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ABSTRACT This study examines the use of breath sounds intrusively recorded by mobile devices for person
identification (PID), which is referred to as mobile-sensed BreathPID. A custom dataset of breath sounds
from 21 volunteers is prepared for investigation and analysis. To overcome the problem of spare training
data, we incorporate various audio data augmentation (DA) methods with the self-supervised learning (SSL)
approach to train the BreathPID’s learning models. SSL-based models for BreathPID are developed in
two phases: firstly, solving proposed pretext task(s) without identity information to effectively learn core
characteristics of data; then further finetuning the models on the labeled data for the downstream BreathPID
task. Several types of pretext or auxiliary tasks are investigated. First, when considering each DA technique,
the pretext task is defined as the detection of augmentation levels, for instance, the levels of noise added to
original data samples. When utilizing multiple DA techniques, the identification of DA types is defined
as the pretext task. In addition, various issues in developing robust BreathPID systems are taken into
consideration, including network design, changes in input length, and the ability of noise resistance. From the
experimental results, we find that SSL-based BreathPID with the combined use of four DA techniques (i.e.,
noise addition, speed changing, time shifting, and spectrogram masking) achieves promising results which
are higher than those of SSL-basedmodels using single DA technique and those of typical supervisedmodels.
Also, the proposed system shows good resistance to noise effects and changes in the input size. Mobile-
sensed BreathPID achieves the equivalent or superior results compared to stethoscope-sensed BreathPID
(where breath sounds are sensed using specialty stethoscopes). The proposed approach can be applied to the
authentication function or health monitoring applications on mobile devices.

INDEX TERMS Audio-based identification, breath sounds, biometrics, data augmentation, mobile devices,
neural networks, person identification, representation learning, self-supervised learning.

I. INTRODUCTION
Person identification (PID), which refers to the process
of recognizing and verifying the identity of an individual,
plays a critical role in the digital world. In recent years,
there has been a significant increase in the demand for PID
systems due to the growing concerns over security threats
and the need for access control in various fields such as
banking, healthcare, and law enforcement. To date, various
methods for PID have been developed, ranging from tra-
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ditional knowledge-based methods (e.g., password and per-
sonal identification number) and token-based methods (e.g.,
ID card, driving license, and member card) to more advanced
biometric methods like voice and iris recognition. These
approaches are widely used to identify individuals with an
acceptable degree of accuracy and speed, making them an
essential tool in maintaining security and protecting sensitive
information. However, existing methods also face several
challenges such as security threats, privacy concerns, and
robustness. Also, each method may not be flexibly applied
for all applications. Thus, there is still room for the improve-
ment of existing systems or the development of brand-new
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approaches. This work examines biometric-based PID using
breath sounds intrusively recorded by mobile devices, rather
than using widely-used biometrics like voice, face, signature,
or fingerprint.

Breath sounds are the noises produced by the movement
of air as it flows in and out of the lungs during breathing.
Depending on the measurement positions, breath sounds may
have particular characteristics and can be categorized into
vesicular breath sounds (VBS) and bronchial breath sounds
(BBS). VBS is soft and low-pitched and can be heard over
the chest wall, while BBS is heard when air moves through
the larger airways of the lungs, such as the bronchi, and the
sound is louder and higher-pitched [1]. BBS can be heard
over the upper part of the chest, near the trachea. Conven-
tionally, breath sounds are sensed with the use of specialty
stethoscopes and can provide important information about
the functioning of the respiratory system, which is espe-
cially useful for medical examination and treatment activ-
ities. Recently, stethoscope-sensed bronchial breath sounds
have been found as a new biometric trait for PID due to its
unique and stable characteristics that can be used to identify
individuals [2], [3]. The stethoscope-based BreathPID is par-
ticularly suitable to use by specialists or doctors in medical
applications. In some situations, using stethoscopes to cap-
ture breath sounds could be inconvenient, thus limiting the
deployment of the stethoscope-sensed BreathPID to practical
use. This work aims to investigate the use of bronchial breath
sounds sensed by mobile devices for PID, from which the
applications of BreathPID can be extended significantly.

Mobile-sensed BreathPID is a convenient, cost-effective,
and secure method. Mobile devices such as smartphones are
ubiquitous, and most people carry them at all times. Using
mobile devices to record breath sounds for identification
purposes can be very convenient for the individual being iden-
tified, as it eliminates the need to carry any additional devices
or equipment like stethoscopes and signal processing units.
Generally, BreathPID offers several advantages compared to
other biometric-based methods. Since breath sounds are the
most ubiquitous BreathPID can be used for everyone. The
invasive recording of breath sounds can significantly reduce
the effects of external factors like ambient noise, so the signal
could be more consistent over time. BreathPID is also secure
because breath sounds are almost inaudible to non-intrusive
devices and difficult to replicate. By contrast, knowledge-
based and token-based PID systems are less secure as infor-
mation like passwords and things like smart cards can be
stolen or lost. Meanwhile, other biometric-based systems
require certain conditions to be applicable and to well oper-
ate. For example, fingerprint recognition could be unstable
for subjects with unclear fingerprints or even disabilities,
voice recognition could be severely affected by loud noise,
and low image quality can degrade the accuracy of facial
recognition.

In summary, this works makes the following major
contributions:

• We examine BreathPID with bronchial breath sounds
recorded by mobile devices rather than specialty devices
like stethoscopes, improving the applicability of Breath-
PID and opening up new avenues for further research in
the field of biometric-based PID to develop secure and
privacy-preserving PID systems.

• Due to the lack of published datasets, custom datasets
are collected for experiments and analysis. It is widely
acknowledged that collecting a large amount of labeled
data for training performant deep networks is a chal-
lenging task. Thus, we propose to apply self-supervised
learning (SSL) approaches with audio data augmenta-
tion (DA) to resolve the problem of spare training data.
Pretext tasks, including the identification of DAmethods
and identification of augmentation levels, are designed
for self-supervised representation learning, in which DA
techniques can be employed independently or in com-
bination. Then, the resulting models are finetuned on
labeled breath sounds to solve the downstream PID task.

• Different experimental aspects (e.g., accuracy and
robustness of the proposed PID approach, and effec-
tiveness of data augmentation techniques) are taken
into consideration. The experiment results show that the
proposed SSL-based mobile-sensed BreathPID outper-
forms the standard supervised frameworks, in which
the SSL-based system with a smaller size yields better
accuracies and robustness compared to the performances
of baseline models. Also, mobile-sensed BreathPID
achieves equivalent or superior results compared to
stethoscope-sensed BreathPID.

• The results of this work can bring about potential
applications, such as in biometric authentication and
healthcare service. By analyzing the unique patterns
in a person’s breath sounds, mobile devices could be
used to identify and authenticate individuals for vari-
ous purposes like accessing secure applications or mak-
ing financial transactions. In healthcare, mobile-sensed
BreathPID could be used to monitor patients with res-
piratory diseases, track their progress, and adjust their
treatment plans accordingly.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of related works. Section III
analyzes the methods we use to develop the mobile-sensed
BreathPID system. Then, we present the experimental results
in Section IV and provide a conclusion in Section V.

II. RELATED WORKS
Biometric-based PID [4] refers to the identification of an indi-
vidual based on the unique biometric data captured from that
person. There are two major types of biometrics, including
physiological and behavioral biometrics. The former refers
to the analysis of a person’s physical characteristics such as
fingerprints, iris or retina scans, face, and DNA. The latter,
on the other hand, includes the analysis of patterns in human
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activities like signature, voice, gait, keystroke, mouse activity,
and lip motion. Depending on the types of biometric data
used for analysis, biometric-based PID systems can be also
categorized into vision-based biometrics (i.e., using finger-
print [5], face [6], [7], or iris [8] images), audio-based biomet-
rics (e.g., using voice recordings [9]), audio-visual biometrics
(e.g., using face images and voice recording in combina-
tion [10], [11]), bioelectrical biometrics (e.g., ECG [12], and
EEG [13]), and others. BreathPID belongs to the category of
audio-based biometric systems as we aim to employ breath
sounds recorded by the mobile device as the input data for
analysis.

To date, most of the works in audio-based PID focus
on the use of verbal voices, including speech (e.g.,
in [14], [15], [16]) and singing voices (e.g., in [17], [18], [19])
to analyze and establish identity. A few works have investi-
gated PID based on non-verbal voices, which are the sounds
produced by speakers using their vocal organs that do not
have linguistic content. For example, Bachorowski et al. [20]
showed that individual identity is conveyed in laugh acous-
tics as they employed laughter to classify speakers using
an automatic approach and achieved above-chance level
accuracy. Engelberg et al. [21] found that participants were
able to discriminate between speakers from scream stimuli.
It was found that some other sources of audio, such as heart
sounds and breath sounds, can be also useful for identifi-
cation. Reference [22] confirmed the biometric properties
of heart sound signals, which can thus be included among
the physiological signs used by an automatic identification
system.

Recently, some studies have shown sounds of human
breath as a potential biometric [2], [3], [23], [24], [25], [26].
Reference [23] extracted breath sounds during inhalations
from speech corpus for breath-based PID experiments with
various learning models, in which conventional machine
learning ones achieved accuracies of less than 75% while
CNN-RNN yielded a higher result of 91.3%. Reference [24]
proposed a sophisticated scheme comprises of breath demar-
cation, feature extraction, and feature matching, which
achieved better performance compared to [23]. However,
systems in [23] and [24] required the step of breath demar-
cation from original speech recordings, resulting in extra
complexity. Also, those works conducted experiments on
clean datasets without the report of robustness evaluation.
Chauhan et al. [25], [26] proposed to sense the sounds near
an individual’s nose (i.e., measure the sounds unintrusively
1-2cm under the nose) by mobile phones for identification
using Gaussian mixture models (GMM) [25] and recurrent
neural networks (RNN) [26]. The stability of systems in [25]
and [26] is compromised, as their performance experienced
a significant degradation when the measurement distance
exceeded 2cm and when functioning under noisy conditions.
In [2] and [3], respectively, we proposed the use of intrusive
stethoscope-sensed bronchial breath sounds (BBS) [2] as well
as the combined use of BBS and speech [3] for PID. This

work investigates BreathPID based on BBS sensed intru-
sively by mobile devices rather than specialty stethoscopes,
thus extending the applicability of breath-based PID. Breath-
PID based on mobile-sensed BBS is more flexible than the
stethoscope-sensed approach [2], [3], while intrusive mea-
surement can help improve the security, mitigate the influence
of ambient noise, and avoid the problem of performance
degradation due to changes in the distance of unintrusive
measurement [25], [26].

In prior works, various automatic methods have been
developed for audio-based PID, including similarity-based
schemes [24], traditional machine learning methods (e.g.,
GMM [25], [27], [28] and support vector machines
(SVM) [3], [23], [29]), and deep learning methods (e.g.,
convolutional neural networks (CNN) [30], recurrent neural
networks (RNN) [26], [31], and CNN-RNN [23]). These
methods utilized handcrafted features like Mel-frequency
cepstral coefficients (MFCCs) and spectrograms to represent
audio inputs and further processed them to extract discrimi-
native information for identification tasks. Compared to tradi-
tional machine learning-based systems, deep learning-based
PIDs offer several advantages in terms of accuracy, robust-
ness, scalability, adaptability, and efficiency. This is because
deep networks can learn complex patterns and relationships in
data that traditional machine-learning methods may struggle
to detect. Additionally, deep networks can learn to identify
the most important features from the data and eliminate
irrelevant information. However, developing efficient deep-
leaning-based systems typically requires a large amount of
training data, whichmay not always be feasible due to the cost
and time involved in data collection, particularly for emerging
research topics.

To address the issue of limited training data, various tech-
niques have been developed, including data augmentation,
transfer learning, regularization, generative models, ensem-
ble learning, self-supervised learning, and contrastive learn-
ing. Self-supervised learning (SSL) is a technique in which
a model learns from the data without explicit supervision.
In SSL, the model learns to predict a specific aspect of the
data, such as themissing wordwithin a sentence [32], the next
sentences based on the current one [32], or the rotation angle
of an image [33], without being given explicit labels for these
tasks. SSL is particularly useful when labeled data is scarce
or expensive to obtain. By leveraging the inherent structure
and patterns in the data, SSL can enable models to learn
useful representations that can be applied to downstream
tasks such as classification or regression. SSL has achieved
significant success in natural language processing [32], vision
domain [34], [35], and audio domain [19], [36] as well.
In this stage of investigation on mobile-sensed bronchial
breath sounds for PID, the goal is to collect a custom dataset
of moderate size for experiments and analysis. Thus, in addi-
tion to typical supervised training of deep networks (i.e.,
which is similar to the prior works), we apply the combined
use of various techniques consisting of data augmentation,
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FIGURE 1. (left) Acquisition of breath sounds using mobile device and stethoscope; (right) waveform and spectrogram of a breath
sound sample recorded by mobile phone.

regularization, and self-supervised learning to enhance iden-
tification accuracy.

III. METHODOLOGY
A. DATA COLLECTION
Recall that bronchial breath sounds (BBS), which are loud
and high-pitched, can be heard along the large airway. Thus,
to collect experimental data, we choose to sense BBS from
the front side of the subject’s neck which belongs to the
recommended BBS measurement areas [1], [37] and brings
about convenience for the collection process. In contrast to
sensing vesicular breath sounds (VBS) over the chest wall,
sensing data nearby the neck can be done without any obsta-
cles, such as clothing. The selected measurement position is
also well-suitable for practical use.

Figure 1 (left) illustrates the collection of BBSs. It is worth
noting that the microphones of smartphones are commonly
hiding behind a collection of small holes on the bottom
frame. Thus, we can place the bottom side of phones on
a subject’s neck to capture BBSs easily. We also collect
parallel data using stethoscopes, in which the chest-piece of
the stethoscope will be used to sense breath sounds from
the other side of the subject’s neck, and signals are recorded
by a microphone plugged into one of the stethoscope’s ear-
pieces. The detailed setup for data collection using stetho-
scopes can be found in [2], [3]. The mobile-sensed and
stethoscope-sensed recordings are collected simultaneously,
resulting in the mobile-sensed BBS dataset (M-BBS-DS)
and stethoscope-sensed dataset (S-BBS-DS), respectively.
The S-BBS-DS dataset is utilized for comparative analy-
sis regarding the performances of mobile-sensed Breath-
PID and stethoscope-sensed BreathPID. The right-hand
side of Figure 1 shows the waveform and spectrogram
of a mobile-sensed BBS recording which is 3 seconds in
length.

We invited 21 volunteers, including 11 female and 10 male
subjects in different age groups, to participate in the

TABLE 1. Detail of experimental datasets.

collection of our experimental data. It should be noted that
all participants were in their typical state of health during
the time of data collection. Each volunteer provided 40 BBS
recordings which could be recorded in dis-continuous days
and after different physical activities such as walking, run-
ning, and stair climbing. Each recording lasted for around
15 seconds. The detail of experimental data is provided in
Table 1. For each subject, 30 and 10 out of 40 recordings
were utilized for the training and testing phases, respec-
tively. We further split original long recordings into smaller
non-overlapping samples of 3 seconds which is equivalent
to the average length of a breathing cycle and is a more
suitable length for practical applications. As a result, the
entire M-BBS-DS dataset contains 4,801 samples consisting
of 3,686 and 1,115 samples for development and evalua-
tion, respectively. Using a similar data preparation procedure,
training and testing subsets of the S-BBS-DS dataset has
3,537 and 1,034 samples, respectively.

B. BUILDING BREATHPID SYSTEM USING THE
SELF-SUPERVISED LEARNING APPROACH
1) SELF-SUPERVISED LEARNING (SSL)
Typical deep network training requires large-scale labeled
data to learn general features and achieve better performance
and generality. With more and more sophisticated archi-
tectures and huge datasets, recent networks keep outper-
forming state-of-the-art counterparts for almost all domains.
However, it is an undeniable fact that collecting and anno-
tating a huge amount of data is expensive and sometimes
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FIGURE 2. The general concept of SSL.

FIGURE 3. Two SSL pretext tasks: (a) augmentation method identification (AMI); (b) augmentation level identification (ALI). DA, AM, and AL stand for
data augmentation, augmentation method, and augmentation level, respectively. M denotes the total number of DA methods, and L indicates the number
of DA levels.

infeasible. As a subset of unsupervised learning methods,
self-supervised learning (SSL) was proposed to learn proto-
typical representation from unlabeled data, thus eliminating
the time-consuming process of data collection and annota-
tion. In SSL, the common solution for feature learning is
to propose pretext or auxiliary tasks for networks to solve,
and features are learned while networks are trained with
corresponding objective functions of pretext tasks.

Figure 2 illustrates the general concept of SSL, in which
the development process includes 2 training phases. For the
self-supervised training phase (Figure 2. a), we define a pre-
text task for a deep network to solve, and the pseudo labels
for this task are generated based on some attributes of data
or using some hand-designed methods (e.g., transformations)
on unlabeled data. It is worth noting that the generation
of pseudo-labels does not require any human annotation.
An objective functionLPT for the pretext task is also defined,
and the network is trained to learn this objective function.
Assuming that we utilize data augmentation Aug (·) to trans-
form an original sample into an augmented version corre-
sponding to a pseudo label. Given a batch of N data instances
B ≡ {Xi}Ni=1, the pretext task provides a set ofN pseudo labels
O = {Pi}Ni=1, in which Pi is the pseudo label associated with
the augmented signalXaugi = Aug(Xi) of the i-th data instance
Xi in B. The deep network for the pretext task is comprised of
a feature extraction structure called encoder Enc (·) followed
by a head namely Prehead (·). Let θPT be parameters of the
pretext task network, we train the network to minimize the
loss defined by (1). The pre-trained encoder received from the
self-supervised training step is transferred to the training of

supervised downstream task (Figure 2. b), in which a separate
loss function LDS for the downstream task is utilized.

LPT (B) = min
θPT

1
N

N∑
i=1

LPT
(
F

(
Xaugi , θPT

)
,Pi

)
= min

θPT

1
N

N∑
i=1

LPT (Prehead (Enc (Aug (Xi))) ,Pi)

(1)

The network for downstream task also consists of an
encoder, which is identical to the encoder Enc (·) in the
first training step, and a head. Since the main task of this
work is BreathPID, the downstream head Downhead (·) is
a classifier with several fully-connected (FC) layers added
to the end, among which the last FC layer has C nodes
corresponding to the number of classes or subjects. The
downstream head/classifier is trained on the outputs of the
frozen pre-trained encoder Enc (·) using the cross-entropy
loss LCE (i.e., LDS ≡ LCE ). The loss for each input sample
Xj is calculated using the probability distribution vector ŷj =

Downhead(Enc(Xj)) generated by the softmax activation on
the outputs of the last FC layer and the corresponding true
probability distribution vector yj. Let yj be the one-hot vector
from the true label, the cross-entropy loss for a training
sample Xj can be expressed by equation (2). Here, ŷj,c, the
cth element of ŷj, indicates the probability that the training
sample belongs to the cth class. The cth element yj,c of the
one-hot vector yj is 0 or 1, indicating whether the cth class is
the correct label or not. C denotes the number of classes or
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FIGURE 4. Waveforms and spectrograms of a breath sound file and augmented signals.

subjects in the dataset.

LCE = −

C∑
c=1

yj,c log ŷj,c (2)

2) PRETEXT TASKS FOR SSL-BASED BREATHPID
Inspiring by the pretext task proposed in [38], which is to
identify the correct orientation of images (i.e., training a
network to recognize the 2D rotation applied to the image that
the network gets as input), we apply a similar idea to the audio
domain, in which four data augmentation (DA) methods
consisting of noise addition (NA), time shifting (TS), speed
changing (SC), and spectrogram masking (SM) are utilized.
Specifically, we investigate two pretext tasks for SSL-based
BreathPID, including augmentation method identification
(AMI) and augmentation level identification (ALI). Here, the
augmentation level is referred to as the parameter used to
perform a certain augmentation. For example, the signal-to-
noise (SNR) ratio we utilize to mix a data instance with a

noise recording in noise-addition augmentation, or ‘‘faster’’
and ‘‘slower’’ speeds in speed-changing augmentation.

The AMI pretext task (Figure 3. a) is useful to evaluate
the efficiency of using various DA methods in combina-
tion. During self-supervised training based on the AMI task,
pseudo labels (i.e., NA, TS, SC, or SM) are automatically
generated for input samples using four aforementioned DA
methods, and the network is trained to maximize the rate
of correct identifications. The second type (Figure 3. b)
of pretext task (i.e., ALI) is applied separately to each DA
method. Thus, we can evaluate the effectiveness of every
DA method in SSL-based BreathPID, which could provide
us with good suggestions regarding the selection of the DA
method combination. It is worth noting that both AMI and
ALI are considered as classification tasks, so the pretext
heads are classifiers and we employ cross-entropy as the loss
function for the training of those classifiers. The benefits of
defining pretext tasks based on data augmentation can be
listed as follows. It is useful when the amount of training data
is small or not large enough because applying DAs results
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FIGURE 5. Structures of the encoder (a), pretext head (b), and downstream head (c).

in more data for training, which helps to avoid overfitting.
By solving pretext tasks, the network learns to extract useful
features of the sound and identify possible transformations
applied to the signal, so the network can detect high-level
semantics of the data. Also, augmentation provides a more
diverse set of training data, so the trained network can become
invariant to certain changes made to the input signal.

3) DATA AUGMENTATION
Figure 4 shows the waveforms and spectrograms of an origi-
nal audio file and its augmented versions using noise addition
(NA), time shifting (TS), speed changing (SC), and spec-
trogram masking (SM) augmentation techniques which are
described as follows:
Noise Addition (NA): an original sample is mixed with a

random noise recording according to a signal-to-noise (SNR)
ratio, producing an augmented signal. The noise sources can
come from soundscapes that are closely related to BreathPID
applications, such as at offices, supermarkets, and on the
street. The pseudo labels for NA augmentation can be denoted
by NA-dB where dB represents the SNR ratio. For example,
NA-m5 and NA-p5 are the pseudo labels for augmented
signals of −5dB and +5dB, respectively.
Time Shifting (TS): we shift the values of a signal either

right or left by a random number (i.e., K ) of data points,
ranging from 30% to 70% of the signal size (i.e., S). Two
types of shifting are examined, including cycling TS and
zero-padding TS. If a signal is shifted to the right by K data
points, it is first separated into two parts of (S−K ) andK data
points, respectively. In cycling TS, the second part of K data
points is placed in front of the first part to form the augmented
sample. On the other hand, in the zero-padding TS, we pad K
zeros to the left of the first part to achieve an augmented signal
of size S. The procedure for left shifting is reversed. The set
of pseudo labels for TS augmentation includes TS-left and
TS-right.
Speed Changing (SC): In this method, the speed of the

audio sample is changed according to a random rate. As a
result, the augmented sound is faster or slower than the orig-
inal one. It is worth noting that the length of the augmented
signal could be different from that of the original one, so we
perform zero padding or cropping on the augmented file to
obtain the same size as the original signal, which facilitates

FIGURE 6. Distribution of training and testing data in the M-BBS-DS
dataset.

the phase of model training. The set of pseudo labels for SC
augmentation includes SC-fast and SC-slow.
SpectrogramMasking (SM): The audio spectrogram is ran-

domly masked along the time and/or frequency dimensions.
This method provides three types of deformations consisting
of time masking, frequency masking, and time-frequency
masking. Thus, the set of pseudo labels for SM augmentation
includes SM-time, SC-freq, and SM-timefreq.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENT SETUP
The experimental dataset was collected by different mobile
devices, and the sampling rate of an audio recording can
be different from that of one another, so we resample
original recordings to 16 kHz and mono channel. To pre-
pare 2D representations for training 2D convolutional neu-
ral networks (2DCNNs), we convert the audio signal into
Mel-spectrogram, the time-frequency representation, using
128 filterbanks, window size of 25ms (i.e., 400 data points at a
sampling rate of 16 kHz), and hop length of half window size
or 200 data points. Thus, for an audio sample of 3 seconds,
we receive the spectrogram of shape 128× 241. Here, 241 =⌈
(3 × 16, 000)

/
200

⌉
, where ⌈·⌉ is the ceiling functioņ is the

number of 50% overlapping frames per 3-second recording.
We develop and assess the effectiveness of the CNN-based

encoder, pretext head, and downstream head, which are illus-
trated in Figure 5. The encoder comprises four convolutional
blocks, each of which has a 2D-Conv layer with a kernel size
of 4×4 and a max-pooling layer with a size of 2×2. The four
2D-Conv layers have 32, 32, 64, and 64 filters, respectively.
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TABLE 2. Results of SSL pretext tasks with 2DCNN model. The ‘‘Org’’ pseudo label indicates the original sample (i.e., w/o augmentation).

TABLE 3. Results of the mobile-sensed BreathPID downstream task with CRNN model.

The pretext head or classifier (i.e., for AMI or ALI tasks) is
a multi-layer perceptron (MLP) with three fully-connected
layers (FCs), where the number of nodes in the final FC is
set according to the number of augmentation methods (i.e.,
#AM) in AMI task or the number of augmentation levels
(i.e., #AL) in ALI tasks. The downstream classifier contains
two bi-directional long-short-term memory (Bi-LSTM) lay-
ers with 128 cells followed by an MLP of three FC layers,
in which the last FC layer has 21 nodes which is the number of
person IDs in the training dataset. The network formed by the
encoder and pretext head is called 2DCNN,while the network
composed of the encoder and downstream head is referred
to as the CRNN model. In other words, 2DCNN and CRNN
are networks for pretext and downstream tasks, respectively.
For comparative analysis, we also consider several baseline
models including VGG [39] and AlexNet [40].

The amount of data samples for each data class (i.e., person
ID) is almost comparable in both training and testing sets,
except for person ID 18 (Figure 6). In other words, the
experimental dataset is relatively balanced. Thus, accuracy
is employed as the main metric for performance evaluation.
The computation of identification accuracy is expressed by
equation (3), where TP, TN, FP, and FN denote true positive,
true negative, false positive, and false negative, respectively.
Results on other metrics including F1 score, precision, and
recall are also provided.

Acc(in%) =
#Correctly Identified Samples

#Testing Samples
× 100%

=
TP+ TN

TP+ TN + FP+ FN
× 100% (3)

The TensorFlow framework is utilized to execute the pro-
posed architectures and reproduce baseline models. All mod-
els are trained on an NVIDIA RTX-2080 GPU employing
the Adam optimizer [41], with a starting learning rate of
0.0001, and batch size of 128. We additionally utilize batch
normalization [42] for all layers to speed up the training
process, and dropout regularization [43] is applied to alleviate
overfitting.

B. RESULTS OF SSL-BASED BREATHPID
Table 2 provides the results of the augmentation level identi-
fication (ALI) pretext task across four types of data augmen-
tation as well as performance on the augmentation method
identification (AMI) task. All results are reported using the
mobile-sensed BBS dataset (M-BBS-DS) where 80% and
20% of the original training set were utilized for training and
validating networks, respectively. For the ALI tasks, except
for time shifting with the cycling approach, the pretext tasks
with the remaining augmentation methods obtained promis-
ing results, in which 2DCNNyielded accuracies ranging from
89.75% (zero-padding TS) to 95.58% (SM). The ALI task
on cycling TS obtained an accuracy of 53.99% which is only
slightly above the chance-level accuracy and 35.58% smaller
than the result of the ALI task on zero-padding TS. This poor
performance indicates that it is challenging to recognize the
difference between the original data sample and augmented
signals received by left-cycling TS and right-cycling TS.
On the other hand, zero-padding TS results in a clearer indica-
tion of the shifting directions. Among examined pretext tasks
and augmentation methods, the ALI task on spectrogram
masking achieved the highest accuracy of 95.58%, which is
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FIGURE 7. t-SNE plots of features extracted by the downstream model trained without SSL (left) and by the downstream model
trained with SSL (right) of AMI pretext task.

TABLE 4. Robustness evaluation of mobile-sensed BreathPID.

higher than the results of the other tasks by at least 3.79%.
For the AMI pretext task, we only consider augmentation
methods on which the ALI pretext task produced promising
performances. Thus, the AMI task was evaluated with the
combined use of zero-padding TS, SC, SM, and NA, resulting
in a classification accuracy of 90.42%. This result shows that
the 2DCNN model can learn useful features to distinguish
signals which were transformed with different augmentation
methods.

Table 3 provides the results of the mobile-sensed Breath-
PID downstream task based on various pretext tasks. We con-
ducted experiments on the mobile-sensed BBS dataset
(M-BBS-DS) and reported results on the testing set of this
dataset. In this table and for the rest of this article, Zero-
padding TS is referred to as TS for short. Recall that the
CRNN model for the downstream task and the 2DCNN
model for pretext tasks share the same architecture of the
encoder (i.e., four 2D-Conv blocks). Firstly, we examined
the performance of CRNN without using self-supervised
learning (SSL), which means the entire model was trained
from scratch without a frozen pre-trained encoder. In this
case, CRNN yielded an accuracy of 92.55%. It is worth
mentioning that in the training of CRNN (w/o SSL), all
augmentation methods, TS, SC, SM, and NA were randomly
utilized to increase the number of training data. Next, we eval-
uated the SSL-based BreathPID downstream task across four
ALI and one AMI pretext tasks, in which the classifier of

the CRNN model was trained on the output of the frozen
pre-trained encoder received from the corresponding pre-
text task. CRNN produced accuracies of 95.96%, 96.41%,
97.84%, and 97.48% based on four ALI tasks, respectively,
showing accuracy improvements by 3.41% to 5.29% com-
pared to the result of the typical supervised training. CRNN
based on the AMI task received the highest accuracy of
98.38%. The results of this experiment show the effective-
ness of the SSL training approach based on proposed pretext
tasks for the performance of BreathPID using mobile-sensed
bronchial breath sounds. The features learned by dealing with
pretext tasks are useful for identification purposes. Among
the five pretext tasks, AMI based on the combination of TS,
SC, SM, and NA augmentation methods is the most effec-
tive one. Figure 7 provides t-distributed stochastic neighbor
embedding (t-SNE) plots of features extracted by CRNN
trained with and without self-supervised learning. It is shown
that SSL-based CRNN can build a clear boundary to classify
subjects.

In addition to the proposed CRNN architecture, we also
performed experiments with two baseline models (i.e.,
VGG [39] and AlexNet [40]) which were trained without the
step of self-supervised representation learning. As shown in
Table 3, VGG and AlexNet yielded accuracies of 94.52%
and 89.59%, respectively. It is worth noting that VGG and
AlexNet have more than 18 and 48 million parameters,
respectively, which are much larger than the figure for CRNN
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TABLE 5. Results of mobile-sensed BreathPID with different input sizes.

TABLE 6. Results of stethoscope-sensed BreathPID.

(1.21 million parameters). Although VGG produced higher
accuracy compared to that of CRNN, VGG is less efficient in
terms of network size. Equally important, by applying SSL in
advance CRNN outperformed VGG with significant differ-
ences in accuracies, by 1.44% to 3.86%. In contrast to VGG,
AlexNet had an even larger capacity but underperformed the
CRNN. It appears that AlexNet is an oversized network for
BreathPID based on the current amount of experimental data.
These comparative results further confirm the effectiveness
of the proposed approaches for mobile-based BreathPID.
When compared to the outcomes of related studies [23],
[24], [25], [26], the results demonstrate that the SSL-based
PID using mobile-sensed bronchial breath sounds achieved
identification accuracies that were either on par or superior.

C. ROBUSTNESS EVALUATION
To evaluate the robustness of the examined models, we ana-
lyze their performances on testing sets of different signal-to-
noise (SNR) ratios consisting of+15dB,+10dB,+5dB, 0dB,
−5dB,−10dB, and−15dB. The creation of noisy testing sets
was conducted by artificially adding noises to the original
testing data according to the aforementioned SNRs, in which
indoor and outdoor background sounds collected in offices,
supermarkets, and on the street were utilized as the noise
sources (i.e., noise database). For example, to create the -5dB
testing set, every testing sample in the M-BBS-DS dataset
was mixed with a noise recording randomly selected from the
noise database at −5dB.

Table 4 shows the performances across different noise
levels of the CRNN model without and with self-supervised
representation learning, trained on different pretext tasks.
The results suggest that using SSL with proposed pretext
tasks can significantly improve the model’s resistance to
noise, especially at low SNRs. By contrast, the model trained

without SSL is highly sensitive to noise as its performance
degrades considerably across the increase of noise levels.
The best performance is achieved when training the CRNN
model with SSL and AMI pretext task using SM, SC, NA,
and TS augmentations in combination. From moderate noise
condition of +5dB, the accuracy of CRNN (w/o SSL) starts
reducing significantly to less than 90%, while the figures for
SSL-based models remain above 90% at the SNR of −5dB.
For more challenging conditions of −10dB and −15dB, the
accuracy gaps between models become larger. At the S NR
of −10dB, the accuracy of the AMI-based model is 87.89%
while that of themodel trainedwithout SSL is 14.26% smaller
and those of ALI-based models are smaller by 3.77% to
11.39%. Similarly, at the noisiest condition of −15dB, the
accuracy difference between the AMI-based model and the
model trained without SSL increases to almost 20%. Among
downstream models based on ALI pretext tasks, the model
finetuned with the pre-trained encoder of SM-based ALI task
yields the best performance which is worse than that of the
CRNN (AMI) model but much better than those of models
based on the remaining ALI tasks. Thus, spectrogram mask-
ing (SM) is among the most useful augmentation method for
representation learning in mobile-sensed BreathPID.

D. PERFORMANCES ON DIFFERENT INPUT SIZES
Recall that we choose the input size of 3s for BreathPID
because this size is close to the length of a normal breathing
cycle which includes an inhalation period (i.e., 1s to 1.5s)
and an exhalation period (i.e., 1.5s to 2s). In this experiment,
we analyze the effects of the reduction in input sizes on the
performance of the proposed SSL-based BreathPID, to evalu-
ate the feasibility of achieving acceptable identification accu-
racies with shorter inputs, which may bring about better user
experience in practical applications.
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TABLE 7. Robustness evaluation of stethoscope-sensed BreathPID.

Table 5 summarizes the performances of CRNN trained
with two experimental settings across three cases of input
lengths (i.e., 3s, 2s, and 1s) and various levels of noise.
It is shown that the proposed CRNN model trained on the
frozen pre-trained encoder of the AMI pretext task provides
well-acceptable accuracies when the input size is decreased.
Compared to the result of 3s input, the decreases in accuracy
are 1.43% and 3.95% for clean data of 2s and 1s lengths,
respectively. Among the three input sizes, results on 1s data
are the lowest and experience more considerable decreases
across noisier conditions, especially at 0dB, −5dB, −10dB,
and −15dB. When the noises have the same power as the
breath sounds (i.e., SNR or 0dB), accuracies obtained on 3s
and 2s data remain above 94%, while the figure for 1s data
is smaller than 90%. The difference in accuracies becomes
greater at higher levels of noise. Although at SNRs of above
−5dB results on 2s data and 3s data are almost comparable,
accuracies for the former are much smaller than those for the
latter at −10dB and −15dB. The results of this experiment
show that 3s and 2s are more favorable input lengths for
mobile-sensed BreathPID. In contrast to the proposed SSL-
based method, CRNN trained without SSL is more sensitive
to reduction of input size, especially at high levels of noise.
Starting from a moderate noise condition, at SNR of +5dB,
accuracies of CRNN (w/o SSL) across all cases of input
lengths are lower than 90%, as shown in Table 5.

E. COMPARING RESULTS ON MOBILE-SENSED DATA AND
STETHOSCOPE-SENSED DATA
This experiment is to compare the results of BreathPID using
bronchial breath sounds sensed by mobile devices and spe-
cialty stethoscopes. Recall that by simultaneous collection we
have prepared two datasets, namely M-BBS-DS and S-BBS-
DS, which are collected using mobile devices and stetho-
scopes, respectively. For the comparative purpose, the general
experimental setting for stethoscope-sensed data (S-BBS-
DS) is the same as that for mobile-sensed data (M-BBS-DS).
However, we only conducted experiments with two model
settings, including SSL-based CRNN with AMI pretext task
and CRNN without SSL. Table 6 compares the results based
on two data collection approaches across different input
sizes, while Table 7 provides a comparison regarding the
robustness.

We can see from the statistics in Table 6 that for the input
size of 3 seconds, the SSL-basedCRNNyields almost compa-
rable results on both data collection approaches, with 97.19%
accuracy on stethoscope-sensed data, which is only 1.19%
lower than the result on mobile-sensed data. However, larger
accuracy differences are observed for shorter inputs (i.e., 2s
and 1s) in which results on stethoscope-sensed data are lower.
For example, with 1s input, SSL-based CRNN produces an
accuracy of 90.03% on stethoscope-sensed data, which is
4.40% smaller than the result on mobile-sensed data. For
models trained without SSL, results for stethoscope-sensed
data across all cases of input lengths are much lower than
those ofmobile-sensed data. Similar to experiments on theM-
BBS-DS dataset, for the S-BBS-DS dataset, the SSL training
approach also yields much better performance compared to
the traditional supervised training approach. As shown in
Table 7, across all noise levels applied to stethoscope-sensed
data, similar trends in superior performances of SSL-based
CRNN are observed. Both training methods achieve supe-
rior results on mobile-sensed data over stethoscope-sensed
data. By comparing the results based on two data collection
approaches, we can observe the potential of mobile-sensed
BreathPID. It yields comparable or superior accuracies while
also providing flexibility for data collection, thereby extend-
ing the applicability of BreathPID.

V. CONCLUSION
This work examines mobile-sensed BreathPID which is
a person identification system based on bronchial breath
sounds intrusively sensed by mobile devices. Based on
the experiment results of this work, it can be concluded
that mobile-sensed BreathPID can be effectively developed
using self-supervised learning (SSL) approaches and audio
data augmentation (DA) techniques. Different pretext tasks
for self-supervised representation learning were investigated
with the use of four DA methods, including noise addi-
tion (NA), time shifting (TS), speech changing (SC), and
spectrogram masking (SM). The proposed SSL-based sys-
tems achieved promising results, surpassing those of typ-
ical supervised models and showing good resistance to
noise effects, in which the proposed CRNN model trained
on frozen pre-trained encoder of AMI (i.e., augmentation
method identification) pretext task yielded the best accuracy
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of 98.38% on the clean testing data. In addition, we found that
the input sizes of 3 seconds or 2 seconds are recommended
for BreathPID, while shorter input lengths (e.g., 1 second)
caused significant degradation in identification performance.
Furthermore, the mobile-sensed BreathPID system achieved
results equivalent or superior to those of stethoscope-sensed
BreathPID, showing that capturing bronchial breath sounds
using mobile devices rather than using specialty stethoscopes
not only still guarantee well-acceptable identification accu-
racy but also provides flexibility for the development of
practical mobile-based PID applications.

This work has demonstrated promising results on
mobile-sensed BreathPID which can be potentially applied
for authentication or health monitoring applications on
mobile devices. However, it is still at the early stage of investi-
gation and several future works can be listed as follows. First,
we have conducted experiments on amoderate custom dataset
of 21 subjects, so one of the directions for future works could
be to expand the dataset and test the proposed system with a
larger and more diverse group of participants to evaluate its
real-world effectiveness. Second, the optimization of network
architectures could be further considered, and the deploy-
ment of the BreathPID system on mobile devices could be
conducted, from which we can evaluate the efficiency of the
proposed methods more comprehensively. Third, since the
main objectives of this study were to show the feasibility
of mobile-sensed BreathPID and the efficiency of the SSL
approach, we only proposed simple SSL-based methods with
small-size models. In future works, more sophisticated SSL
approaches and advanced deep learning techniques could be
considered to explore further improvement in identification
accuracy. Lastly, it is crucial to explore the potential of
integrating BreathPID with other audio-based PID methods,
such as speech-based PID and singing-based PID, to enhance
the overall security and flexibility of identification systems.
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