
Received 1 May 2023, accepted 15 May 2023, date of publication 24 May 2023, date of current version 1 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3279501

HyDra: Hybrid Task Mapping Application
Framework for NOC-Based MPSoCs
WAQAR AMIN 1, FAWAD HUSSAIN 1, (Member, IEEE), SHERAZ ANJUM 2,
SHAROON SALEEM1, WAQAR AHMAD 1, AND MUBASHIR HUSSAIN 3
1Department of Computer Engineering, University of Engineering and Technology at Taxila, Taxila 47050, Pakistan
2Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan
3School of Information Technology, King’s Own Institute, Sydney, NSW 2000, Australia

Corresponding author: Waqar Amin (waqar.ameen45@gmail.com)

ABSTRACT Multiprocessor System-On-Chip (MPSoCs)withNetworks-on-Chip (NoCs) has been proposed
to address the communication challenges in modern dynamic applications. One of the key aspects of design
exploration in NoC-based MPSoC is application mapping, which is critical for the parallel execution of
multiple applications. However, mapping for dynamic workloads becomes challenging due to the unpre-
dictable arrival times of applications and the availability of resources. In this work, we propose a hybrid task
mapping approach, HyDra, that combines design-time mapping and efficient runtime remapping to reduce
communication and energy costs. The proposed approach generates multiple application mappings during
the design phase by minimizing latency, energy, and communication costs. The diverse mapping possibilities
produced at design time consider multiple performance metrics. However, we cannot predict the arrival time
of applications and the availability of resources at design time. To further optimize the MPSoC performance,
our dynamic mapping phase re-configures the design time mappings based on the runtime availability of
resources and applications. The simulation results show that HyDra reduces communication costs by 14%
while using 15% less energy for small and large NoCs compared to state-of-the-art task mapping techniques.
Furthermore, our approach provides an average of 19% reduction in end-to-end latency for applications. Our
hybrid task allocation and scheduling approach effectively addresses communication issues in NoC-based
MPSoCs for dynamic workloads. HyDra achieves improved performance by combining design-time and
runtime mapping, providing a promising solution for future MPSoC design.

INDEX TERMS Hybrid application mapping, multiprocessors, network-on-chip, particle swarm optimiza-
tion, simulated annealing, task graph for free, directed acyclic graph, dynamic task mapping, design-time
mapping, K-means, elbow method.

I. INTRODUCTION
Multicore embedded systems are now conceivable, thanks to
the advancements in VLSI technology that allow designers
to combine a large number of Processing Elements (PEs),
Intellectual Property (IP) PEs, and memory units (MUs) onto
a single chip. Increased parallelism in these systems requires
a fast communication framework to meet the communication
needs between the PEs. The NoC architecture offers an effi-

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuihua Wang .

cient and scalable communication infrastructure across sev-
eral processor PEs [1]. Multimedia, automotive, cloud com-
puting, and avionic applications are the few sectors where
NoC-based multicore systems are used [2]. The allocation of
application executable tasks to available resources is critical
because it influences system performance.

Important factors in the mapping process include the com-
munication limitations between tasks and the physical place-
ment of the PEs on a specific multicore system. The validity
of outcomes in real-time applications is determined not only
by logical accuracy but also by the time it takes to receive

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 52309

https://orcid.org/0000-0002-9006-6251
https://orcid.org/0000-0002-7819-5990
https://orcid.org/0000-0002-0199-2553
https://orcid.org/0000-0003-1171-1249
https://orcid.org/0000-0001-8965-5174
https://orcid.org/0000-0003-2238-6808

W. Amin et al.: HyDra: Hybrid Task Mapping Application Framework for NOC-Based MPSoCs

the output. As a result, it is critical to keep in mind their
time limits when executing the tasks, because most embed-
ded systems are battery-powered and have short operating
life [3].

The position of tasks and their communication with neigh-
boring PEs have an impact on the amount of energy used dur-
ing data packet exchange on an NoC-based architecture. The
situation becomes more complex when multiple applications
are executed simultaneously to improve resource utilization
on multicore platforms.

On the provided NoC platform, running real-world appli-
cations have variable workloads. These variable work-
loads are impossible to forecast precisely throughout the
design phase. The offline task mapping approaches provide
sub-optimal results due to changes in application workloads
during the runtime execution. For embedded applications,
task allocation algorithms that can adapt to changing runtime
environments have become crucial.

To achieve optimal mapping for the applications, the
majority of design-time application mapping approaches use
heuristic techniques. However, these methods are resource
intensive and cannot cope with the runtime variable behavior
of the applications, where some applications may operate
concurrently over time. Therefore, for embedded applica-
tions, dynamic task allocation approaches (also known as
runtime task allocation) are required, which can handle the
variable workloads. Task distribution for new applications
during the runtime has been proposed using several efficient
online techniques [4], [5] [6]. However, optimalmappingmay
not always be guaranteed by these algorithms because of time
constraints and limited computing resources at runtime.

In recent years, hybrid task allocation techniques have
grown in popularity as a way to address the inadequacies of
design time and runtime mapping techniques. In this type of
technique, the mapping solution found at design time is used
during the runtime [7] [8], [9] [10]. However, the mapping
under process may fail to achieve the expected performance
for a variety of unanticipated reasons during execution. For
example, (a) an application may stop execution due to the
unavailability of one or more allocated resources due to
hardware failure. Moreover, (b) an application’s performance
needs may change over time, which is frequent with stream-
ing multimedia applications. Also, (c) At some moment dur-
ing the execution of any application, the predefined mapping
may cause the creation of thermal hot spots which may
entail turning off a section of the platform and stopping the
application. Likewise, (d) unexpected changes in an appli-
cation’s input (workload) may cause the mapping in use to
become insufficient to meet the application’s performance
demands, such as in image processing. Hybrid mapping
strategies have been proposed to address the limitations of the
runtime mapping approaches. To accomplish dynamic task
mapping, these methods use pre-computed results produced
offline.

In this paper, we present an enhanced hybrid (design time
and runtime) task mapping and a re-configurable technique

for NoC to achieve better task mapping for real-time appli-
cations. Multiple optimal mappings were generated with the
best values of latency and energy against different applica-
tions. Instead of storing complete mappings for applications
with different sizes and workloads, only the top task is stored
with the associated information e.g. task id, average commu-
nication weight, and the number of neighbors, etc is stored.

The initial allocation information is then used at runtime
to generate an appropriate allocation configuration for arriv-
ing applications depending on the existing condition of the
system. To do this, we provide an enhanced runtime method
for dynamically selecting and changing design-time allo-
cation options while fulfilling task deadlines and lowering
communication energy usage. The proposed approach takes
advantage of the pre-computed task mapping options to offer
effective decisions for runtime resource allocation.

The following is a list of the contributions of this research
work.

1) The proposed approach offers an efficient design-time
technique that has been evaluated for its performance
on both real-world benchmark applications and syn-
thetic applications of varying sizes. The proposed
design-time approach achieved optimal results in com-
munication cost, latency, and energy consumption for
all test cases.

2) The proposed HAM technique reduces the workload
of finding the most suitable mapping for incom-
ing applications at runtime by utilizing a variety of
pre-calculatedmappings that were generated during the
design phase. This minimizes the overhead associated
with mapping multiple applications of varying sizes.

3) The proposed technique is tested on various scenarios
to evaluate its efficiency both at design time and run-
time. Its design time performancewas assessed in terms
of its ability to reach an optimal cost, while its runtime
mapping capability was evaluated based on different
runtime workloads and test scenarios.

4) The comparison between the proposed hybrid appli-
cation mapping approach and current dynamic appli-
cation mapping algorithms reveals that the proposed
HAM algorithm performs better in terms of energy
consumption, latency, and communication cost.

II. RELATED WORK
Dynamic mapping and design time mapping are two method-
ologies used to assign and sort tasks according to the avail-
able time. The dynamic mapping works while applications
are in use, attempting to detect any performance issues and
spread the workload evenly. This can lead to a more optimal
solution but also can slow down the execution of the appli-
cation and require more energy. Static mapping, meanwhile,
is completed prior to the application’s execution, aiming to
determine the best task placement for a particular application
and communication infrastructure [22], [23].

52310 VOLUME 11, 2023

W. Amin et al.: HyDra: Hybrid Task Mapping Application Framework for NOC-Based MPSoCs

TABLE 1. Summary of application mapping approaches for NoC.

Design time mapping techniques employ various offline
heuristics and non-heuristics techniques to find out mapping
with the best results. The optimal mapping is considered
which offers the lowest communication cost, latency, and
energy. In the runtime application mapping, during the exe-
cution state, the incoming applications are mapped either
by using a pre-calculated mapping during the design time,
or tasks are mapped one by one by identifying the best place-
ment for mapping at runtime. The application will run on the
specified mapping until it is terminated once it is launched.

An effective mapping procedure is needed to assign tasks
to the appropriate PEs to make the most use of the NoC

resources. In NoC, the process of assigning tasks from an
application to PEs while bearing in mind the optimization
criteria, such as a decrease in energy usage, overall execution
time, congestion, and communication overhead is referred to
as taskmapping [24]. Decisions on taskmapping have a direct
impact on how well the system performs overall in terms of
the aforementioned metrics. It is NP-hard to map applications
onto the NoC architecture [25], [26].

As a result, several heuristics-based solutions to task map-
ping issues have been proposed. To discover an effective
task mapping for NoC, a lot of effort has been made and
is currently being performed. We briefly discuss some task

VOLUME 11, 2023 52311

W. Amin et al.: HyDra: Hybrid Task Mapping Application Framework for NOC-Based MPSoCs

mapping strategies proposed for NoC in the following para-
graphs. In addition, Table 1 provides a quick comparison of
the methodologies covered.

Mapping multiple applications onto NoC [6] presented a
communication-aware runtime heuristic. The model looks at
the resources that exist and assigns the communicating tasks
to the same or closest PE in the left, down, top, and right order.
This method has a significant drawback that it can map leaf
tasks on such PEs that are not being used by any other tasks,
which leads to the ineffective use of some PEs and leads to
higher energy consumption.

An energy-aware runtime mapping technique for NoC
was presented in [13] The algorithm’s goal was to reduce
the energy used in communication. The first phase of the
algorithm is to examine how applications are communicating
while they are running and choose the task with the maximum
communication volume. The chosen task is first mapped. The
subsequent phases involve sorting and mapping the nearby
tasks to the closest PEs based on how much communication
they get from the selected activity. The mapping carried out
by this algorithm places activities that communicate often
near to one another, whilst tasks that communicate seldom
may be ignored and placed far away.

A runtime task allocation mechanism was proposed in [5]
while taking user behavior into account. The system can
respond to real-time changes more quickly thanks to the
effect of user behavior. Additionally, it enables the system’s
dynamic adaptation to variable user requirements. The series
of actions that a user takes when interacting with the system
shapes their behavior. To process the user behavior, the algo-
rithm has to apply machine learning techniques, which adds
additional computational overhead.

A user-dependent dynamic mapping approach was pre-
sented in [14]. Resource allocation specifically takes into
account user behavior, enabling better responsiveness to real-
time changes.When a user interacts with a system or network,
their behavior may be characterized as a series of related
events that overlap and follow one another. Since user behav-
ior might differ from one user to the next, the system must
be clever enough to handle user behavior that necessitates
additional processing demands.

A dynamic spiral mapping approach was proposed [15].
From the center out to the edge of NoC architecture, the
tasks are mapped in a spiral manner. The communicative
tasks are positioned nearer to one another. Additionally, the
dynamic mapping and task migration times are cut down,
which reduced communication time. Even though the tasks
are spirally mapped onto the NoC architecture, it is possible
that the PEs that may offer a better mapping were overlooked
during the spiral mapping.

In [16] introduced a runtime agent-based mapping
approach. A small task called an agent is one that may run
on any NoC node. Agents are capable of managing resources,
storing resource status information, and negotiating with one
another to select the most appropriate processing element
for a given task. There are two categories of agents: global

agents (GA) and cluster agents (CA). When given a task,
cluster agents first analyze their clusters before negotiating
with global agents who have access to global knowledge
about all clusters. The negotiation aid in producing effective
mappings. While the computational burden is raised due to
agent interactions, the proposed method reduced the overall
bandwidth required to ascertain the network’s present status.

Authors in [17] ana [18] developed dynamic task map-
ping heuristics for heterogeneous MPSoCs based on NoCs.
The performance of the mapping heuristic is observed for
dynamic workloads. A dynamic mapping phase follows the
initial task mapping phase. The methodology that is being
described aims to reduce congestion while improving NoC
performance. At runtime, the tasks are mapped while taking
the communication requests and link load into account. This
heuristic only works with processors that can handle a single
task. It may also be used to multi-task processors.

For heterogeneous NoC architectures [27] introduced an
energy-awaremappingmethod to reduce energy usage during
task allocation and scheduling. To create a global optimum
mapping, an extension of integer linear programming (ILP)
was devised that takes both processing and communication
energy into account. However, Its execution takes a long
time. The authors also presented a Simulated Annealing with
Timing Adjustment (SA-TA) strategy that aimed to speed up
the optimization procedure that was extremely near to the
global optimum to get around the limitations of the ILP-based
approach. The presented model’s primary flaw is that it only
takes into account a simplified energy model without taking
leakage power into account.

A contention-aware application mapping was suggested
in [19]. To reduce inter-tile network contention, this method
uses integer linear programming (ILP). Though the commu-
nication energy overhead is marginally raised, the proposed
scheme reduces packet delay. This method was only appli-
cable to 2-D mesh NoCs with XY routing. ILP was also
proposed as part of an application mapping approach [20].
Although the approach reduces energy usage for sev-
eral benchmarks, bandwidth restrictions are not taken into
account. The algorithm’s computing time is quite high.

A quantitative comparison of the advantages and disadvan-
tages of static and dynamic mapping techniques was done
in [11]. The study’s findings indicate that because dynamic
algorithms can cope with real-time scenarios, they are prefer-
able to static ones. Dynamic algorithms, on the other hand,
only take into account a portion of the application graph
because they only address the problem of communicating
with their caller. Static algorithms, on the other hand, can
utilize sophisticated methods to take into account all tasks
and resources and have a broad perspective of the entire
system.

Another comparison analysis of runtime mapping tech-
niques for heterogeneous NoC was published in [28]. In this
study, eight alternative heuristics were evaluated, although
the comparison was based on a relatively small number of
factors and the deadlines were also missed throughout the

52312 VOLUME 11, 2023

W. Amin et al.: HyDra: Hybrid Task Mapping Application Framework for NOC-Based MPSoCs

simulation. To produce quality results, it is necessary to con-
centrate on the deadlines as well.

In [29], the authors offer a move-based approach for
dynamic mapping on heterogeneous NoC that targets data
flow actors. Using worst-case timing and schedule updating
with actual execution time at runtime. A distributed runtime
resource management framework for multicore systems is
provided in [12] by allocating distinct responsibilities to the
available computer resources, the method combined the con-
cepts of distributed management with parallel applications.
The architecture given here is based on the concept of local
controllers and managers, with decision distribution ensured
via an on-chip intercommunication.

In [30], a novel technique for task mapping termed Virtual
Regions PBIL (VRPBIL-NoC) is introduced, which is based
on the PBIL algorithm. This method divides the platform into
virtual regions to support the search for high-quality solu-
tions. To achieve reconfiguration predictability, the proposed
approach in [31] uses a design-time reconfiguration anal-
ysis process to discover efficient reconfiguration solutions
among the mappings and determine the worst-case reconfig-
uration latency. The RM receives the design-time analysis as
well as the migration routes to conduct predictable mapping
re-configurations at runtime.

A new HAM approach was presented in [32] which com-
bines elements of a scenario-based design during the design
phase, and a three-step data-driven selection process during
the runtime phase, to optimize soft real-time applications.
The proposed algorithm in [33] for dynamic task allocation
and scheduling with contention awareness for NoC-based
multicore systems provides a novel approach for improving
the performance of real-time applications. The algorithm
aims to select an appropriate processor for task execution
based on the link utilization of the target multicore platform.
It also dynamically selects a route in order tomitigate network
contention during the task execution.

In [34], a mapping strategy was proposed that explores
power patterns and their footprints. Three metrics (power
peak, power range, and regional power density) were
defined and tested when used as mapping objectives along
with communication costs. [35] introduces a hierarchical
and dependency-aware (HDA) task mapping that consid-
ers both spatial mapping and the dependencies between
tasks to increase the flexibility of the task mapping.
Application mapping framework which consists of three
mapping algorithms, Horological Mapping (HorMAP), Rota-
tional Mapping (RtMAP) and Divide and Conquer Map-
ping (DACMAP) proposed in [36]. A new algorithm called
Adaptive Core Mapping (ACM) [37] has been tested and
simulated using Vivado Design Suite 2018.3 and vali-
dated on a Kintex-7 FPGA board. Its performance param-
eters including area, power consumption, and throughput
were analyzed to show how this algorithm can help
systems recover from failed PEs and maintain optimal
functionality.

TABLE 2. Parameters used in the evolution model and the proposed
algorithm.

III. PROBLEM FORMULATION
In this section, the taskmapping problem onNoC platforms is
described, alongwith a set of considerations and prerequisites
for establishing a task mapping approach. We proposed some
metrics that the mapping approach should take into account,
as well as the conceptual domain for modeling applications.

A. PERFORMANCE EVALUATION MODEL
The performance evaluation for 2D NoC includes latency,
communication cost, power, and energy models. The pro-
posed algorithm is evaluated using the mathematical models
discussed in this section. The standard notations used during
modeling are described in Table 2.

We have implemented the energy model described in [38].
The power and energy model uses data from a 65 nm CMOS-
based system. The average energy consumption relates to the
energy consumed per packet by different NoC components,
such as switches, internal buffers, connectivity wires inside
the fabrication, and connections, both active and idle.

Power and energy calculations are constructed by the sum
of the energy consumed in the execution of tasks on the
processor N and the energy consumed by the router com-
ponents. Let Pact,j, and Pinact,j be the active and inactive
power of router component j. Let αi,j be an active proportion
of component j in router i (after the warm-up time), so the
average power of router i is presented in Equation 1

Pi =
N∑
j=1

[αi,jPact,j + (1− αi,j)Pinact,j] (1)

The average Power Pavg of the network is represented in
Equation 2 and 3

Pavg =
1
N

N∑
i=1

Pi (2)

VOLUME 11, 2023 52313

W. Amin et al.: HyDra: Hybrid Task Mapping Application Framework for NOC-Based MPSoCs

FIGURE 1. Application mapping onto NoC graphically.

Pavg =
1
N

N∑
i=1

N∑
j=1

[αi,jPact,j + (1− αi,j)Pinact,j] (3)

Equation 4 shows the average energy consumed by each
packet in the network.

Eavg =
(Tsim − Twrm)

(NNp)

×

N∑
i=1

N∑
j=1

[αi,jPact,j + (1− αi,j)Pinact,j] (4)

The communication cost system is specified in Equation 5.

Cost =
N∑
i,j

[Bti,tj × Nh] (5)

where, Bti,tj represent the bandwidth between tile ti and tj
and Nh represents the Manhattan distance. The Manhattan
distance between the source node (xi, yi) and the destination
node (xj, yj) in the NoC architecture is indicated by

Nh = |xi − xj| + |yi − yj| (6)

Equation 7 reflects the average latency of the network:

Lavg =
1
N

N∑
i=1

1
Ni

N∑
j=1

Li,j (7)

where Li,j denotes the delay of the jth packet, N denotes the
number of PEs in the network, andNi is the number of packets
processed by one processor after a warm-up period.
Reconfiguration time is the most important parameter in
the dynamic mapping technique because slow reconfigura-
tion time can affect the overall performance of time-critical
applications. It is crucial to do a thorough analysis of the
worst-case timings of reconfiguration to make sure that the
reconfiguration does not disrupt the real-time requirements
of the application. The reconfiguration time is summarized
in Equation 8.

Rt = St + Cst +Mgt (8)

where St = suspension time of the task; Cst = Core search
time for migration; andMgt =Migration time
Suspension time St measures how long it takes to stop all

tasks from running and transport the messages they create

to the target PEs, ensuring that no application messages are
currently being sent. Core search time is the time required to
search for a suitable core for reconfiguration. Migration time
is the time to migrate the task from the current core to the next
identified core.

B. WORKING APPLICATION MODEL
To address the mapping issue of NoC architecture, we use
Directed Acyclic Graph (DAG) = G(T,E,W) to represent
a real-time application as shown in Figure 1. Where T =
{t1, t2, t3, â,, tn} denotes a set of tasks andE ⊆ C×C is a
set of directed edges. While each edge (ci, cj) ∈ E describes
the data flow and connectivity between two tasks in MB/s.
For instance, if task ci and task cj are connected by an edge,
ci is the antecedent of cj and sends data to cj, while cj is
the descendant of ci and receives data from ci. Bti,tj is the
edge-weight of the edges that displays the amount of data
(in bits) transmitted from ci to cj, we presume that Dn is the
common deadline shared by all application tasks.

C. COMMUNICATION MODEL
We assume a 2D-mesh topology with homogeneous PEs
connected through NoC as a communication architecture for
the proposed technique. The routing channel (Ri,j) is in charge
of creating a physical path for packets to go from the source
core to the destination core. Each router contains five ports,
of which four are used to interact with nearby routers and
one is reserved specifically for processor communication.
A link is used to connect two routers or any router to the
adjacent processor. We assume that all links are full duplex,
identical. The data bandwidth requirements (Bti,tj) are linked
to the routing channel. We consider the Wormhole switch-
ing technique (WHST) for the proposed technique. Figure 1
depicts the problem design for applicationmapping onto NoC
graphically.

The 2D-mesh topology, with its regular connections, scala-
bility, and direct communication, in conjunction with Worm-
hole switching, provides a simple and efficient architec-
ture for NoC systems. For routing protocol, our choice is
the well-known XY deterministic routing method. The XY
routing is a simplistic yet efficient method. Its ability to
avoid deadlocks is another one of its many features. These
design considerations can contribute to effective application

52314 VOLUME 11, 2023

W. Amin et al.: HyDra: Hybrid Task Mapping Application Framework for NOC-Based MPSoCs

FIGURE 2. Proposed hybrid mapping framework HyDra.

mapping, reduced communication overhead, and improved
overall system performance.

IV. HYDRA
This section presents the proposed hybrid application map-
ping and reconfiguration framework HyDra, which included
dynamic mapping and reconfiguration DRA and design-time
mapping approaches for the NoC-based multicore platform.
The design-time mapping approach iHPSA [21] generates
mappings with optimal communication costs having min-
imum latency and energy consumption. The design time

stage produces different mappings that can have optimal
communication costs. However, these mappings can have
different placements of tasks on the NoC, making different
shapes of mapped regions. Detailed analysis was carried out
on the optimal mappings to identify the best possible shapes
against the different real-world benchmark applications.

From the analysis we found out that the area with the
greatest number of closely related activities is practically
circular, making it the most contiguous area. Close mapping
of an application’s tasks will result in minimal expected costs
and latency. However, external congestion in a mesh network
is increased when a circular region is used for mapping an

VOLUME 11, 2023 52315

W. Amin et al.: HyDra: Hybrid Task Mapping Application Framework for NOC-Based MPSoCs

application. Because nearby (circular) areas exchange net-
work links, this happens in a mesh topology. As a substitute,
when tasks are organized into a rectangular area of a network
with limited routing, most traffic will be routed within that
area, preventing external congestion. The square was found
to be the best region for optimum mapping based on the
evaluation. For any given application the task having the
maximum communication weight with the neighboring tasks
is mapped in the square. In this article, we consider the task
with maximum communication weight as the top task τp.
The proposed hybrid scheme identifies the top task τp in

all mappings generated by the design time approach. The
top task has the maximum average communication weight.
Instead of saving the complete mappings against different
applications, only the information related to the top task τp
such as the total number of tasks in the application κn, top task
location τloc, the number of neighboring tasks in the square
τnbr , and their location on the NoC is stored and further used
during the runtime phase.

At the runtime mapping stage upon arrival of the applica-
tion, the mapping information such as the top task τp and
its mapping location on NoC is retrieved by identifying the
application size. The top task τp is mapped on the location
identified during the design time followed by the neighboring
tasks on the adjacent PEs forming the square area around the
first task. The tasks with the lowest weights are mapped at a
minimum distance from the main region.

runtime contention status is monitored during the complete
execution of the application and if the current mapping is
causing congestion at any location, reconfiguration is done to
find the more suitable mapping and to avoid congestion. The
proposed hybrid approach is described in detail in the sections
to follow. Figure.2 shows the hybrid mapping framework for
design time and runtime application mapping and reconfigu-
ration.

A. DESIGN-TIME MAPPING FRAMEWORK
We used our earlier work iHPSA [21] an improved hybrid
Particle Swarm and Simulated the Annealing based appli-
cation mapping technique for 2D NoC as a design-time
mapping framework. In the iHPSA, the PSO with strong
global search capabilities and the SA algorithm with strong
local search capabilities are combined. The combination of
PSO and SA helps the proposed method escape from the
local optimum and maintain quick convergence for the vast
majority of the time. It compensates for the shortcomings
of each methodology when used in conjunction with the
K-means clustering technique and an efficient first-stage
mapping strategy. The fitness function which in this case is
communication cost is the main function in a problem that
we aim to reduce using the proposed technique. It assists in
determining if the environment is suitable for each solution
being considered. If the global best solution has remained
the same for the past K iterations, the algorithm is likely
trapped at the best local value. By applying SA over PSO,
the proposed methodology breaks out of a local minimum

in a relatively short amount of time. But if SA is used with
PSO at every iteration, the execution time will rise and the
rapid convergence capability of PSOwill decrease at the same
time. SA has applied to PSO in every K iteration till the
optimal result is obtained to effectively integrate SA with
PSO. Because of the PSO and SA, the proposed technique
can often maintain quick convergence and escape from the
local optimum. SA is added to the best possible result in the
swarm decoded thus far in order to allow PSO to hop out of
the local optimum.

The global and local searches were balanced by the addi-
tion of the inertia weight ω. The inertia weight ω is used to
regulate the swarm’s ability to explore and exploit, eliminat-
ing the need to use velocity clamping. The inertia weight ω

adjusts the momentum of the particle, deciding howmuch the
prior flight direction will impact the new velocity by consid-
ering the contribution of the old speed. The inertia weight ω

shows how the new velocity will be influenced by the amount
of recollection from the previous flight direction. When the
inertia weight ω is greater than 1, the velocity will eventually
decrease, allowing the particle to reach its full speed, and
consequently making the swarm spread out. Conversely, for
values less than 1, the particle’s velocity will reduce until
it reaches zero. A higher value of ω will make exploration
easier and a lower value will promote exploitation [39]. The
definition of the particle swarm process equations is

β = random(0, 1) (9)

γ = 1− ω − β (10)

v(i+1) =
∑

ω vi ∗ β ∗ (pbesti − xi) ∗ γ ∗ (gbesti − xi)

(11)

xi+1 = xi + vi+1 (12)

where random (0, 1) is an integer produced at random within
the range [0, 1]. The social and cognitive component effects
are governed by the learning factors β and γ As shown in
equation 9 to 12, the values of β and γ are determined at each
iteration. The proposed algorithm’s stop criteria are defined
as the moment when all evaluation functions are exhausted
or the desired result is not achieved. Following thorough
assessment and comparison, the algorithm’s input parameters
are chosen. Additionally, the choice of parameters depends
on the nature of the problem; one set of parameters may be
effective for one problem but not another.

1) POPULATION GENERATION
The PSO method begins with a collection of swarm parti-
cles and iteratively improves to achieve the optimal solution.
In our case, a particle consists of the number of tasks of the
application and their initial communication cost. For exam-
ple, the particle for an application with n tasks is defined as:

δi = [X , t1, t2, t3,,Tn] (13)

where δi represents a particle consisting of a number of tasks
of an ith application and X is the initial communication cost

52316 VOLUME 11, 2023

W. Amin et al.: HyDra: Hybrid Task Mapping Application Framework for NOC-Based MPSoCs

of the particle. The complete generation consists of G x δi,
where G is the generation size The particles are updated
every generation using Equations 9-12 till the best value is
achieved.

2) FITNESS FUNCTION
For efficient 2D mapping in this work, communication cost
and power-based optimization have been implemented. Fur-
thermore, the fitness function is designed so that none of its
components will predominate during the optimization pro-
cess [40]. It is possible to formulate the fitness function F
for minimization.

F = (Pavg)ηP(Enp)ηE (14)

where ηP and ηE stand for the restraining elements of power
and energy. By setting the appropriate control factor to zero,
any fitness function’s efficacy may be eliminated.

3) PARAMETER SETTINGS DESIGN TIME
To get an effective solution, the parameter values are chosen
following several simulations and positive outcomes. It is
important to note that the values of these parameters need not
be the same for all applications.

The optimal parameter values are determined based on the
specific requirements and characteristics of each application.
Small values of ω force PSO to converge quickly, leaving
PSO trapped at local maxima; in contrast, big values extend
the exploration area and can cause PSO to take too long to
converge on a global optimum.

A modified version of the PSO algorithm uses adaptable
values of β and γ that are modified after every iteration.
Different values of parameters, including population size and
iterations, are used for different applications. The value of
inertia weight ω linearly decreased from 0.9 to 0.4.
In the SA algorithm, the factor λ = 0.99 represents the

decrease in temperature. The process of temperature reduc-
tion is shown as Ti+1 = λTi, where i = 0, 1.. and T =
10ln|P|. The temperature is reduced by a factor of λ = 0.99 in
the SA method. The approach produces satisfactory results,
per earlier research [41], when the initial temperature is set at
10ln|P|, where P is the total number of PEs in the network.
For applications with few PEs, the SA algorithm’s inner loop
or iteration numbers are set to |P|2, while for applications
with large PEs, they are set to |P|. where |P| is the mesh’s
number of tiles.

4) COMPLEXITY ANALYSIS
The complexity of the design time algorithm is approximately
O(itrPSO ∗ popsize ∗ networksize2). Where the initialization
step has a complexity of O(networksize2) since it involves
creating and evaluating the initial population. The inner for
loop from 1 to itrPSO has a complexity ofO(itrPSO∗popsize)
since it involves iterating over the population and updating
the velocity of each particle. The second inner for loop from

1 to popsize has a complexity of O(popsize ∗ networksize2)
since it involves evaluating the communication cost for each
particle in the population. The global best fitness and solution
are updated after each iteration, which has a complexity of
O(1). If the global best fitness is equal to the optimal com-
munication cost, then the final mapping is set to the global
best solution, which has a complexity of O(networksize2).
The overall complexity of the runtime mapping algorithms
is O(κn ∗ (E + VZn)), where n is the number of tasks in the
application, E is the number of edges in the task graph, and
VZn is the size of the virtual zone.

5) OPTIMAL COMMUNICATION COST CONVERGENCE
ANALYSIS
The combination of PSO and SA into a hybrid algorithm
was found to be more successful in quickly reaching the
optimal cost of communication. This was reflected by achiev-
ing the optimal result in fewer iterations than would have
been possible with either algorithm alone, with some cases
having undesired outcomes when the algorithms were used
separately. We executed the PSO, SA, and proposed design
time hybrid algorithm against each real-world benchmark
application.

Figure 3 shows the convergence to optimal communication
cost of the proposed hybrid algorithm and PSO, SA algo-
rithms against six real-world benchmarks. From figure 3,
we can observe that the proposed hybrid algorithm converges
to optimal communication cost much faster by improving the
current result in a few iterations than the PSO and SA algo-
rithms. In some cases PSO and SA if executed separately con-
verged faster to an undesired value. The hybrid configuration
of PSO and SA improved the convergence capability of the
proposed algorithm to achieve the optimal communication
cost in less number of iterations.

6) ANALYSIS OF MAPPING SHAPES AND TOP TASK
SELECTION
In this part, we will discuss the analysis of optimal mapping
shapes for applications of different sizes to find out the top
task selection. This analysis will be used in the runtime
mapping when multiple applications will be mapped on the
same network. The design time mapping approach produced
optimal mappings for both real-world benchmarks and large
synthetic applications. There are multiple mapping results
with optimal communication cost but with a different set of
task placements on NoC. The different task placement on the
NoC creates different shapes containing the area of mapped
PEs of the NoC.

Figure.4 shows different mappings with the same commu-
nication cost value but having different task placements on
the NoC. The different placement of tasks on NoC produces
variations in the overall latency and energy of the network.
For small applications the variation in the latency and energy
is negligible but for large applications and multiple applica-
tions on the same NoC can increase the latency and energy.

VOLUME 11, 2023 52317

W. Amin et al.: HyDra: Hybrid Task Mapping Application Framework for NOC-Based MPSoCs

FIGURE 3. Optimal communication cost convergence analysis.

The energy and execution times of four final mappings
are also given in Figure.4. We termed these different task
groupings on NoC as mapping shapes. We performed an
offline comparison and analysis of execution time, latency,
and energy to select the best mapping shapes for different
real-world benchmarks. In Figure.4, we used 4× 4 2D mesh
NoC architecture for mapping 12 x tasks of MPEG4 real-
world benchmark application. If the number of tasks of the
application is less than the network size, as in the case of
MPEG4 where we have 12 tasks to be mapped on a 4×4 net-
work. Then the mapping shapes will include only mapped
PEs and leave unmapped PEs. The mapping shape is further
analyzed to find out the position of the Top task and the
closely related neighboring tasks forming a square area inside
the mapping shape are identified.

It is very important to find out efficient mapping shapes
during the design time because the selected mapping shape
will be used as initial mapping during the runtime mapping.
The mapping calculated at the design time may fail to achieve
the expected performance for a variety of unanticipated rea-
sons during execution. However, detailed analysis during the
design time and a list of different shapes help in the selection
of another possible mapping if there is some issue during
the runtime. Algorithm 1, presents the design time mapping
process.

B. DYNAMIC MAPPING AND RECONFIGURATION
APPLICATION MAPPING (DRA)
We employ the design-time results to create a lightweight task
assignment mechanism for runtime. It involves identifying
the best combination of PEs for mapping an application’s
tasks and executing them at runtime. The runtime situations
cannot be predicted since the arrival time of applications
is unknown in advance. The real-time task assignment is
affected by the following factors: (a) the availability of PEs
for the execution of new applications, and (b) execution time.
Design-time decisions may not always be acceptable for run-
time operations due to these reasons. As a result, when an
application is executed during runtime, the task assignment
of the application must be modified.

Virtual zones are created within the NoC during the run-
time mapping. The size of the NoC, as well as the size and
quantity of applications, all influence the number of virtual
zones. Themulticore platform application beingmapped uses
less energy for communication thanks to the mapping on vir-
tual zones. A suitable mapping template may be chosen from
the repository to do this. The search process is repeated until
a region size that will fit in the set of PEs that are currently
accessible on the multicore platform at runtime is discovered.
The first step is to examine the areas whose size corresponds
to the number of PEs on the platform. The simultaneous

52318 VOLUME 11, 2023

W. Amin et al.: HyDra: Hybrid Task Mapping Application Framework for NOC-Based MPSoCs

FIGURE 4. Process of mapping shapes and top task selection.

execution of tasks contained in a particular application is
impacted by the platform’s free PE availability. Due to the
availability of PEs, larger allocation regions provide a higher
possibility for various activities to be executed concurrently.
This will reduce the time to find out the best mapping place-
ments during runtime as we already know that this mapping
has the best results during the design time. If the number of
tasks is more than the available PEs in the free virtual zone,
the free PEs of other virtual zones can be shared for mapping.

Algorithm 2 presents a Dynamic Mapping and Recon-
figuration (DRA) technique for runtime mapping based on
design-time findings and runtime resource availability. At the
start, the number of tasks κn of the incoming application is
used to fetch the design time information such as τloc the
best mapping location of the τp of the application having the
same size and the number of neighboring tasks τnbr of the
τp in the square. The τp which has a high communication
bandwidth with the neighboring tasks τnbr is selected as the

first task to map. The virtual zone VZn is selected to map the
application and the location of the core to map the first task
is set as the top task location τloc. τp is placed on the core
selected and the rest of the tasks are mapped exactly on the
tiles as per the design time information. After the mapping
of all tasks, the end-to-end latency and communication cost
of the mapped network is calculated and compared with the
predefined latency threshold Cth and communication cost
threshold Cth. The reconfiguration process is invoked if the
values of Cth and Cth are above the threshold.

C. WORKING EXAMPLE
We selected 8 × 8 mesh NoC for the implementation of the
proposed dynamic approach. The 8×8mesh is further divided
into four virtual zones of 4×4 size each. The first application
will be mapped on virtual zone 1, the second application
on the second virtual zone, and so on. All applications will

VOLUME 11, 2023 52319

W. Amin et al.: HyDra: Hybrid Task Mapping Application Framework for NOC-Based MPSoCs

Algorithm 1 Design time mapping process
Data: initMapping, taskGraph,popSize, itrPSO,

itrSA, T, ω, itrCompleted, optimalCommCost
Result: optimalcosts, optimalmappings, topTaskLoc,

commDependentedTasks

Find pop, v, fitness
initpopfitness(initMapping, popsize, networksize);
Find gbestpop, gbestfitness, pbestpop, pbestfitness
getinitbest(fitness, pop);
while stopCriterion do

for i 1 to itrPSO do
for j← 1 to popsize do

β = random(0, 1);
γ = 1− ω − β

Find v using 11;
pop[j] = add(pop[j], v[j])

end
for j← 1 to popsize do

calCommCost(networksize, pop[j],
taskGraph);

end
gbestfitness = min(pbestfitness);
gbestpop = min(pop);

end
if gbestfitness == optimalCommCost then

finalMapping← gbestpop ;
optimalCommCost← gbestfitness ;

else

Apply SA to global best solution
itrSA← 0 ;
T← 10 × ln[P] ;
currentbest← gbestpop ;
currentbestcost← gbestfitness ;

end
while itrSA do

pbestSA create(currentbest);

Find best cost SA
calCommCost(networksize, pbestSA,
taskGraph);
itrSA = itrSA+1;
update(gbestfitness, finalMapping);
optimalcost= gbestfitness;
optimalmapping = finalMapping;
findandstoreTopTask(optimalmapping);

end
end

execute independently of each other, if there is communi-
cation between applications then all communicative applica-
tionswill be considered as a single application. If themapping
application has fewer or equal tasks than the available PEs in
the free virtual zone then the information related to optimal

mapping shapes and top tasks generated and stored during the
design phase is retrieved during runtime based on the size of
the applications

Figure 5 illustrates the runtime mapping process of the
proposed mapping scheme, which divides the 8 × 8 NoC
architecture into four virtual zones comprising of 16 PEs
each. Figure 5 shows the initial state at time instance T1,
when all the virtual zones are free and the first application
A-1 arrives for mapping. In this case, Virtual Zone 1 (vz1) is
chosen for task allocation due to the number of tasks in A-
1 being fewer than the maximum PEs available in vz1. The
top task τp shown in black is placed alongside the other tasks,
with the position based on the design time mapping infor-
mation that was obtained. At time instance T2, the second
application A-2, with 13 tasks, arrives and VZ2 is selected for
the task allocation since the number of tasks in A-2 is less
than the maximum PEs available for mapping in VZ2. For
applications, such as A-3, with a size larger than the available
size of a single virtual zone, other zones can be used for
mapping, as depicted in Figure 5 at time instance T3. The
predefined mappings at design time may not be optimal for
the PEs available on the platform, leading to unacceptable
latency and energy results. If this occurs, the mappings must
be modified at runtime, as represented by the arrows at time
instance T6 in Figure 5 where task allocation is reconfigured
to new positions.

V. EXPERIMENTAL SETUP
The proposed algorithm’s performance is evaluated in
an experimental setting. The experimental framework and
results are described in the following subsections. To exe-
cute application mapping on NoC, we developed a hybrid
simulation framework that consists of a simulated envi-
ronment developed in Python and a modified version of
Noctweek [38], a systemC-based simulator. The Noctweek
simulator has been modified to incorporate the proposed
hybrid task mapping approach. We explore NoC with dif-
ferent sizes for executing the simulations using benchmark
applications such as PIP, MPEG4, VOPD, MWD, MP3ENC,
263DEC, 263ENC, and MMS [42] as shown in Table 3.
To construct task graphs with a large number of tasks,
we employ synthetic applications produced by the TGFF
tool [43]. Simulation has been carried out using an Intel
i5 platform with a 2.5 GHz clock frequency and 8 GB
of main memory. For the design-time mapping technique,
we used a Python environment and for runtime mapping and
scheduling, we modified the System C-based NoC simulator
Noctweek [38]. We used the parameters given in Table 5
for the evaluation of the proposed algorithm. For avoiding
unnecessary complexity we used 2D- mesh network with
an XY routing algorithm. We evaluated the performance by
mapping multiple applications from a minimum of 2 appli-
cations to a maximum of 6 applications on different sizes
of mesh networks as given in Table 3. The applications are
synthetically generated by a modified TGFF tool [43] with a
variable number of tasks per application.

52320 VOLUME 11, 2023

W. Amin et al.: HyDra: Hybrid Task Mapping Application Framework for NOC-Based MPSoCs

FIGURE 5. Dynamic mapping and reconfiguration process.

A. EVALUATION OF PROPOSED HYBRID TECHNIQUE
The effectiveness of the proposed hybrid applicationmapping
technique was assessed and compared with the state-of-the-
art. Different performance criteria, including communication
cost, consumption of energy, latency, and channel load, were
considered for both design time and runtime techniques.

B. DESIGN-TIME PERFORMANCE COMPARISON
This research uses a hybrid of particle swarm optimization
(PSO) and simulated annealing (SA) algorithms to allocate
tasks onto processors within a Network-on-Chip based mul-
ticore platform during the design phase. The performance of
the proposed design time approach is compared with different
algorithms. Table 6 shows the results of the optimal commu-
nication costs for various real-world benchmark applications,

as well as a comparison of the proposed design time approach
against other algorithms in terms of exploration time. The
results show that the proposed design time approach usually
achieves the optimal communication cost and does so with
shorter computation times.

C. RUNTIME PERFORMANCE COMPARISON
We measure the performance of our algorithm for dynamic
task allocation in terms of communication energy of allo-
cated applications, finish time of mapped tasks, and average
packet latency of tasks that belong to the applications. To test
the adaptivity of our proposed approach to runtime condi-
tions, applications arrive randomly at any time with changing
amounts of PEs and virtual zones as depicted in the different
test scenarios as shown in table 7. We selected an 8× 8 mesh

VOLUME 11, 2023 52321

W. Amin et al.: HyDra: Hybrid Task Mapping Application Framework for NOC-Based MPSoCs

Algorithm 2Dynamic Mapping and Reconfiguration
(DRA) Algorithm
Data: ATG (T, E), Core graph, Latency threshold Lth,

commCost threshold Cth
Result: optimized dynamic mapping and

reconfiguration
κn← getAppSize(ATG);
τloc, τnbr ← getDesignTimeMappingInfo(κn);
VZn← assignVirtualZone(κn, VZstatus);
VZstatus← VZn;
C1← getFirstCore(VZn, τloc);
τp← find task T with max communication
bandwidth;
C1← τp;
TaskList← get the list of tasks in ATG other than
Tmax;
while TaskList !=0 do

Search for already mapped neighbor of current
task τcurrent ;
if noOfnbrMapped>0 then

Find core C for mapping task τcurrent close to
already mapped neighbor;
VZn[C]← τcurrent

end
if noOfnbrMapped == 0 then

find core C for mapping task τcurrent from
available PEs with min MHD;
VZn[C]← τcurrent

end
Remove Tc from TaskList;
Update TaskList ;
if TaskList == 0 then

finalMapping← mesh with mappedTasks;
finalCost← communication cost of current
mapping;

end
end
Lavg← caclulateAvgNetworkLatency
(finalMapping);
if Lavg >= Lth or finalCost >= cth then

Find free core C for reconfiguring the task
mapping;
Reconfigure task to free PEs available;

end
finalMapping← mesh with mappedTasks;
finalCost← communication cost of current mapping;

NoC to implement the proposed dynamic approach, which
is further split into four 4 × 4 virtual zones. In the first
test scenario, all virtual zones and their respective PEs are
idle, whereas, in the second test scenario, one virtual zone
is allocated to the first arriving application. Similarly, test
scenarios 3, 4, and 5 assume that all virtual zones are occupied
by applications, while the sixth test scenario is where all
virtual zones are taken up and task reassignment is required

TABLE 3. Standard real-world benchmarks applications.

TABLE 4. Synthetic applications.

TABLE 5. Description of the simulation environment.

FIGURE 6. Evaluation of Communication Energy.

to account for changes in network conditions. We mapped
applications with varying numbers of tasks to different virtual
zones and simulated 100 times in order to obtain average
results for all test scenarios.

D. COMMUNICATION ENERGY
Here, we assess the effectiveness of the energy-aware version
of our dynamic task allocation strategy based on the commu-
nication energy consumed by the allocated applications. The
communication energy consumed by themapped applications

52322 VOLUME 11, 2023

W. Amin et al.: HyDra: Hybrid Task Mapping Application Framework for NOC-Based MPSoCs

TABLE 6. Communication cost (Bw X Nh), design time performance comparison against real-world benchmark applications.

TABLE 7. Test scenarios for dynamic mapping.

FIGURE 7. Evaluation of average network Latency.

during their execution is illustrated in Figure 6. On average,
test scenarios 2, 3, 4, and 5 result in 8.9%, 17.6%, 28.8%,
and 37.5% more communication energy consumption when
compared to test scenario 1, respectively. Test scenario 6 has
the highest communication energy consumption of 42.4%
due to task relocation. Test scenario-1 gives the least com-
munication energy for allocated applications since all PEs
are assumed to be free for task assignment. As more PEs are
progressively occupied from test scenario-2 to scenario-5, the
mapped region becomes less dense due to the lack of available
PEs in the regular area for task assignment. This increases the
communication energy of the mapped applications.

E. AVERAGE NETWORK LATENCY
The average network latency of the assigned applications
under different test scenarios is presented in Figure 7. We can
see that as the PE occupancy increases from the beginning
of the test scenarios, the latency of the allocated application
increases by 9.02%. As more PEs are located in different
virtual zones of the platform, the allocated regions become
non-uniformly shaped. Tasks communicate with PEs that are
spaced farther apart, resulting in increased communication
costs. As data packets travel from source to destination PEs,
more network resources, such as routers and links, are used
for communication between dependent tasks. Furthermore,
PEs located in regular regions have reduced communication

energy compared to PEs that are spread out across the
platform. In general, the allocated applications have 23.5%
higher latency in test scenarios withmore active virtual zones.

F. COMPARISON WITH EXISTING WORKS
In this section, we evaluate the performance of the pro-
posed hybrid runtime approach HyDra to the performance of
the selected state-of-the-art runtime mapping approaches for
NoC-based multicore systems published in the literature. The
Nearest-Neighbor (NN) [18] approach, which is regarded as
the standard way, is used to represent the findings as normal-
ized values. Figures 8 to 10, represent the improvement in
reducing the performance metrics in percentage as compared
to the baseline algorithmNN.Here, wewant to clarify that our
study focuses on constantly running applications, in which a
collection of periodic activities is carried out frequently dur-
ing the application. Examples of these applications include
software radios, streaming apps, audio, video encoders, and
decoders, to mention a few. A single iteration also refers to
the whole cycle during which all of an application’s recurring
activities are carried out. The results presented here are based
on the average of all the execution cycles.

1) COMMUNICATION COST
The distance between the source and destination PEs where
communicative tasks are allocated and route congestion has
an impact on the average packet latency. It might be very
cost-effective to assign independent and communicative tasks
to the same or nearby PEs. Figure 8 displays the communica-
tion costs for various methods for lower and larger NoC sizes.
Because they do not perform any pre-processing and do not
account for overhead when mapping the tasks, the FF and NN
algorithms have the greatest communication costs for both
small and large NoC sizes. According to the experimental
findings, the proposed algorithm can lower communication
costs in comparison to CPNN, especially in bigger mesh
NoCs. Particularly, for small and large mesh NoCs. The pro-
posed method achieves 6% and 8% reduced communication
cost in comparison to CPNN. Similar to this, the proposed
technique reduces communications costs over FF by 35%
and 28% for smaller and larger mesh NoCs, respectively.
According to experimental findings, the proposed algorithm
may greatly lower communication costs, which not only

VOLUME 11, 2023 52323

W. Amin et al.: HyDra: Hybrid Task Mapping Application Framework for NOC-Based MPSoCs

FIGURE 8. Comparison of communication cost.

FIGURE 9. Comparison of energy Consumption.

FIGURE 10. Comparison of end-to-end latency.

lowers energy consumption but also enhance application per-
formance.

2) ENERGY CONSUMPTION
The energy usage values for smaller and larger mesh sizes are
shown in Figure.9. Experimental results show that, among
all methods for lower mesh NoCs, the proposed algorithm
consumes the least energy. More precisely, the proposed
approach uses 47% less energy than the FF algorithm and 6%
less energy than the CPNN for lower mesh NoCs. For bigger
mesh NoCs, the proposed algorithm’s energy consumption is
1% to 2% higher than that of CPNN.

3) APPLICATIONS-SPECIFIC END-TO-END LATENCY
Because dependent processes don’t have to wait as long for
the needed data, a decrease in application-specific end-to-
end latency can significantly increase application throughput
and speed up task execution. Figure.10, displays the findings
of a comparison of application-specific end-to-end latency.
In comparison to prior techniques for both smaller and higher
NoC sizes, the proposed algorithm has reduced application-
specific end-to-end latency. When compared to CPNN, the
proposed algorithm’s reduction in latency is more noticeable
for large sizes. More precisely, for smaller NoCs 7% less and
31% less for bigger NoCs.

FIGURE 11. Comparison of average channel load.

FIGURE 12. Gain of proposed clustering approach over non-clustering
approaches.

4) AVERAGE CHANNEL LOAD
The amount of activity in the Network-on-Chip (NoC), which
reflects how much the NoC is being utilized, can be deter-
mined by measuring the average channel load. To calculate
this load, the usage of all channels is recorded at regular
intervals during the execution of all applications. The channel
load is influenced by the communication overhead involved
in transmitting information between tasks and the amount of
traffic generated by tasks that communicate with each other
across different nodes. The average channel load under dif-
ferent injection rates for all simulation scenarios is illustrated
in Figure.11. When the proposed technique is applied, the
average channel load is noticeably decreased. Furthermore,
the proposed technique demonstrates superior performance
in comparison to other methods.

5) PROPOSED APPROACH VS. NON-CLUSTERING
APPROACHES
The proposed approach is based on design time clustering
and runtime virtual channels. The clustering strategy involves
first sorting applications by the number of tasks contained
inside them and then mapping the initial tasks of applications
at the center of the clusters sorted by their processing capa-
bilities. Whereas, applications are not sorted and their initial
tasks are mapped at any random position in the non-clustering
technique. For various mapping techniques, Figure.12 illus-
trates the gain achieved by the proposed design time cluster-
ing approach over the non-clustering approaches in terms of
energy consumption, average latency, communication costs,
and average channel load.

VI. CONCLUSION
In this work, a hybrid mapping and reconfiguration strat-
egy for NoC has been presented. Our approach requires
allocation exploration at design time, runtime mapping, and

52324 VOLUME 11, 2023

W. Amin et al.: HyDra: Hybrid Task Mapping Application Framework for NOC-Based MPSoCs

reconfiguration using the best design time mapping. The
best mappings having the lowest latency and energy values
are identified during the design time. The optimal mappings
against each application selected and placement of core with
the top task stored along with the information of commu-
nication dependent tasks. The proposed approach uses var-
ious solutions during runtime, subject to the availability of
required resources and application timing needs, to adapt to
the dynamic of the application workload. We have assessed
our method and compared it with various task mapping
methods that have been mentioned in the literature. The
effectiveness of the proposed approach has been demon-
strated in experiments by the reduced latency, communication
cost, and communication energy consumption of the assigned
applications. The proposed method is therefore appropriate
for real-time workload distribution of dynamic workloads
with multiple applications on NoC-based multicore systems.
In future work, We believe that with few modifications, the
proposed technique might be used with more sophisticated
NoC-based MPSoC platforms, including heterogeneous core
systems and hierarchical wireless nodes.

REFERENCES
[1] W. J. Dally and B. Towles, ‘‘Route packets, not wires: On-chip inter-

connection networks,’’ in Proc. 38th Design Autom. Conf., Jun. 2001,
pp. 684–689.

[2] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, ‘‘Xilinx
adaptive compute acceleration platform: Versal TM architecture,’’ in
Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, Feb. 2019,
pp. 84–93.

[3] J. Hu andR.Marculescu, ‘‘Energy-aware communication and task schedul-
ing for network-on-chip architectures under real-time constraints,’’ inProc.
Design, Autom. Test Eur. Conf. Exhib., Feb. 2004, pp. 234–239.

[4] N. Chatterjee, S. Paul, P. Mukherjee, and S. Chattopadhyay, ‘‘Deadline and
energy aware dynamic task mapping and scheduling for network-on-chip
based multi-core platform,’’ J. Syst. Archit., vol. 74, pp. 61–77, Mar. 2017.

[5] C.-L. Chou and R.Marculescu, ‘‘Run-time task allocation considering user
behavior in embedded multiprocessor networks-on-chip,’’ IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 29, no. 1, pp. 78–91,
Jan. 2010.

[6] A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang, ‘‘Communication-
aware heuristics for run-time task mapping on NoC-based MPSoC plat-
forms,’’ J. Syst. Archit., vol. 56, no. 7, pp. 242–255, Jul. 2010.

[7] G. Mariani, P. Avasare, G. Vanmeerbeeck, C. Ykman-Couvreur,
G. Palermo, C. Silvano, and V. Zaccaria, ‘‘An industrial design space
exploration framework for supporting run-time resource management
on multi-core systems,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Mar. 2010, pp. 196–201.

[8] W. Quan and A. D. Pimentel, ‘‘A hybrid task mapping algorithm for
heterogeneous MPSoCs,’’ ACM Trans. Embedded Comput. Syst., vol. 14,
no. 1, pp. 1–25, Jan. 2015.

[9] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, ‘‘Resource and
throughput aware execution trace analysis for efficient run-time mapping
on MPSoCs,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 35, no. 1, pp. 72–85, Jan. 2016.

[10] C. Ykman-Couvreur, P. Avasare, G. Mariani, G. Palermo, C. Silvano, and
V. Zaccaria, ‘‘Linking run-time resource management of embedded multi-
core platforms with automated design-time exploration,’’ IET Comput.
Digit. Techn., vol. 5, no. 2, pp. 123–135, 2011.

[11] E. Carvalho, C. Marcon, N. Calazans, and F. Moraes, ‘‘Evaluation of static
and dynamic task mapping algorithms in NoC-based MPSoCs,’’ in Proc.
Int. Symp. Syst. Chip, Oct. 2009, pp. 87–90.

[12] V. Tsoutsouras, I. Anagnostopoulos, D.Masouros, andD. Soudris, ‘‘A hier-
archical distributed runtime resource management scheme for NoC-based
many-cores,’’ ACM Trans. Embedded Comput. Syst., vol. 17, no. 3,
pp. 1–26, May 2018.

[13] B. Xie, T. Chen, W. Hu, X. Tang, and D. Wang, ‘‘An energy-aware online
task mapping algorithm in NoC-based system,’’ J. Supercomput., vol. 64,
no. 3, pp. 1021–1037, Jun. 2013.

[14] C.-L. Chou and R. Marculescu, ‘‘User-aware dynamic task allocation
in networks-on-chip,’’ in Proc. Design, Autom. Test Eur., Mar. 2008,
pp. 1232–1237.

[15] A. Mehran, A. Khademzadeh, and S. Saeidi, ‘‘DSM: A heuristic dynamic
spiral mapping algorithm for network on chip,’’ IEICE Electron. Exp.,
vol. 5, no. 13, pp. 464–471, 2008.

[16] M. A. Al Faruque, R. Krist, and J. Henkel, ‘‘ADAM: Run-time agent-based
distributed applicationmapping for on-chip communication,’’ inProc. 45th
Annu. Design Autom. Conf., Jun. 2008, pp. 760–765.

[17] E. Carvalho, N. Calazans, and F. Moraes, ‘‘Heuristics for dynamic task
mapping in NoC-based heterogeneousMPSoCs,’’ in Proc. 18th IEEE/IFIP
Int. Workshop Rapid Syst. Prototyping (RSP), May 2007, pp. 34–40.

[18] E. L. D. S. Carvalho, N. L. Calazans, and F. G. Moraes, ‘‘Dynamic
task mapping for MPSoCs,’’ IEEE Design Test Comput., vol. 27, no. 5,
pp. 26–35, Sep. 2010.

[19] C.-L. Chou and R. Marculescu, ‘‘Contention-aware application mapping
for network-on-chip communication architectures,’’ in Proc. IEEE Int.
Conf. Comput. Design, Oct. 2008, pp. 164–169.

[20] S. Tosun, O. Ozturk, and M. Ozen, ‘‘An ILP formulation for application
mapping onto network-on-chips,’’ in Proc. Int. Conf. Appl. Inf. Commun.
Technol., Oct. 2009, pp. 1–5.

[21] W. Amin, F. Hussain, and S. Anjum, ‘‘IHPSA: An improved bio-inspired
hybrid optimization algorithm for task mapping in network on chip,’’
Microprocessors Microsyst., vol. 90, Apr. 2022, Art. no. 104493.

[22] R. Pop and S. Kumar, ‘‘A survey of techniques for mapping and scheduling
applications to network on chip systems,’’ School Eng., Dept. Electron.
Comput. Eng., Jönköping Univ. Jönköping, Sweden, Res. Rep. 04:4, 2004.

[23] P. K. Sahu and S. Chattopadhyay, ‘‘A survey on application mapping
strategies for network-on-chip design,’’ J. Syst. Archit., vol. 59, no. 1,
pp. 60–76, Jan. 2013.

[24] A. K. Singh, W. Jigang, A. Kumar, and T. Srikanthan, ‘‘Run-time mapping
of multiple communicating tasks on MPSoC platforms,’’ Proc. Comput.
Sci., vol. 1, no. 1, pp. 1019–1026, May 2010.

[25] S. Tosun, ‘‘Cluster-based application mapping method for network-on-
chip,’’ Adv. Eng. Softw., vol. 42, no. 10, pp. 868–874, Oct. 2011.

[26] J. Hu and R. Marculescu, ‘‘Energy-aware mapping for tile-based NoC
architectures under performance constraints,’’ in Proc. ASP-DAC Asia
South Pacific Design Autom. Conf., Jan. 2003, pp. 233–239.

[27] J. Huang, C. Buckl, A. Raabe, and A. Knoll, ‘‘Energy-aware task allocation
for network-on-chip based heterogeneous multiprocessor systems,’’ in
Proc. 19th Int. Euromicro Conf. Parallel, Distrib. Netw.-Based Process.,
Feb. 2011, pp. 447–454.

[28] L. Moller, L. S. Indrusiak, L. Ost, F. Moraes, and M. Glesner, ‘‘Compar-
ative analysis of dynamic task mapping heuristics in heterogeneous NoC-
based MPSoCs,’’ in Proc. Int. Symp. Syst. Chip (SoC), Oct. 2012, pp. 1–4.

[29] T. D. Ngo, K. J. M. Martin, and J.-P. Diguet, ‘‘Move based algorithm for
runtime mapping of dataflow actors on heterogeneous MPSoCs,’’ J. Signal
Process. Syst., vol. 87, no. 1, pp. 63–80, Apr. 2017.

[30] L. G. G. Morales, J. E. A. Cobo, and N. Bagherzadeh, ‘‘A new approach
to the population-based incremental learning algorithm using virtual
regions for task mapping on NoCs,’’ J. Syst. Archit., vol. 97, pp. 443–454,
Aug. 2019.

[31] B. Pourmohseni, S. Wildermann, M. Glaß, and J. Teich, ‘‘Hard real-time
application mapping reconfiguration for NoC-based many-core systems,’’
Real-Time Syst., vol. 55, no. 2, pp. 433–469, Apr. 2019.

[32] J. Spieck, S. Wildermann, and J. Teich, ‘‘Scenario-based soft real-time
hybrid application mapping for MPSoCs,’’ in Proc. 57th ACM/IEEE
Design Autom. Conf. (DAC), Jul. 2020, pp. 1–6.

[33] S. Paul, N. Chatterjee, and P. Ghosal, ‘‘Dynamic task allocation and
scheduling with contention-awareness for network-on-chip based multi-
core systems,’’ J. Syst. Archit., vol. 115, May 2021, Art. no. 102020.

[34] N. Dahir, A. Karkar, M. Palesi, T. Mak, and A. Yakovlev, ‘‘Power den-
sity aware application mapping in mesh-based network-on-chip archi-
tecture: An evolutionary multi-objective approach,’’ Integration, vol. 81,
pp. 342–353, Nov. 2021.

[35] C.-H. Huang, ‘‘HDA: Hierarchical and dependency-aware task mapping
for network-on-chip based embedded systems,’’ J. Syst. Archit., vol. 108,
Sep. 2020, Art. no. 101740.

VOLUME 11, 2023 52325

W. Amin et al.: HyDra: Hybrid Task Mapping Application Framework for NOC-Based MPSoCs

[36] A. Kumar, V. K. Sehgal, G. Dhiman, S. Vimal, A. Sharma, and S. Park,
‘‘Mobile networks-on-chipmapping algorithms for optimization of latency
and energy consumption,’’Mobile Netw. Appl., pp. 1–15, 2021.

[37] A. S. Kumar and T. V. K. H. Rao, ‘‘An adaptive core mapping algorithm
on NoC for future heterogeneous system-on-chip,’’ Comput. Electr. Eng.,
vol. 95, Oct. 2021, Art. no. 107441.

[38] A. T. Tran and B. Baas, ‘‘Noctweak: A highly parameterizable simulator
for early exploration of performance and energy of networks on-chip,’’
VLSI Comput. Lab, ECE Dept., Univ. California, Davis, Davis, CA, USA,
Tech. Rep. ECE-VCL-2012-2, 2012.

[39] D. P. Rini, S.M. Shamsuddin, and S. S. Yuhaniz, ‘‘Particle swarm optimiza-
tion: Technique, system and challenges,’’ Int. J. Comput. Appl., vol. 14,
no. 1, pp. 19–26, 2011.

[40] A. A. Morgan, H. Elmiligi, M. W. El-Kharashi, and F. Gebali, ‘‘Unified
multi-objective mapping and architecture customisation of networks-on-
chip,’’ IET Comput. Digit. Techn., vol. 7, no. 6, pp. 282–293, Nov. 2013.

[41] C. A. M. Marcon, E. I. Moreno, N. L. V. Calazans, and F. G. Moraes,
‘‘Comparison of network-on-chip mapping algorithms targeting low
energy consumption,’’ IET Comput. Digit. Techn., vol. 2, no. 6,
pp. 471–482, Nov. 2008.

[42] W. Amin, F. Hussain, S. Anjum, S. Khan, N. K. Baloch, Z. Nain, and S.
W. Kim, ‘‘Performance evaluation of application mapping approaches for
network-on-chip designs,’’ IEEE Access, vol. 8, pp. 63607–63631, 2020.

[43] R. P. Dick, D. L. Rhodes and W. Wolf, ‘‘TGFF: Task graphs for free,’’
in Proc. 6th Int. Workshop Hardw./Softw. Codesign (CODES/CASHE),
Seattle, WA, USA, 1998, pp. 97–101, doi: 10.1109/HSC.1998.666245.

WAQAR AMIN received the B.Sc. degree in
computer engineering and the M.S. degree from
the University of Engineering and Technology
at Taxila (UET Taxila), Pakistan, in 2007 and
2014, respectively, where he is currently pursu-
ing the Ph.D. degree. He has vast experience in
the research and development of cellular proto-
cols. His research interests include fault-tolerant
systems, network-on-chip (NoC) system designs,
machine learning, and cellular and satellite com-

munications. He is also working on the low-cost application mapping on
NoC.

FAWAD HUSSAIN (Member, IEEE) received the
B.Sc. degree in computer engineering, the M.Sc.
degree in electrical engineering, and the Ph.D.
degree in computer engineering from the Uni-
versity of Engineering and Technology (UET)
at Taxila, Pakistan, in 2005, 2009, and 2015,
respectively. He is currently an Assistant Pro-
fessor with the Computer Engineering Depart-
ment, UET at Taxila. His research interests include
speech and audio processing, computer vision, and
network-on-chip (NoC).

SHERAZ ANJUM received the M.Sc. degree in
electronics, the M.Sc. degree in computer engi-
neering, and the Ph.D. degree in engineering
from the Institute of Microelectronics, GUCAS,
Beijing, China, in 1999, 2005, and 2008, respec-
tively. Currently, he is an Associate Professor with
COMSATS University Islamabad, Wah Campus,
Pakistan. His research interests include networks-
on-chip, machine learning, multi-processor het-
erogeneous computing, wired and wireless

networks, and edge computing.

SHAROON SALEEM received the B.Sc. degree
in computer engineering and the M.S. degree from
the University of Engineering and Technology at
Taxila (UET Taxila), Pakistan, in 2007 and 2015,
respectively, where he is currently pursuing the
Ph.D. degree. He is a Lecturer with the Computer
Engineering Department, UET Taxila. He had
been involved in various projects in the domain of
embedded systems development in his career. His
research interests include network-on-chip (NoC),

fault tolerant systems, and reconfigurable digital system designs. He is also
working on the low-complexity and low-cost applicationmapping techniques
in network-on-chip.

WAQAR AHMAD received the Ph.D. degree in
electronics and communication in Europe. He has
more than 15 years of teaching, research, train-
ing, and development experience in computing
and engineering fields. He has worked in various
professional capacities across academia, such as
the lab engineer, a lecturer, and an assistant pro-
fessor of artificial intelligence, machine learning,
and deep learning. He has a strong professional
industrial collaboration with top-notch companies

of artificial intelligence and hardware designs. He has supervised more
than 40 students at B.S., M.S., and Ph.D. level in their research and devel-
opment activities. He is a certified deep learning specialist with a focus
on natural language processing (NLP), computer vision (CV), and speech
recognition (SR). His research interests include natural language process-
ing (NLP), Python programming, computer vision, artificial intelligence,
machine learning, deep learning, digital system designs, microelectronics,
field programmable gate arrays (FPGAs), and very large scale integration
(VLSI).

MUBASHIR HUSSAIN received the Ph.D. degree
from the University of New South Wales, Sydney,
Australia, and the M.Sc. degree from the Uni-
versity of Engineering and Technology at Taxila,
Pakistan. He is currently a Senior Lecturer with
the School of Information Technology, King’s
Own Institute, Sydney. He has authored many
scientific publications in the field of hardware
security and network-on-chips. His research inter-
ests include embedded system designs, hardware

security designs, network-on-chip, wireless sensor networks, and energy
optimization.

52326 VOLUME 11, 2023

http://dx.doi.org/10.1109/HSC.1998.666245

