
comparison of two machine learning models [43]. To the best
of our knowledge, we have not seen any research using the
test statistic suggested in Equation 5.

B. HOTELLING’s T-SQUARED
We consider Hotelling’s T-squared test as a baseline com-
parison to our machine learning test regime. The paired
Hotelling’s T-squared test is a classic statistical method to
confirm that the difference observed between two multivari-
ate Gaussian distributions is significant, and not only caused
by coincidence. It does so by analysingwhether the difference
between the two mean values µcontrol and µgoal is not zero,
as visualised in Figure 2a. The paired Hotelling’s T-squared
test tests whether the sample mean of the differences between
two paired sets is significantly different from zero. The
test assumes independent, identical, and normally distributed
data. According to the null hypothesis, the mean difference
between sets is zero [44]:

H0 : δ = 0

H1 : δ ̸= 0 (6)

The test statistic is defined as

T 2
= n(D̄ − δ)′S−1

d (D̄ − δ) (7)

where the population mean is D̄ =
1
n

∑n
j=1Dj and Dj =

Xj1 − Xj2, where Xj1 and Xj2 refer to a paired data point in
the two classes Yj = 1 and Yj = 2, respectively. The sample
covariance is given by Sd =

1
n−1

∑n
j=1(Dj − D̄)′(Dj − D̄).

The test statistic follows a Fisher distribution with p and n−p
degrees of freedom [44].

Figure 2 illustrates two potential scenarios of different
probability distributions of motor activity. Figure 2a illus-
trates the simple case of two univariate normal distributions
with different expectation values. Figure 2b, on the other
hand, shows two probabilities that share the expectation but
differ in shape. In the latter case, more complex relationships
must be considered than the observed mean of a distribution.
Instead of the paired Hotelling’s T-squared that works with
the mean vector of multivariate distributions, we propose a
test regime based on machine learning classifiers that could
identify the differences in the description beyond the mean
vector, as in Figure 2b. Machine learning classifiers are
known for their ability to learn complex relationships within
the data [45], [46]. This might result in more powerful tests
compared to traditional statistical tests. Moreover, a large
number of features can be useful to separate the two sets.

This can potentially result in overfitting of the multivariate
Gaussian distributions for the two emotional states because of
the high dimensionality of the mean vectors. In the machine
learning test regime, the problem of overfitting is addressed
by dividing the data into disjoint training and test sets. The
application of the paired Hotelling’s T-squared as a baseline
test will demonstrate the necessity of the machine learning
test regime in more complex scenarios than the one illustrated
in Figure 2a.

V. DATA PREPROCESSING AND FEATURE EXTRACTION
This section addresses the data preprocessing steps that were
necessary to transform raw motor activity into valuable fea-
tures for our hypothesis test and machine learning classifiers.
In addition, we discuss the performance evaluation of the
classifiers. Finally, we describe how the machine learning
experiments were conducted.

A. SIGNAL PROCESSING
The activity was recorded with a GENEActiv wristband,
which contains a 3-dimensional microelectromechanical
accelerometer module, which measures the acceleration in
equivalent gravitational forces (g), with a sampling frequency
of 100 hertz [47], [48]. According to the Nyquist-Shannon
sampling theorem, frequencies up to 50 hertz can be recon-
structed without aliasing [49]. Human activity frequency
varies from 0 to 20 hertz. However, most of the activities
are located below 10 hertz [50]. Consequently, high-quality
human activity preferably records up to 40 hertz. The raw sig-
nals captured by the GENEActiv wristband are combined into
one activity signal. The three signals are combined according
to Equation 8.

activity =

√
acc2x + acc2y + acc2z (8)

In the second step, we apply a Butterworth filter of order 5.
The Butterworth filter of order 5 is commonly applied for sig-
nal processing of wrist-worn accelerometers [51]. The signal
is filtered to a bandwidth of 10 hertz to 49 hertz. We expected
muscular responses to affect higher bandwidth, thus filtering
out basic human activity up to 10 hertz.

B. AUGMENTED DICKEY-FULLER TEST
The application of the proposed paired tests assumes that
the pairs are identically and independently sampled [44].
However, we sampled eight intervals from each participant’s
activity time series and couple them into four pairs. This
might violate the assumption of identical independent sam-
ples due to temporal dependencies. These dependencies could
take the form of a time-dependent mean or a time-dependent
covariance. A time series that has a constant mean and a con-
stant variance over time is called covariance-stationary [52].
The property of stationarity would confirm that the mean
and covariance of the four pairs are not subject to time
dependence. The Augmented Dickey-Fuller test is designed
to show that a time series is stationary. The presence of a unit
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root in the underlying linear stochastic process causes non-
stationarity. For example, an autoregressive process of order
one in Equation 9.

△Xt = (ρ − 1)Xt−1 + ϵt (9)

Xt is an observation of a time series at time t , ρ is a coefficient
of the autoregressive process. The process has a unit root
when ρ = 1. A null hypothesis can be formulated accord-
ingly, where δ = ρ − 1 [53].

H0 : δ = 0

H1 : δ < 0 (10)

For a more detailed insight into the augmented Dickey-
Fuller test, we refer to the book of Hamilton [52] or
Shumway et al. [53].

C. FEATURES AND FEATURE SELECTION
We considered nine time series features that are well recog-
nised in the literature for affect recognition [54], [55], [56].
The spectral centroid characterises the frequency spectrum
and is understood as the median of the spectrum. Further-
more, the four first moments of a probability distribution,
namely mean, standard deviation, skewness, and kurtosis, are
applied. In addition, we include features that display the vari-
ability of a time series. The root-mean-square deviation and
the median absolute deviation describe the deviation of a time
series from its centre. The number of peaks is calculated as
the local maximumwithin a certain window size. Complexity
is the root-lagged square difference and is defined as

complexity =

√√√√n−1∑
i=1

(xi − xi−1)2 (11)

It cannot be specified when exactly a muscular expression
occurs as a response to environmental stimuli. The response
to stimuli is highly individual for each participant. There-
fore, we further split the one-minute intervals into 10 subin-
tervals. The aforementioned features are extracted for each
subinterval. We assume that the most informative subinterval
is selected during feature selection and that this subinter-
val consequently contains the stimuli. During feature selec-
tion, 90 features are evaluated in total. Of the 90 features,
we selected the three best performing ones. We selected
the features based on their information gain. The mutual
information between the multivariate feature vector and the
labels is determined. Let X be a multivariate random vector
and Y be a univariate random vector. The formula for mutual
information is given in Equation 12.

I (X ,Y ) =

∫
X

∫
Y
p(x, y)log

p(x, y)
p(x)p(y)

dxdy (12)

Mutual information between two random vectors can essen-
tially be described as the ratio of the joint distribution p(X ,Y )
and the product of their marginal distributions p(X ) and p(Y ).
Mutual information is a generalisation of the correlation
coefficient, which accounts for the linear dependency [57].

A feature is selected if its inclusion increases the information
gain measured by mutual information.

VI. EXPERIMENTS
We measured the motor activity of devoted football enthusi-
asts watching a live football match on television between their
favourite teams. Goal scoring is considered a trigger point
for generalised CNS arousal. Of course, a goal can evoke
different emotions, anger, or joy, depending on the team that
the enthusiast is supporting. However, since we only consid-
ered an increase in aroused energy, we assumed that aroused
anger or joy will look relatively similar in motor activity data.
We analysed the motor activity of each participant during a
goal and compared it to a control sequence. All sequences
were in intervals of one minute.

In Section V-C, we demonstrate a feature selection method
that is suitable for our problem.We used this feature selection
to identify the best feature set for the suggested machine
learning test regime and for Hotelling’s T-squared. The fea-
ture selection and classification were evaluated in repeated
cross-validation with K = 10 due to a small sample size
of 80 intervals. Cross-validation was conducted on a per-
participant basis to avoid splitting the paired data. The
cross-validation was repeated R = 1, 5, 10 and 20 times.
We evaluated machine learning models based on the
Matthews correlation coefficient (MCC) and accuracy. Seven
different classification methods were used to show that
the two sets, emotionally stimulated motor activity and
control, are significantly different. The variety of chosen
classifiers includes linear methods, ensemble methods, and
a non-parametric method. Namely, we compared logistic
regression, naive Bayes, support vector machine (SVM),
K-nearest neighbours (k-NN), Adaptive Boosting (AdaBoost),
linear discriminant analysis (LDA), and Random Forest (RF).
This variety of methods allowed us to explore simple and
complex relationships in the data. The Appendix addresses
the models in more detail. Logistic regression is applied with
a L1 penalty. SVM uses a radial basis function kernel and
a regularisation term of 1. k-NN is trained on 10 nearest
neighbours. LDA is solved with the eigendecomposition. The
other methods are trained on the default settings.

We aimed to show that the classification methods are
better than random guessing. For binary classification, accu-
racy scores of approximately 50% are regarded as random
guessing [37]. Therefore, we have shown that our classifica-
tion accuracy is significantly higher than 50% and therefore
the classification performance is hence better than random
guessing.

Cohen’s kappa is a frequent performance measure in affect
recognition [58], [59], [60], [61]. However, Cohen’s kappa
reveals some inconsistent behaviour in certain cases [62].
Hence, we chose MCC over Cohen’s kappa. An MCC that
is well above zero indicates a performance that is better
than random guessing [63]. A more detailed explanation of
the three performance metrics and a brief discussion on the
choice between MCC and Cohen’s kappa are attached in the
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Appendix. In addition to the experiment described above,
we examined how robust the classification performance is
for other control intervals. We moved the initial control
interval window back and forth by one minute in increments
of one second. This led to 119 different intervals around the
one initially drawn for the experiment. This allowed us to
understand how robust the results are for a larger control
sample distribution. For robustness investigation, a 10-fold
cross-validation is performed with 20 repetitions. The results
are presented as a boxplot figure in Section VII-C.

The experiments were carried out using Python and R [15]
software programmes. A MacBook Pro 2020 with M1 chip
and 16 GB RAM was used for the execution.

VII. RESULTS AND DISCUSSION
In this section, we present and discuss the results of this work.
The section is organised as follows. First, we present the data
collection and the data obtained from it in Section VII-A. The
data collection is followed by the results of the augmented
Dickey-Fuller test in Section VII-B. Afterwards, we present
the general classification performance of the machine learn-
ing models. Additionally, the results of the robustness of
the classification are illustrated in Section VII-C. Finally,
Section VII-D demonstrates the results of the proposed
machine learning-based test regime and compares them to the
baseline Hotelling’s T-squared test.

A. PARTICIPANTS AND DATA COLLECTION
Eleven soccer supporters gathered to watch a live broadcast
of the Premier League match between Liverpool and Manch-
ester United (4 - 0) on 19th of March 2022, all equipped with
a wrist-worn accelerometer of type GENEActiv [48]. Goals
occurred in minutes 5, 22, 68, and 85 of the game. We chose
four control intervals in minutes 3, 8, 27, and 36. The inter-
vals were of one minute duration consisting of 6000 sam-
ple points. The time points were identified according to a
game summary [64]. Before and during the game, no drugs
and nothing stronger in terms of alcohol than low-alcohol
beer were accepted for consumption. For one participant,
the actigraph did not collect any data and the participant
was excluded from the analysis. Consequently, we analysed
10 football supporters, operationalised as 80 time intervals
with 40 emotionally stimulated intervals and 40 control inter-
vals. All participants reported being fans of their team since
childhood (before 12 years of age). One supporter reported
being a lifetime fan of a deviant football team but reported a
strong dislike for one of the competing teams. Consequently,
our sample contained four people who wished for Liverpool’s
defeat and six people who opposed Manchester United. Nine
participants were men and one was female, with a mean
age of 24 years (range 18 – 50). In addition, participants
were asked to rate three questions from the self-rated seven-
item identification with their team scale [65]. Responses to
each item were on a 1 to 8 Likert scale, and higher scores
indicated a more passionate fan identification.We utilised the
following three items; how important to you is it that your

TABLE 1. Descriptive values of the dataset.

TABLE 2. The results of the augmented Dickey Fuller test. The test for
covariance-stationarity was performed for the activity time series of each
participant. The table reports the test statistic and the p-values for each
participant. A p-value below the significance level of p = 5% indicates
covariance-stationarity.

football team wins, the result was 7.3 (1.1) (mean (standard
derivation)); How strongly do you see yourself as a fan of
your football team, which resulted in 7.1 (1.0); How much do
you dislike the other football team, resulted in 5.8 (2.3). The
questionnaire used is attached in the Appendix.

Table 1 summarises the datasets with the most important
information about size and shape. The environmental setting
is considered a closed real-life scenario. Because, although
unquestionably a closed environment, the scenery still resem-
bles a natural real-life situation. All participants were aware
of the purpose of this experiment and consented to partici-
pate by attending the event and by wearing the accelerom-
eter. No personally sensitive information was collected, all
data is fully anonymised following the GDPR guidelines,
and all procedures were in accordance with the recommen-
dations of the data protection agent at Oslo Metropolitan
University.

B. RESULTS OF THE AUGMENTED DICKEY-FULLER TEST
We used the augmented Dickey-Fuller test to evaluate
whether the activity time series of the participants are
covariance stationary. The property of covariance stationarity
ensures a constant mean and covariance of the time series.
A constant mean and covariance are desirable in our anal-
ysis because the sampled intervals from the activity time
series of the participants need to be identically and indepen-
dently. By showing that themean and covariance are constant,
we ensure that the distribution of the sample intervals is not
time-dependent.

The results of the augmented Dickey-Fuller test are sum-
marised in Table 2. The results show that the test is signif-
icant for each time series. This means that each time series
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TABLE 3. Matthew’s correlation coefficient scored by each model. The score is reported for different repetitions of the cross-validation. We cannot
conclude that a certain number of repetitions improve the results.

TABLE 4. Accuracy of the models for different repetitions of the cross-validation. The ensemble models AdaBoost and Random Forest were
outperformed. The other classifiers scoreed similar scores around 60%.

TABLE 5. The table reports the p-values of the corrected repeated 10-fold cross-validation one-sample t-test. The p-values are calculated for different
numbers of repetitions. We observe that the p-values decrease with an increasing number of repetitions. The p-values below 5% are highlighted.

is stationary. We could conclude that the assumptions of the
t-tests are not violated.

C. CLASSIFICATION RESULTS
Before we present the results of our proposed test regime,
we evaluate the general performance of the machine learn-
ing models in terms of their accuracy and MCC. Table 3
contains the MCC scored for each machine learning model.
We further analyse the value for a different number of cross-
validation repetitions. The MCC values achieved by the pro-
posed machine learning models range from 0.171, scored by
naive Bayes to 0.318 scored by linear discriminant analysis.
We observed that a larger number of repetitions did not
greatly affect the MCC.

Table 4 shows the accuracy scores for all models and
the different number of repetitions. We also notice that the
accuracy did not improve with an increasing number of
repetitions. Models that performed best according to MCC
also performed so for accuracy. Linear discriminant analysis
(LDA) scored the best accuracy result of 63.7%. All models,
except naive Bayes and random forest, consequently scored
above 60% accuracy.

Additionally, we analysed how robust the binary classifica-
tion performed for different control intervals drawn from the
motor activity time series. Figure 3 illustrates the distribution
of accuracy at 119 different control intervals. We represent
the distribution of accuracy for each model as boxplots. The
figure allows us to understand the variance and the scale of the
accuracy score. The median accuracies of logistic regression,
support vector machine, naive Bayes, and linear discriminant
analysis were above 55%. AdaBoost, k-NN, and Random
Forest achieved a median accuracy of less than 55%. These
three models also had the highest variance when compar-
ing the range of the boxplots. We set the whiskers of the
boxplot to the 5th percentile and the 95th percentile. The lower

whiskers of all models were less accurate 50%. The results
showed that for all models except AdaBoost the lower bounds
of the accuracy, the boxplots are confidently above the 50%
level.

D. RESULTS OF THE REPEATED CORRECTED K-FOLD
CROSS-VALIDATION T-TEST FOR LOWER BOUNDS
Lastly, we present the results of the repeated corrected 10-
fold cross-validation t-test for lower bounds and compare
them with the results of the paired Hotelling’s T-squared
test. Table 5 shows the p-values of the t-test. We see that
most of the p-values were very low and below the signif-
icant level 5%. AdaBoost is the only method that did not
achieve significance for 5 repetitions. The paired Hotelling’s
T-squared is 7.581 and scores a p-value of 0.0836. The result
indicates a difference between the distributions but is usually
considered to be statistically non-significant. Both hypothesis
tests seem to detect a difference. However, unlike our pro-
posed test regime, the paired Hotelling’s T-squared failed to
achieve a significant result. We could argue that our proposed
test regime reached a higher statistical power. As discussed in
Section IV-B, the difference between emotionally stimulated
motor activity and motor control activity could be captured
by higher order differences in the distributions than the mean
vector.

The p-values in Table 5 seem to decrease with increas-
ing number of repetitions. We discussed repeated cross-
validation in Section IV-A and concluded that the repeated
procedure will result in reduced noise from the performance
metric estimates. Therefore, we assume that the p-values con-
verge and do not systematically decrease. Logistic regression,
AdaBoost, k-NN, and Random Forest did not reach a signifi-
cant level with a single cross-validation. However, all models
achieved significance with increasing repetitions. We con-
clude that the seven proposed machine learning models were
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FIGURE 3. Illustration of the robustness of classifiers analysed. The classification is applied
to 119 shifted control intervals to show the robustness of the classification performance.
The boxplots show the distribution of the accuracy scores. The orange line shows the
median and the box covers the first and the third quartile. The outer lines illustrate the 5th

and 95th percentile. The dots show outliers in the distribution.

able to discriminate between intervals of motor activity with
emotional stimuli and intervals without emotional stimuli for
the given dataset.

VIII. CONCLUSION
This work investigated the potential to discriminate altered
arousal in time series of motor activity. Emotional stimuli
cause generalised arousal of the CNS. The excitation of the
CNS is transmitted to human motor activity through the
SNS. We conducted an experiment from which we obtained
motor activity data with assumed emotional stimuli and con-
trol data. Our hypothesis states that we recognise arousal
in motor activity if the two sets of motor activity data can
be distinguished. We have suggested a machine learning
framework to statistically test whether the two distributions
can be separated. The suggested approach was compared
with the traditional Hotelling T-squared test. Seven different
binary machine learning classifiers were used in the sug-
gested machine learning approach, namely logistic regres-
sion, SVM, k-NN, AdaBoost, and linear discriminant anal-
ysis achieve accuracy scores greater than 50% (p-value <

0.01), and MCC scores greater than 0% (p-value < 0.01)
in our experiment, that is, better than random guessing.
The results also prove robust when the control intervals are
shifted. Furthermore, the Hotelling T-squared test was unable
to significantly separate the two groups (p-value = 0.08),
indicating that the suggested machine learning framework
results in tests more powerful than the traditional statistical
approach.

This work contributes to research on affect recognition of
the potential of recognising arousal within motor activity.

We substantiate our hypothesis with the theoretical idea of
expressed generalised CNS arousal in motor activity through
the SNS. To the best of our knowledge, the potential of motor
activity to be a physiological signal to recognise affect has
not yet been analysed. The results of this study need fur-
ther replication and validation on several datasets. However,
we set a high critical bar before drawing conclusions from our
results by introducing hypothesis testing for lower bounds on
binary classifier performance metrics. The introduced test is
a modification to the already known corrected repeated k-fold
cross-validation test. We argue that the proposed hypothesis
test can be generally applied in cases where a certain lower
bound needs to be established and documents higher power
than the traditional statistical approach. Given the limited
number of participants, it is important to report uncertain-
ties and understand the lower bounds of the performance
metrics.

In future work, the potential to recognise arousal within
motor activity should be further evaluated. The data col-
lection can be repeated for different physiological signals.
Our proposed feature selection can be applied to various
physiological signals. For each signal, the most informative
subinterval for the recognition of arousal could be identi-
fied. Consequently, for each signal, the agreement over the
selected subinterval could be examined. Moreover, improve-
ments in recognition results could be measured when motor
activity is used in a multi-model approach. Explanatory tech-
niques, such as Shapely values, can be used to understand the
contribution of motor activity to the arousal detection task.
The corrected repeated k-fold cross-validation test allowed
us to use machine learning methods to test for a significant
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difference between two distributions. This can be extended
to the multiple-testing approach.

APPENDIX A
PERFORMANCE METRICS
A. ACCURACY
Accuracy is a well-known classification and is among the
most popular once [66]. It measures the overall performance
of the classification. Accuracy is the ratio of correctly pre-
dicted cases and all classes. The formula can be derived
directly from the confusion matrix as follows,

accuracy =
TP+ TN

TP+ TN + FN + FP
(13)

Accuracy can be understood as the probability of drawing an
instance at random and correctly predicting it [66]. We intro-
duce an alternative definition of accuracy. We denote cor-
rectly classified instances with 1 and incorrectly classified
instances with 0. We derive the following indicator function.
The accuracy can then be defined as the mean sample of
the indicator function. C is the set of correctly specified
instances.

accuracy =
1
n

n∑
x=1

1(x)

1(x) =

{
1, x ∈ C
0, x ̸∈ C .

(14)

B. COHEN’s KAPPA
As a second performance metric, we introduce Cohen’s
kappa. Its concept is related to theMatthew correlation coeffi-
cient. The predicted and true labels are interpreted as random
variables and their agreement is calculated. Cohen’s work
was originally developed to calculate the agreement between
two expert decisions [67]. The formula of Cohen’s kappa
coefficient is given by

K =
Po − Pe
1 − Pe

(15)

Po is the observed agreement of the true labels and the predic-
tions. Effectively, that is, the accuracy of the model. Pe is the
expected agreement. This expected agreement corresponds
to the accuracy obtained by chance [66]. We can interpret a
Cohen’s kappa of 0 as no agreement and values up to 0.2 as
slight agreement. A Cohen’s kappa that lies between 0.21 and
0.4 is considered a fair agreement. The following intervals
[0.41, 0.6], [0.61, 0.8], [0.81, 1] are considered to be in mod-
erate, significant, and perfect agreement, respectively [68].

C. MATTHEW’s CORRELATION COEFFICIENT
MCC shows the correlation between the actual values and
the predicted ones. A perfect correlation is denoted by one,
while random guessing is denoted by 0. MCC is especially
advantageous when data is imbalanced, since it takes into

account every entry in the confusion matrix [66]. Its formula
is recorded in Equation 16.

MCC =
TP× TN − FN × FP

√
(TP+ FN )(TP+ FP)(TN + FN )(TN + FP)

(16)

D. DISCUSSION ON COHEN’s KAPPA AND
MATTHEW’s CORRELATION
The Cohen’s kappa specifies the agreement between predic-
tions and true labels by taking into account the agreement by
chance [67]. Consequently, higher Cohen’s kappa values indi-
cate that themodels perform better than randomguessing. But
Cohen’s kappa suffers from paradoxical behaviour in certain
scenarios [62]. We refer to the work of [69] for a detailed
discourse on the paradox behaviour of Cohen’s kappa. In the
case of binary classification, MCC is derived as the discre-
tised Pearson’s correlation coefficient of the prediction vector
and the true evaluation vector. Reference [70] shows, how the
two metrics are equal for symmetric confusion metrics but
that MCC disagrees with the paradox behaviour of Cohen’s
kappa.

APPENDIX B
MACHINE LEARNING CLASSIFIERS
A. LOGISTIC REGRESSION
Logistic regression is the adaptation of a linear regression
model to a binary dependent variable. For linear models to
work as we know them, the dependent variable must be con-
tinuous. The odds p of the binary variable can be transformed
using a logistic function. The transformation is described in
Equation 17

logit(p) = ln(
p

1 − p
) = β0 + βX (17)

β are the parameters of the linear regression model and
X is the design matrix. The relationship between odds p
and X forms an s-shaped function, described as the logistic
curve [44]. Logistic regression is a well-known and recog-
nised method for binary classification. The fitted coefficients
are interpretable and the model fit can be evaluated. How-
ever, logistic regression can easily overfit with an increasing
number of variables included. Due to the three best-selected
features, this is not our concern.

B. NAIVE BAYES CLASSIFIER
The naive Bayes classifier is based on the Bayes theo-
rem. Naive Bayes calculates the conditional probabilities for
features given a certain class. Following the Bayes theo-
rem, the posterior distribution is formulated accordingly in
Equation 18.

p(y|x1, . . . , xn) = p(y)
n∏
i=1

p(xi|y) (18)
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For binary classification, a Bernoulli distribution is used. The
naive Bayes classifier assumes that the features are condition-
ally independent. This assumption is very strong and often
gets violated. Therefore, the classifier is called naive [57].
Reference [71] shows that the classifier still performs nearly
optimal [71]. Due to its simplicity, the classifier is quite
immune to overfitting [57].

C. SUPPORT VECTOR MACHINE
A support vector machine (SVM) classifier separates m
dimensional feature vectors with a m− 1 dimensional hyper-
plane [72]. The SVM finds a hyperplane that maximises the
margin. The margin is the smallest distance between datasets
of different classes. The maximisation problem corresponds
to [73]. The SVM comes with an interesting property. The
maximisation problem is equal to a convex optimisation prob-
lem. Therefore, a local optimum is also a global one [73].
SVM is of special interest in our analysis. Bommae and
Oertzen suggest the SVM as a comparison test. SVM detects
the difference in sets when the classification accuracy is
greater than 50% and thus better than random guessing [74].

D. RANDOM FOREST
The random forest is an ensemble learning technique that
aggregates a number of decision trees. Decision trees are
trained on randomly selected subsets of data [57]. In the
case of classification, the majority vote of the trees is the
final predictive output of the random forest. The correlation
between the errors of single trees can be high in practise,
which could lead to a high variance of the final prediction
error [73].

E. ADAPTIVE BOOSTING
Adaptive Boosting is also called AdaBoost. Boosting is a
form of ensemble learning. The idea behind it is the sequential
application of weighted weak classifiers. A majority vote in
the manner of a sign function is based on the outcome. The
weight is updated with each iteration step. The sequential
procedure allows the algorithm to focus on misclassified
observations [75].

F. K-NEAREST NEIGHBOURS
K-nearest neighbours (k-NN) is a non-parametric classi-
fication method.An observation is assigned to a specific
class based on the classes of neighbouring observations. The
assignment of the class is made by majority vote. The algo-
rithm relies on the assumption that observations of the same
class are closer together in the feature space. Neighbours
are determined by a distance measure, most frequently the
Euclidean distance is applied [57].

G. LINEAR DISCRIMINANT ANALYSIS
LDA serves the purpose of separating two populations. The
aim is to find a linear function of various variables that
maximises the difference ratio between two populations [44].

The ratio of the difference is defined as the between-
population variance to the within-population variance. The
ratio is called the Fisher criterion [73]. The equation for the
ratio is as follows.

J (w) =
(m1 − m2)2

s21 + s22
(19)

where si is the variance of the population and mi is the mean
value of the population. In the simple case, LDA assumes that
populations are normally distributed, with equal covariance
matrices [44]. These assumptions restrict the application of
the method, especially for problems with very few sample
points. With increasing sample size, the central limit theorem
holds.
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