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ABSTRACT Women’s life suffered and killed by invasive cancerous tumors is the most frequently
highlighted header in many newsletters since 2010. There can be many. By their nature, invasive tumors
spread from tissue to tissue and abduct themselves to cause new tumors. In many of the human biological
parts, CT scan has given an objective approach to the early and successful detection of cancerous tumors.
However, there were cases where diagnosis with CT scan images failed, resulting in many false positives.
In economically backward countries, these false positives raised the notifying concern of women who cannot
afford multiple diagnostic tests. Due to changes in biological metabolism, the growth of breast fat in women
to considerably abnormal size is the main cause of false positives. In many of the images under study, this
huge thick breast fat layer led to the rise of misclassification rate with false positives. Rendering societal help
requires a precise mechanism that can reduce the false positives at an initial diagnosis. The proposed method
introduces a novel constraint-based algorithm to classify a mammogram image as cancerous, aiming to
reduce false positives. The proposed deep learning algorithmWOMT is trainedwithWasserstein Distribution
constraints that are derived from the mass transfer of cancerous patches to non-cancerous patches. The
experimental simulations with a deep learning model trained with these constraints resulted in reduced false
positives.

INDEX TERMS Bhattacharya’s similarity, CNN, false positives, optimal mass transfer, Wasserstein
distribution.

I. INTRODUCTION
Between 10-15 % of women worldwide, who are within
the age groups of 30 and above, are affected by invasive
breast cancer. As the most diagnosed cancer in many
American-Euro countries, its crude increasing incidence
rate is causing researchers to focus on developing tools
and methods for early detection. This focus is more on
cancer detection with the advent of more sophisticated AI
and ML Technology [1]. Studies show that this cancer has
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varied in women’s mortality in most economically backward
countries. The factors for this mortality and incidence
variations as studied are availability, handy advanced medical
care, and possibly the living environment. Surprisingly
many recent articles on the high rise in breast cancer
mortality rate showed the impact of family income as more
impactful [2].

The 2020 world statistics showed that the middle-income
category of developed countries has a very high mortality
rate compared to other income groups, and one supportive
reason can be the un affordability of expensive diagnostic
resources—many Western developed countries raised flags
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on the need for early detection screenings for women over 40.
As a ground truth to cut the cost and meet the affordability,
the countries followedMammography for regular screenings.
An expert radiologist should then analyze the image data for
positive or negative confirmation of the cancer [3].

A. MOTIVATION
The breast X-ray capture is a mammogram, which is
analyzed for early tumor detection using various approaches.
Unfortunately, the anatomy of the breast is a disappointment
that leads to false positive diagnostics. False positive is a
case where the breast does not have a cancer tumor, but
the diagnostic model classified it as having a tumor [4].
The density of the breast is a vital metrical feature to study
because there are many false positive cases with denser and
denser breasts. The denseness of the breasts can be due to
the radius and size of the fatty tissue. This dense fatty tissue
may mislead to tumor tissue, causing a case of false positives.
False positives may be over-costing to an economically poor
society [5]. Thus, there is a need for an approach to reduce
false positives.

B. PROBLEM DEFINITION
There are cases as well where a mammogram detection
approach failed to identify tumors hidden behind the dense
tissue. These issues led the radiologist to suggest MRIs and
other costly detection approaches for initial screening. The
women’s financial strength in major developed countries
may support the choice of MRI, but there may be more
affordable cases for women of economically poor notations.
The bottom-line design and proposal for any screening
approach should focus on the current financial status of
women undergoing the risk [6].

FIGURE 1. (a) Normal breast anatomy (b) false positives.

Supporting the cost-effectiveness of mammograms which
can render frequent, low-cost screenings, researchers should
aid in reducing the false positive results from mammogram
screenings. Recent survey studies from many economically
poor notations elicited that most women suffered from false
positive test results of the diagnosis approach. A ground truth
analysis showed that most false positive cases occurred in
women with fatty breasts [7].

C. NOVELTY OF THE WORK
The proposed article presents a naive, constrained-based
algorithm to classify a mammogram image as cancerous,
aiming to reduce false positives in Figure 1(b). Most
breast mass detection algorithms use Euclidian distance-
based measures to diagnose the cancer mass. These distance-
based algorithms raised false positives while analyzing the
tumor mass overlapped by thick breast fat. Rather than a
distance-based, the approach used a distribution-based Bhat-
tacharya’s similarity measure to amount these overlapping.
The proposed model uses optimal mass transfer theory to
study the overlapping distributions by transferring a patch of
cancerousmass to a non-cancerous region and vice versa. The
Bhattacharya’s similarity coefficient calculated for each such
mass transfer generated Wasserstein Distribution constraints.
A deep learning algorithm is developed (WOMT), which is
trained with Wasserstein Distribution constraints to reduce
the false positives resulting from fat breasts.

D. CONTRIBUTIONS
The key aim of this article is to reduce false positives while
diagnosing thick breast layers. Outlying the contributions of
the proposed approach:

1) An approach of analyzing Bhattacharya’s similarity
distributions to diagnose the fat overlapping

2) A Deep learning model to reduce the false positives,
trained on Wasserstein Distribution constraints.

II. RELATED WORK
A mammogram image may have unwanted counters and
regions, which may not be important for cancer diagnosis.
This section presents the related and previous work the
literature has shown in addressing the mammogram images,
preprocessing the images, and the algorithms used to detect
the cancer Tumor [8].

A. MAMMOGRAM PREPROCESSING
Mammogram researchers have presented several methods
for image background removal where excessive, irrelevant
image parts are removed from the study [9]. The article
used methods like Morphological image transformations,
a threshold from Huang’s Fuzzy logic, and algorithms like
the rolling ball to remove background from the procured
images. Background removal approaches like Auto Cropping
and Label Omitting were discussed in [10]. A binary opening
with a disc-like data structure is used in their approach to
remove the background and Labels.

Excluding background using Histogram threshold is dis-
cussed in [11], where Gaussian smoothing of the histograms
under minimum peaking is applied. The authors also used
techniques like Edge detection and active contour growing
using the seed point technique for background removal. Their
experiments captured more than 40 seed points to generate
more accurate images without backgrounds. The background
segmentation approach presented by them was 70% accurate.
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The breast region without the background is the region
of interest with any image processing technique. Automated
profiling of the breast for background segmentation is
discussed in [12]. The paper discussed approaches like
automated region growing and morphological preprocessing
to remove digital noises and background. Today’s computer-
assisted diagnostic systems pre-request many image enhance-
ment techniques for accurate diagnostics. One such in digital
mammogram analysis is the breast region segmentation and
thorough separation of background. A combined approach
of background removal usingmorphological transformations,
histogram threshold, and contour modeling is presented
in [13]. Their methodology used local discontinuity of
histogram values to determine the final breast boundary.

Women’s breasts normally include a thick and intense
pectoral muscle, which resembles similar fat tissue. This
muscle adversely affects the cancer detection approaches as
its gray visualization resembles a cancer tumor. An Auto-
mated detection and removal approach of pectoral muscle is
presented in [14]. This approach proved accurate in removing
the pectoral muscle from the gray mammogram images.
Algorithms like hybrid bounding box and region growing
were used in [15] to remove the pectoral muscle. The
maze segmentation approach used by the authors accurately
obtained the best results.

Addressing the need for pectoral muscle removal in any
computer-aided detection system, the works in [16] discussed
and designed a novel pectoral muscle removal algorithm in
digital mammograms. The authors used a combined approach
of the Robust Outlying Ratio (ROR) technique with extended
NL-Means (ROR-NLM) kind of filters on Discrete Cosine
Transform (DCT) for noise and pectoral muscle removal.
The approaches were found to be effective in image noise
removal.

Breast boundary extraction is the most practiced technique
for boundary identification and pectoral muscle removal.
A simultaneous method of pectoral muscle removal by
identifying the breast boundary is eluded rightly in [17].
A multilevel wavelet decomposition is applied to the images
to extract the breast regions perfectly. The generated wavelet
coefficients were accurate enough to identify the clear breast
border, excluding the pectoral muscle. A robust approach
for pectoral muscle segmentation is discussed in [18]. In the
work, the authors proposed an approach using contract
enhancement of digital images for muscle segmentation.
Their experimental results showed 93.4% of segmentation in
295 images.

B. MASS DETECTION ALGORITHMS
With the advent of computer technology and new AI
tools, current research produces many novel methods and
algorithms for cancer mass detection. A new image mass
classification framework is depicted in [19] using deep
learning algorithms. Their results showed a promising future
in successfully detecting the cancer mass. Breast density

was an important parameter considered by many tumor
detection approaches. The seeded region growing algorithm
used in [20] showed accurate results of mass detection under
various breast densities. A feature-matching algorithm on
various breast regions using the Maximally Stable Extremal
Regions algorithm is shown in [21]. The algorithm is fully
automated without any human assistance. The result analysis
of the authors showed that their proposed algorithm has high
accuracy when compared to many states of art algorithms.

A computationally efficient and robust algorithm proposed
in [22] used a confocal microwave imaging method for
cancer mass detection. The results showed by their approach
modeled the algorithm’s efficiency in detecting even the small
and narrow mass regions. The approach discussed in [23]
presented a combined CNN feature extraction with extreme
learning clustering to detect cancer mass. Their extensive
experimentations demonstrated the algorithm’s accuracy at
about 91.5%. Works presented in [24] used a grasshopper
optimization algorithm and optimized feature extraction
imbibed in CNN cancer for mass detection. The authors
experimentally showed that the proposed algorithm has
improved precision and decreased the overall computational
cost.

A dual-stage adaptive threshold discussed in [25] proposed
an automatic framework for breast cancer detection. The
framework used a statistical approach of convolutions for
the detection. The neural Net whale optimization algorithm
is discussed in [1] to detect breast cancer automatically.
The authors showed that their proposed algorithm has the
best accuracy compared with various machine learning
algorithms.

State-of-the-art literature proposed manymachine learning
and deep learning algorithms for breast cancer mass detec-
tion. The approach discussed in [26] used machine learning
algorithms like SVM and Sequential Minimal Optimization
(SMO) for breast cancer mass detection. The classifier
efficiency is studied by analyzing the true positives and false
positives. A hybrid deep learning model is discussed in [27]
for breast cancer detection and prediction. The approach took
the PCamKaggle dataset and used CNN and GRUs to detect
a mass.

III. THE PROPOSED METHOD
With the immediate need for fast and timely diagnosis
of breast cancer, the approach proposed an efficient deep
learning Model as the solution to early cancer detection
by reducing the false positives of the existing diagnosis
algorithms. Mammogram images are breast X-ray images
from which early cancer tumors can be diagnosed.

A. DATA COLLECTION
Kaggle and Digital Mammogram Database, MIAS, are the
initial sources of mammogram images. The mammogram
images are collected from Git. Four hundred fifty mammo-
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gram images, each of 1024 X 1024 size, were part of the
proposed analysis.

B. DATASET PARTITIONING
To support the goal of reducing the false positives, the pro-
posed approach aimed at pulling various constraints by trans-
porting cancer mass patches from image to image. In order
to be in line with the various constraints developed, the
proposed approach insists on a need for Dataset partitioning
into: Cancerous(G1) and Non-Cancerous (G2). The database
of images is successfully partitioned into 245 Non-Cancerous
and 205 cancerous images. Two hundred forty-five non-
cancerous images to 115 non-fatty and 130 fatty images. Two
hundred five cancerous images to 105 non-fatty and 100 fatty
images, and is presented in Figure 2.

FIGURE 2. Data architecture of proposed method.

C. PROPOSED APPROACH
The proposed approach initially went with preprocessing
the images. As a next step, Bhattacharya’s distribution is
discussed to study and measure the overlapping of various
cancerous and non-cancerous mass patches.

1) PRE-PROCESSING
The mammogram images were collected from different
repositories, and observed that the images were of different
sizes. Removal of the pectoral muscle is the first preprocess-
ing step. After removal, the ratio of the area occupied by the
pectoral muscle in the images is different, and an un-fixed
position is observed to the left top corner of the gray image.
The images are cropped to hold fixed non-pectoral areas,
including the breast and mass regions.

We observed that the processed image sizes are inconsis-
tent with unclear regions of breast and mass. So, a need for
edge-preserving is identified. The image retargeting approach
is followed to achieve image consistency and preserve clear
edges. We want to be more informative and fixed to maintain
a uniform size of 224 X 224.

FIGURE 3. (a) Image with label-1, pectoral-2, cancer mass-3, breast fat-4
(b) after preprocessing and cropping.

Talking about breast cancer in women, most often, breast
cancer originates in milk-producing ducts. The fatty breast
ligaments called fatty breast tissues are deceptive to false
positive tumor cells. As Figure 3 (a) shows, the cancer mass is
most likely to be a fatty mass, which is majorly identified as a
false positive. Initial analysis of the image database revealed
fatty tissues resemble tumor cells in gray images. As seen in
Figure 1 breast anatomy, the internal fat is where the duct
cell falls. This internal fat is more closely resembled tumor
mass. Unless assisted with an accurate diagnostic approach,
it still results in false positives, thus a great need for careful
and better image preprocessing and diagnostic methodology.

The literature showed many image patch transportation
techniques to disseminate the fat mass regions with the
tumor mass regions, where a patch matching is analyzed and
observed. Most existing image patch matching methods used
Euclidean-based mass patch delineation for easy diagnostic
assistance. This approach uses a template T of tumor mass,
which can be 8 X 8 or more in size, where this template is
flipped on the cancerous image I, left to right or top to bottom,
and calculates the similarity between T and the breast mass
regions. The high similarities are categorized as suspected
cancer mass. Results of many works showed even these patch
flip methods with high similarities, which were diagnosed
as positive initially, went negative after a trail of the same
runs. Here the observed images were found to be fattier. The
similarity measure used for patch matching is the Euclidean
distance D(i,j) given in Equation.

D(i, j) =

∑M

m=1

∑N

n=1
[P (m, n) − T (m, n)]2 (1)

Here D(i,j) is the corresponding Euclidean distance
between the template T and image patch P for i=1 to M and
j=1 to N. For templates of size 7 X 7, m and n are the width
and height which are respectively 7. P(m,n) and T (m,n) are
the image pixel values of the patch and template respectively.
Figure 4 shows two image patches at two regions, P1=R1 and
P2=R2 measuring similarity by flip using template T, with
tumor mass.

The Euclidean distance metric failed in cases where the
tumor mass is bonded and overlapped with the fatty mass of
the breast. Those seeded patches are misclassified as tumor
masses or breast fats. The image shown in Figure 4 is a ground
truth image where cancer mass is diagnosed at two regions,
R1 and R2. A sample template patch T is obtained from a
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ground truth image having tumor mass. The region R1 with
tumor mass patch P1, this patch P1 found to be having high
similarity with the tumor mass, template T, when measured
using Euclidean distance.

FIGURE 4. Ground truth image with R1: tumor mass patch, R2: tumor
mass overlapped by fatty breast, R3: fatty mass alone.

However, the same similarity metric failed when the patch
at region R2 was compared with Template T, where the
measure resulted in less similarity. Because of region R2
though it has tumor mass, this mass is encompassed and
overlapped by thick breast fat, and thus Euclidean distance
failed to capture the similarity. Here the patch is identified
non -cancerous. Region R3 is not with any tumor mass, and
the Euclidean distance approach identified the similarity as
almost equal because R3 has a fattier overlapped region and,
thus, a case of false positive. A countermeasure is to analyze
the distributions of the image patches and find how much the
overlapping is to apply a better patch transportation theory.

2) BHATTACHARYA’S DISTRIBUTION: MEASURING
OVERLAPPING
As a case of concern is to reduce false positives resulting
from heavy, fatty breasts, we want to measure the kind of
overlapping of breast patches P with tumor mass template T.

Analyzing the false positive rate by Euclidean distance, the
approach used similarity by Bhattacharya’s distance metric
to analyze the distribution similarity of two or more mass
patches. Bhattacharya’s distance is used to measure the
amount of overlap between tumor mass and breast fat. For
any two tumor mass patches P1, and P2 on a domain of pixels
X, the Bhattacharya’s similarity is given by,

BD(P1,P2) = −ln(BC(P1,P2)) (2)

where BC(P1, P2) is the Bhattacharya’s co-efficient given by

BC(P1,P2) =

∫
X

√
P1(x),P2 (x)dx (3)

With 0 ≤ BC ≤ 1, the Bhattacharyya coefficient BC.
(P1,P2) quantifies the overlapping of two random statistical
sample Patches P1, and P2. When BC=0, the patches are
completely dissimilar, BC=1, the patches are completely
similar.

Running hypothesis testing on the distributions showed
that when the Bhattacharyya Coefficient between two
distributions is < 0.05, the distributions are significantly
different. When this coefficient is >0.95, both distributions
are significantly similar. Values between these two thresholds

show the probability of overlap between the distributions.
With the application of Bhattacharya’s similarity metric over
collected patches and ground truth templates. Let P={P1, P2,
P3,. . . }; T={T1, T2, T3,. . . } be the patches corresponding to
breast fat regions and Tumor templates. We collected these
patches from various fat regions of the breast, both from
cancerous and non-cancerous images.

A novel data structure is built to hold these patches and
ground truth templates, called the Patch stack as shown in
Figure 5. Finding the Bhattacharya’s coefficient for BC(P,T)
measures the overlap of the breast fat regions and Tumor.

FIGURE 5. Data structure- multi Patch stack for finding bhattacharya’s
similarity.

This multi-patch stacking data structure is used to stack
templates of various breast tumor mass regions, to be
compared with the various breast patches. Out of many
collected patch samples and templates, here we present an
analysis of six sample template patches from original ground
truth cancerous and non-cancerous images with the support of
computer-aided diagnosis (CAD). This is shown in Table 1.
Table 2 shows the description of the templates.

TABLE 1. Ground truth sample patch templates.

From the 245 Non-Cancerous (G2) and 205 Cancerous
(G1) images, we collected nearly 784 patches each of size
8 × 8 pixels from each image. For each image, we stacked
all the 784 patches and captured the similarity value with the
patches in the Template stack as described in Tables 1 and 2.
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The Bhattacharya’s similarity matrix is constructed and A
sample of the values is shown in table 3 and respective tables
below show overlapping collected on one Image from Non-
Cancerous and one image from cancerous Databases. Among
the 784 patches of one Image, we randomly analyzed an array
of continuous patches to study the overlapping of T and P
using Bhattacharya’s co-efficient as included below

TABLE 2. Descriptions of table 1 templates.

The nomenclature followed here is, BC (TG2-i, PG21-i)
(Bhattacharya’s co efficient giving the overlapping of T
and P), G2-1(Image 1 from Non-cancerous database), G1-1
(Image 1 from Cancerous Database), TG2i (Non-cancerous
mass Template), TG1i (Cancerous mass Template), PG2i-j
(array of j patches from non-cancerous Image i), PG1i-j (array
of j patches from cancerous Image i).

TABLE 3. Bhattacharya’s co efficient BC (TG2-i, PG21-j)-no fat.

The distribution overlapping is completely dependent on
the precision of Bhattacharyya Coefficient. The precision of
the Bhattacharyya Coefficient is directly proportional to the
array of number of continuous pixels (n X n). If the array

size is too high, the overlap will be underestimated. So the
proposed approach uses an array of 7-10 sizes each with a
patch (P) of 8×8 pixels. Displayed are the results on an array
of 7 sizes.

Table 3 shows Bhattacharya’s co-efficient BC for
Non-Cancerous patches (PG21-j) and six ground truth
template patches (TG2i). TG2-1 is a patch showing a normal
breast region, no fat, and no tumor mass.We showed a sample
of array patches of size 7, from 64-70. The Bhattacharya’s co-
efficient BC of TG2-1 with these seven patches is found to
be very high. Showing the template patch, TG2-1 is almost
overlapping and similar to an array of patches. Also, TG1-1
has less similarity though being non-fatty, with cancerous
mass. These are the two cases in the experimental setup.

TABLE 4. Bhattacharya’s co efficient BC(TG2-i, PG22-j)-moderate fat.

TABLE 5. Bhattacharya’s co efficient BC(TG2-i, PG23-j)- heavy fat.

TABLE 6. Bhattacharya’s co efficient BC(TG2-i, PG11-j) - no fat.

From the tables, it is observed that the tables above TG2-1
with patches of Moderate fat and heavy fat, non-cancerous,
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TABLE 7. Bhattacharya’s co efficient BC(TG2-i, PG12-j) - moderate fat.

TABLE 8. Bhattacharya’s co efficient BC(TG2-i, PG13-j)- heavy fat.

have less value of Bhattacharya’s coefficient. Concaving the
image is non-cancerous. The experimental calculations for
Bhattacharya’s coefficient and the values obtained on various
patches and defined templates made us run a hypothesis
testing on two observed values, 0.85 and 0.5, with 90%
probability covered. These test case results provided us a
thorough, fair configuration of patch mass constraints as
given below:

For the case of No fat and Moderate fat, non-cancerous:

Avg(BC(TG2 − i,PG21 − j)) > 0.85, (4)

Avg(BC(TG2 − i,PG21 − j)) < 0.5; fori = 1, 2, 3 and j

× in array of size 7 (5)

For the case of No fat and Moderate fat, cancerous:

Avg(BC(TG1 − i,PG11 − j)) < 0.5; (6)

Avg(BC(TG1 − i,PG11 − j)) > 0.85, for i = 1, 2, 3 and j

× in array of size 7 (7)

For the case of Heavy fat, cancerous:

Avg(BC(TG1 − i,PG11 − j)) > 0.85; (8)

Avg(BC(TG1 − i,PG11 − j)) > 0.85, fori = 1, 2, 3 and j

× in array of size 7 (9)

The concerning fact here is that in the case of heavy fat,
the Bhattacharya’s co-efficient resulted in high similarity
showing the heavy overlapping of the cancer mass with
the heavy fat mass. When we observed the image database
derived from these templates, we found these are from false
positives.

3) PROPOSED APPROACH
The case of maximal overlapping of the tumor mass with
fatty patch: Wasserstein’s Optimal mass transfer theory
(WOMT)From the analytical runs on various images for
Bhattacharya’s coefficient, we obtained nearly similar and
approximately equal coefficients for the case of Heavy fat
in both non-cancerous and cancerous analytical results. The
thick breast fat tissue is affecting diagnostics. As we do not
know how the tumor mass overlaps with the thick fat tissue
and vice versa, the proposed approach used Wasserstein’s
transport theory to diagnose the tumor. Once overlapping
is measured using Bhattacharya’s coefficient, the proposed
method uses Wasserstein’s Optimal mass transfer theory [7]
(WOMT), where the transfer of patch mass of tumor is
analyzed to arrive at proposed WOMT constraints for tumor
classification.

FIGURE 6. (a) ROI1 (b) ROI2 (c) ROI3.

The observations included transferring a patch template
of various cancer masses to various non-cancerous and
cancerous fatty images and simulating Wasserstein’s distri-
butions. We took patches of various sizes and a stack of 7 to
10 templates to address optimal mass transfer.

Wasserstein’s Optimal mass transfer theory (WOMT), the
proposed approach, used Wasserstein’s distributions on top
of optimal mass transfer to arrive at WOMT constraints.
In contrast, the approach used the Optimal mass transport
(OMT) theory. Recently OMT had a practical impact on
analyzing medical images.

Once the overlapping of the fatty tumor and the fatty
patch is measured, the proposed approach takes advantage of
measuring this shift of overlapped cancer mass about regions
of interest (ROI):

1) ROI1: Partial overlap of cancer mass patch with fatty
breast patch.

2) ROI2: Full overlap of cancer mass patch with fatty
breast patch.

3) ROI3: No overlap of cancermass patchwith fatty breast
patch.

Mass shift need not be studied at the full overlap. We want
to study the mass shift only for ROI1 and ROI3. The
proposed constraints are derived by analyzing the probability
distributions of all the mass shifts among these ROIs.
These constraints then go out to classify medical images as
cancerous and non-cancerous.

From point masses to Wasserstein cumulative distributions
Lr- Wasserstein distance:
Let S1 and S2 denote two probability spaces with measures

µ1 and µ2, respectively, and let C(s1, s2) denote the
transportation cost for moving one unit of mass from
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FIGURE 7. WOMT architecture.

s1 ∈ S1 to s2 ∈ S2. The objective of OMT is to minimize the
total mass shifting cost of the functional map F: S1 → S2,
and is given by total shifting cost:

Totalshiftcost = ∫ SC(S,F(s))µ(ds) (10)

As a metric to measure the mass shift, the approach took
advantage of the Lr-Wasserstein distance betweenµ1 andµ2
on an image spaceRd. This section includes howWasserstein
cumulative distributions are arrived upon from point masses.

Point masses (degenerate distributions):
For the image data, with a defined pixel space, which can

be here taken as a patch (p), a degenerate distribution is
probability distribution only at a single pixel.

Letµ1= ωp1,µ2= ωp2 located at two image pixels p1,p2
in R defined, so we can find the point mass at p1, p2 as
ω(p1,p2) which is located at (p1,p2) ∈ R2.

For any r ≥ 1
Lr- Wasserstein distance between µ1 and µ2 is:

Wr(µ1, µ2) = |p1 − p2| (11)

Using the normed Euclidean as distance metric, then

Wr(µ1, µ2) = ||p1 − p2||2 (12)

L2Wasserstein distance:
In the proposed work, we are taking advantage of Lr

Wasserstein distance for r=2. The defined distance metric is
intended to evaluate the probability distribution of the patch
data P1 with a total mass of m1. The approach included
finding patch-based Gaussian measures km1 and km2 ∈ Rl,

mean and Covariance matrix MCov(i) for i = 1,2, which are
needed for the distributions from various ROI shifts.

Let sample data in the native spaces of template T, and
fatty area F be X = [x1,x2, · · · , xm] and Y = [y1, y2, · · · ,
ym] ∈ Rd where m=1,2,3,4. . .m are respective patch sizes
corresponding to various masses.

The L2-Wasserstein distance between the two distributions
is given by

W2(km1, km2)2 = ||µ1 − µ2||2 + Trace(Cov1 + Cov2
− 2(Cov2Cov1)1/2 (13)

where Trace is the trace, which is here the sum of the diagonal
elements of the covariance matrices.

Themeanµ of the pixelmasses of the feature space is given
by:

µ =
1
m

∑m

1
t (xi) = tX (14)

The covariance matrix of the pixel masses of the feature
space is given by:

MCov(i) =
1
m

∑m

i=1
(t (xi) − µ) (t (xi) − µ) (15)

Wasserstein cumulative distributions constraints:
For the mean masses µ1, µ2 ∈Pr(R) with probability

measure P on R, denote the cumulative distributions on the
pixel sample spaces X,Y as F(X), F(Y). We now define the
transport problem on the pixels probability mass as: for a
patch amount p1 of mass µ(x) distributed on pixel space
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X, if transported to a distribution on pixel space Y, then the
Lr- Wasserstein distance between µ1 and µ2 ∈Pr(R) is:

Wr(µ1, µ2) = (
∫ 1

0
|F − 1X (p1) − F − 1Y (p1)|rdp1)1/r

(16)

From equation 11, The Wasserstein constraints are the
bounded Wasserstein distributions giving the difference
between the mean overlapping. The derived Wasserstein
constraints

Partial overlap of malignant cancer mass patch with fatty
breast patch:

Wp1(µ1, µ2) ≤ Wp2(µ1, µ2) (17)

Full overlap of malignant cancer mass patch with fatty
breast patch:

Wp1(µ1, µ2) > Wp2(µ1, µ2) (18)

The proposed objective function from WOST is to Mini-
mize F(X), by applying various transportations of cancerous
mass to non-cancerous masses. F(X) is given by

F(X ) = |Wp1(µ1, µ2) −Wp2(µ1, µ2)| (19)

4) ARCHITECTURE OF PROPOSED WOMT
Initial CNN [28] was modeled on the ground truth images to
collect the false positives from cancerous and non-cancerous
Databases. Then these false positive images are subjected
to collect the observed Wasserstein cumulative distributions.
A retraining phase onCNN is again initiated, where themodel
is trained with the OMT Wasserstein cumulative distribution
constraints as given in equation 19.
The predicted distributions are compared with observed

standard distributions. The model test loss is evaluated.
This loss is minimized by patch-based OMT, and optimized
Wasserstein cumulative distribution constraints are obtained.
The WOMT architecture shown in Figure 8 shows how the
fatty images are classified as cancerous and non-cancerous.
The proposed method steps are as in algorithm 1.

Algorithm 1WOMT
1. Collect patches and templates P={P1,P2,P3,. . . };
T={T1,T2,T3,. . . }

2. Generate Bhattacharya’s co efficient BC(TG2-i,
PG21-i)

3. If Avg(BC(TG1-i,PG11-j)) > 0.85;
Avg(BC(TG1-i,PG11-j)) > 0.85
Then identified maximal overlapping, apply WOST

4. Run CNN to collect FPs
5. Observed Standard Wasserstein Distributions
yo=[ync,yc]

6. Apply Trained CNN with WOMT constraints
7. If Ypnc>Ypc then Non Cancerous
If Ypnc< Ypc then cancerous

FIGURE 8. Sample predicted distributions from WOMT.

IV. EXPERIMENTAL RESULTS
We conducted experiments using CNN modeled by python
codes and Wasserstein cumulative distribution constraints
modeled by R codes. The first step insisted on col-
lecting the false positives from a classifier CNN. Pre-
processed the images. We input the preprocessed images
to a trained CNN model for classification. The training
data image information while using CNN is displayed
in Table 9.
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FIGURE 9. (a) (b) Train and test loss from CNN, (c) (d) train and test loss
from WOMT trained CNN.

TABLE 9. CNN training phase parameters.

We observed that the fatty images resulted in more of
false positives. The false positives obtained in either case are
shown in the confusion matrices of Table 10.
We found a good lot of false positives from the fatty

images. We collected the false positive images to database

TABLE 10. CNN confusion matrix – false positives.

FP. The train loss and accuracy of initial CNN run is shown
in Figure 9.

In the next phase we applied the proposed approach
on FP database. We collected fatty patches Pi of varied
masses from false positives of cancerous applied OMT on
to non-cancerous fatty images. The WOMT constraints were
captured by minimizing the F(X). Sequentially the CNN
was trained to reduce the test loss with optimal WOMT
constraints. The final trained CNN is used for test image
classification. We observed that the WOMT trained CNN
reduced false positives. The train loss and accuracy of
WOMT trained CNN is shown in Figure 9. Sample predicted
distributions from WOMT are shown in Figure 9. The loss
and accuracy shown in figure 9, shows the proposed approach
successfully reduced false positives and resulted in reducing
the test loss.

V. CONCLUSION AND FUTURE SCOPE
Women life suffered from deadly breast cancer is the main
focus. The cause reasons can be many among the living
habits to diversified ecological affects. Invasive tumors
spread from tissue to tissue, with high chances of causing
new tumors. Medical diagnosis approach like CT scan has
paved for early and successful detection of the cancerous
tumors. But there were cases where even diagnosis with
CT scan images failed and resulted in many false positives.
In economically backward countries these false positives are
nightmare of women’s concern and bloated the affordability.
Due to change in biological metabolism the growth of the
breast fat in women to considerably abnormal size is the
main cause for false positives. In many of the images under
study, this huge thick breast fat layer led to the raise of
misclassification rate. Rendering a societal help is a need
for accurate mechanism that can reduce the false positives
at an initial diagnosis itself. The proposed method introduces
a novel Wasserstein Distribution constraint that are obtained
from mass transfer of cancerous patches to non-cancerous
patches. The experimental simulations with deep learning
model trained with these constraints resulted in reduced false
positives.

The proposed article presents a naive constrained based
algorithm to classify a mammogram image as cancerous,
aiming reduced false positives. Initial Euclidian distance-
based measures to diagnosis the cancer mass raised false
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positives while analyzing the tumor mass overlapped by thick
breast fat.

The proposed approach used Bhattacharya’s similarity
measure to amount these overlapping. We developed deep
learning algorithm (WOMT) which is trained with Wasser-
stein Distribution constraints to reduce the false positives
resulted from fat breasts.

The proposed work explained the methodology on differ-
ent regions ROI1 andROI2. However, this work didn’t include
analysis on region of full overlap the ROI3, which we want to
present as a future work.
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