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ABSTRACT The continuous scaling of the on-chip devices and interconnects increases the complexity of
the design space and becomes a crucial factor in the fabrication of modern integrated circuits. The ever
decreasing of interconnect pitch along with process enhancement into the nanometer regime had shifted the
paradigm from a device-dominated to an interconnect-dominated methodology. In the design methodology,
Model Order Reduction (MOR) reduces the size of large-scale simulation of on-chip interconnect to speed
up the performance of design tools and chip validation. In approximating the original system, the passivity
preserving MOR technique of using spectral zeros as positive real interpolation points preserves the stability
and passivity of the system. In this work, statistical distribution techniques are proposed for the selection
of spectral zeros. The proposed method is based on using the gaussian, uniform, binomial, and weibull
distributions to select spectral zeros to better match moments with the least absolute error between the
original and reduced-order systems. The results show that the reduced-order model developed using the
Gaussian distributed Spectral zeros Projection (GSP) method offers higher accuracy and numerical stability
compared to other distributions.

INDEX TERMS Statistical distribution, model order reduction, passivity preserving, spectral zeros, on-chip
interconnects, computer aided design.

I. INTRODUCTION
Over the last several decades, the complexity and require-
ment of physical layout and verification flow presented great
challenges for the development and fabrication of modern
integrated circuits [1]. The on-chip devices scaling and inter-
connects resulted in an exponential rise in design complexity
with increased simulation time [2], [3]. While creating large-
scale systems, the physical behavior can often be simplified
and represented by a system of mathematical equations [4],
[5], [6], [7].Modeling of the on-chip devices and interconnect
often resulted in a large-scale system of differential equations,
thereby making it essential to replace it with a lower-order
approximation for testing and design verification. The mod-
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ern design tools for the simulation of on-chip interconnect
are numerically expensive and often lack passivity preserving
approximation of on-chip systems [8], [9]. In recent decades,
complex and large-scale Model Order Reduction (MOR) has
been a subject of major interest [10], [11], [12], [13], [14].
These large-scale systems extract sparse matrices and have a
positive real transfer function, which necessitates the use of
MOR approaches that preserve passivity for the approximate
solution of the original system. In addition, the reduction
technique needs to meet the strict requirements for accuracy,
stability, and low complexity.

The two main classifications of the MOR techniques for
on-chip interconnect are projection and non-projection-based
methods [15], [16], [17]. The most prominent include Krylov
subspace and singular value decomposition (SVD) based
projection methods, whereas Hankle-norm approximation
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is the popular non-projection method [18]. In application-
specific solutions, the design often necessitates strict system
theoretic requirements to be fulfilled by the reduced order
model (ROM). The accuracy of the original system and the
number of reduced state variables properly adhering to the
terminal behavior are two necessary factors for the reduced
model [11], [19]. Recently, the preservation of passivity of the
original system inMOR for on-chip interconnect systems is a
topic of great interest and importance for design verification
and validation [20], [21]. It is important to observe here
that on-chip interconnects are inherently passive, however,
the non-passive Reduced Order Model (ROM) can produce
unwanted behavior at operating frequencies, resulting in an
unstable system. Note that passivity implies stability, but vice
versa is not true.

The interconnect systems we consider in this study are
passive and stable, and it is preferred that the theoretical
features of passivity and stability of the original system
must be kept in the reduced model. Keep in mind that com-
bining a stable but non-passive original system with pas-
sive components frequently results in the system becoming
unstable [22], [23]. There are primarily two categories of
passivity-preserving MOR for on-chip interconnect systems.
The first method uses SVD-based balance reduction, and the
second way uses Krylov subspace methods to develop reduce
order models [24], [25], [26]. As compared to SVD-based
reduction techniques, the Krylov subspace approaches are
effective and demonstrate a better estimate of the ROM [27].
The Passive Reduced-Order Interconnect Macromodeling
Algorithm (PRIMA) and its variant Structure-Preserving
Reduced-Order Interconnect Macromodell (SPRIM) are two
main methods using congruence transformations for generat-
ing a reduced model via Krylov sub-space projection [25],
[28]. In general, the Krylov methods use reachability sub-
spaces for generating vector sequences to subsequently build
projection matrices. Essentially, these are the iteration-based
method, which in some sense approximate the eigenvalues of
the original system to match moments to generate a reduced
system.

In the MOR techniques, different types of algorithms exist
based on Krylov-subspace methods [29], [30], [31]. They are
computationally inexpensive and desirable because of their
iterative nature as opposed to balanced approximations [32],
[33]. Nevertheless, Krylov-based approximation techniques
only take into account one moment of every iteration and can
lead to lower accuracy at a certain point [12]. In addition, con-
trary to the balanced approximation, stability is not always
guaranteed, and there are no error boundaries in the system
approximation. The balanced approximations methods, such
as FABT [34], [35], PMTBR [36], [37] and PRTBR [38] are
SVD-based approaches in passivity-preserving MOR. These
methods demand intensive computations such as n2 and n3

and are not appropriate for reducing large-scale systems [39].
An SVD-based projection method using spectral zero (SZ) is
recently introduced, where in order to generate the simplified
model, the interpolation points are chosen using spectral

zeros [40], [41]. Selecting the spectral zeros for amatch is still
a research problem under consideration. A selection criterion
supported by dominant spectral zeros was initially proposed,
based on the residuals connected with the dominant poles
of the system [42]. However, spectral zero selection using
the dominant pole is computationally intensive. We may
alternately select spectral zero via the frequency selective
reduce norm spectral zero (RNSZ) method [43]. In the RNSZ
method, the frequency intervals are uniformly placed over the
frequency of interest, and the SZs are chosen on the basis of
their dominance in the reduced norm sense. However, in this
work, we argue that many natural phenomena either follow
or can be approximated to follow a statistical distribution.
Note that the distribution is used to select spectral zero to get
a better match of the moments with the least absolute error
between the original and reduced-order system. It is useful to
note that the RNSZ projection via-spectral zeros is frequency
selective projection and only reasonably accurate across a
certain, limited frequency range. The primary contributions
of this paper are

• Formulation of a new MOR projection method, where
spectral zeros are selected via various statistical distribu-
tion techniques. Among these techniques, Gaussian dis-
tributed Spectral zeros Projection (GSP) is finally pre-
ferred, which is numerically efficient and offers higher
accuracy and numerical stability compared to other dis-
tribution methods.

• All statistical distribution techniques are simulated using
several examples of on-chip interconnects. The results
of the GSP method show improved moment matching
with reduced absolute error for the reduce-order model
generated by other distribution methods.

The problem formulation of passivity preserving model
order reduction techniques is discussed in the next section.
The derivation with the pseudocode of the proposed method
for reducing the model using a Gaussian distributed spectral
zero projection is explained in Section III. Simulations and
analysis are discussed in Section IV. Section V finally con-
cludes the paper.

II. PASSIVITY PRESERVING MODEL ORDER REDUCTION
FOR ON-CHIP INTERCONNECTS
Recent advances in integrated circuit manufacturing are
ultimately transforming the computer-aided design (CAD)
industry [44]. MOR reduces the original system and speeds
up the numerical simulation of complex design in a CAD
tool [45]. In the general state-space form of the MOR of
on-chip interconnect the developed set of equations is a
function of independent time and space variables. The state
matrices account for the complex electromagnetic 3D effects,
which are derived using Maxwell’s equations and extracted
by field solvers [46], [47], [48]. Note that the state matri-
ces, sparsely populated with resistors, inductors, and capaci-
tors are analogous to transmission line lumped components,
which accounts for their distributed effects.
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In the design of integrated circuits, understanding the sys-
tem helps in converting these effects into a set of ordinary
differential equations. The set of equations can be rearranged
to construct state space formulation of the linear dynamical
system as [40]

Ccell ẋ = Gcellx(t) + Bcellu(t),

y(t) = Lcellx(t) + Dcellu(t), (1)

where x(t)∈ Rn shows the state variables, u(t)∈ Rm, and y(t)∈
Rp represents the input and output of the system respectively.
Similarly, Ccell, Gcell ∈ Rn×n, (Gcell,Ccell) shows the gener-
alized eigenvalues of the system, Bcell ∈ Rn×m, Lcell ∈ Rp×n,
Dcell ∈ Rp×m are the linearmappingmatrices between inputs,
output and state variables. It is important to observe that the
state-space model shown in Eq.(1) accounts for all on-chip
interconnect capacitance, inductance, and resistance effects.
Resistance (R), inductance (L), and capacitance (C) block
arrays are represented in the state space form as[

C 0
0 L

]
︸ ︷︷ ︸
Ccell

ẋ(t) =

[
R
0

]
︸ ︷︷ ︸
Gcell

x(t) +

[ ]
︸︷︷︸
Bcell

u(t),

y(t) =
[ ]︸︷︷︸

BTcell=Lcell

x(t) +
[ ]︸︷︷︸
Dcell

u(t). (2)

The aim of approximating the original system is to readopt
the system’s dynamics to a lower-order dimensional subspace
i.e. k ≪ n, where n and k are the order of the original
and reduced order system respectively. The model of order
k corresponding to Eq. (1) is given as

Ĉcell ˙̂x = Ĝcell x̂(t) + B̂cellu(t),

ŷ(t) = L̂cell x̂(t) + Dcellu(t), (3)

where x̂ ∈ Rk , Ĉcell ∈ Rk×k , Ĝcell ∈ Rk×k , B̂cell ∈ Rk×m,
L̂cell ∈ Rp×k ,Dcell ∈ Rp×m. It is likewise clear that the system
theoretical properties of the original system i.e. stability and
passivity should be preserved by the ROM. Given that passive
systems don’t produce power, the stability and preservation
of passivity of the ROM is important in MOR. The property
of positive real transfer function can guarantee passivity in
ROM and is used in the proposedmethod [11]. The projection
matricesU andV are often used inMOR to generate the ROM
such thatU , V ∈ Rn×k , and V TU = Ik . Proper selection ofU
and V not only preserves the system’s properties (passivity,
stability) but also ensures that ROM keeps the dynamics of
the system. The matricesU and V operate on original system
state matrices to construct the ROM and can be represented
as:

Ĉcell = V TCcellU , Ĝcell = V TGcellU ,

B̂cell = V TBcell, L̂cell = LcellU . (4)

The invertible and non-invertible Ccell matrices are contained
in the initial system definition of the state representation of
on-chip interconnects. It should be noted that due to some

of the system poles and spectral zeros being at infinity,
a singular Ccell matrix poses a unique set of difficulties.
Therefore, the invertible and non-invertible matrices in MOR
are treated separately [49], [50]. In the state definition, Ccell
is an invertible non-singular matrix as extracted by full-wave
field solvers for on-chip interconnect [46], [47], [48].

Definition of Passivity: The system’s A linear time-
invariant (LTI) system is said to be passive if the following
conditions of transfer function P(s) are true [11]

• P(s) is analytic for Re(s) > 0;
• P(s̄) = P(s) ∀ s ∈ C;
• P(s)+ P(−s)T ≥ 0 for Re(s) > 0.

Hence, we always have for real system P(s̄) = P(s) and
the third property shows the presence of the stable matrix
functionW (s), which satisfies the condition P(s) +PT (−s) =
W (s) W T (−s) and the spectral factorization of P, and W are
the spectral factors of P. The spectral zeros of P are derived
from the zeros ofW , i.e.,3i, for i = 1, · · · , n, : det W (3i) = 0.

III. PASSIVITY PRESERVING MOR USING STATISTICAL
DISTRIBUTION
In this section, we explain the derivation and procedure
of the proposed use of statistical distribution for passivity-
preserving MOR. Note that among the proposed distribu-
tion, the gaussianly distributed spectral zeros projection
method outperforms other distribution methods in accu-
racy and absolute error of the ROM. Our proposed
passivity-preserving MOR method is based on LTI systems
with a frequency-selective positive real interpolation that uses
stable spectral zeros, to construct the projection matrices. The
technique is inspired by natural phenomena, which either
follow or can be approximated to follow a statistical distri-
bution. Note that the distribution is used to select spectral
zero to get a better match of the moments with the least
absolute error between the original and ROM system. The
selection of spectral zeros usingGaussian distribution ensures
passivity preservation and can generate a lower-order model
in comparison to other distribution methods.

The derivation of the passivity-preserving MOR using
various statistical distributions follows the same procedure.
Therefore, without loss of generality, it is convenient to only
give the derivation and subsequent explanation of the pseu-
docode of the Gaussian distributed spectral zeros projection
method, which outperforms others i.e. binomial, weibull, and
uniform distributions. Additionally, in this section, the main
focus is to see how the ROM generated by the gaussianly
distributed selected spectral zeros performs and guarantees
the essential properties of the original system. It is often
required to first review some basic system parameters and
their properties that go into the derivation of the proposed
method. The Laplace transform of a given transfer function∑

for a system Eq.(1) can be written as

P(s) = Lcell(sCcell − Gcell)−1Bcell + Dcell . (5)

It is noted that the system poles can be found from the
generalized eigen-values of the pair (Gcell, Ccell). The matrix
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(Gcell − 3Ccell) is considered non-singular for 3 ∈ C [51],
and is reflected as matrix pencil (Gcell, Ccell). All of the
system’s finite poles must be located inside the left half of
the s-plane in order for the system

∑
to be considered stable,

that is Re(3) < 0 with |3| ̸= ∞. Note that the spectral zeros
of

∑
are all s ∈ C, i.e. det [P(s) +PT (−s)] = 0, whereas

PT (−s) = BTcell(−sC
T
cell − GTcell)

−1LTcell + DTcell . (6)

The SZ has a reflection in the s-plane, as demonstrated by this
definition. Note that the real SZs si exists in pairs (si,−si),
whereas the complex ones exist in quadruples (si, sTi ,−si,
−sTi ). In addition, these definitions demonstrate that the
transfer function is positively real, and as a result, when The
system preserves the ROM’s passivity by creating projection
matrices using spectral zeros. It is important here to formally
define Spectral Zeros (SZs). They are zeros of the follwing
square system (7), which are the eigenvalues of the matrix
[Gcell − BcellD

−1
cellLcell].[

Gcell Bcell
Lcell Dcell

]
(7)

This is essentially the motivation for our proposed GSP
method to preserve frequency-selective passivity. Themethod
divides the frequency limits into regular intervals and selects
the stable spectral zeros, which are guassianly distributed in
the area of interest. Note that the interested area is usually
application specific, and accounts for the range of frequency,
where we want the response of the ROM with reasonable
accuracy. The stable SZs of the system are derived from the
partial fraction expansion P(s) + P(−s)T of P(s). The selected
spectral zeros become the interpolation point to build pro-
jection matrices (U and V ) that equally ensure the passivity
and stability of the system and also generate the application
specific ROM. Firstly, the GSP method finds the H̄ and Ē
matrix form the original state representation Eq.(1), and can
be expressed as

H̄ :=

Gcell Bcell
−GTcell −LTcell

Lcell BTcell Dcell + DTcell

 , (8)

and Ē :=

I I
0

 . (9)

The matrices H̄ and Ē are used to extract the generalized
eigenvalue problem that is the finite eigenvalues. Note that the
finite spectral zeros as a subset of eigenvalues are complex
numbers 3 of the matrix H̄, i.e. Rank (H̄ − 3Ē) < 2n+ p,
which is similar to finding a solution to the finite generalized
eigenvalues3(H̄, Ē). Therefore, the pair gives projection vec-
tors U and V , which are basically generated using statistical
distribution and also maintain the passivity of the ROM.

A. PSEUDOCODE FOR GAUSSIAN DISTRIBUTED SPECTRAL
ZEROS PROJECTION
In the previous section, the passivity-preserving projection
was explained and defined the essential task of building the

matrices U and V . The U and V are compiled by the chosen
SZs, which are part of original system’s n stable SZs. Note
that the proposed technique (GSP) of selecting the spectral
zeros uses the Gaussian distribution associated with the mean
value of the SZs. The selected SZs are used to construct
matrices U and V and determines the accuracy of the ROM.
This section explains the pseudo-code of the GSP method,
with all the essential guides to execute in any language. The
pseudo-code of the GSP is explained in Algorithm 1 . The
inputs for the principal function are the state matrices of
the original system, i.e. Ccell , Gcell , Bcell , Lcell , and Dcell .
In the first step of the algorithm, factorization [Q, R] is per-
formed to calculate the systems eigenvalues and eigenvector.
The SZs of the system are the generalized eigenvalues of the
following formulation

(H̄ − RĒ)Q = 0, (10)

where H̄ and Ē are explained by Eq.(8) and (9). The Q and
R are the eigenvectors and eigenvalues matrices, while the
spectral zeros are the diagonal elements of R. The proposed
GSP method is a frequency-selective projection of a dynamic
system. The SZs of

∑
are the poles of P(s) and the proposed

criteria for selecting the SZs is their statistical dominance.
In the proposed method, Gaussian-distributed spectral

zeros are selected in the minimum and maximum range of
the frequency interval. The spectral zeros are selected using
the Nth interval of frequency and is given by

Np = nmin + 2(nmax − nmin)
∑ (

k : T
T

)
, (11)

where k represents the order of the ROM, T defines the
value of the selected Gaussian distribution frequency point,
and nmax and nmin show the minimum and maximum of the
selected frequency range. Note that in the classical sense,
normal distribution does not have limits. However, we can
limit it by using the central limit theorem and can write
generated frequency points as in (13). In using (13), the entire
frequency range of interest is divided into gaussianly dis-
tributed interpolation points. Note that in normal distribution
equally selected points exist above and below the means of
a data set. In addition, more interpolation points exist near
the mean with more than 95% falling within two standard
deviations. Essentially, the selected spectral zeros out of all
are based on the following criteria

SZGSP = Np − |img(SZ )|. (12)

The corresponding eigenvectors based on the stable spectral
zeros in developing the reduced-order model i.e. [Q̄xk , S̄,
Q̄yk ] = svd(XTY). The system’s projection vectors U and V
are then created using the eigenvectors of the chosen spectral
zeros as

U = XQ̄xk S̄−1, V = Y Q̄yk S̄−1. (13)

It is interesting to note that these projection matrices satisfy
the orthogonality requirement in addition to dynamically
generating ROM. This is a generalization of our suggested
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GSP method’s projection approximation. To illustrate further
the implementation details of the GSP method, consider the
following example of order n = 5 with a simple rational
function P(s).
Example 1: In this example, we take a linear time dynam-

ical system of order n = 5, with its transfer function P(s)
expressed as

P(s) =
5s4 + 40s3 + 26s2 + 8s+ 1

(s+ 1)5
. (14)

The system in state form is expressed as [11],

Gcell =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

−1 −5 −10 −10 −5

 ,Bcell =


0
0
0
0
1

 ,

Lcell =
[
1 8 26 40 5

]
,Ccell =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

Dcell = 0.

The zeros of the P(s) + P(−s) are the SZs of the original
system. The calculated spectral zeros are given as
SZ = 10+8 [0.3445+ 0.0000i, 0.2364+ 0.3696i, 0.2364−

0.3696i, -0.0000 + 3.8932i, -0.0000 − 3.8932i, -0.2364 +

0.3696i, -0.2364 − 0.3696i, -0.3445 + 0.0000i].
Using GSP method of selecting spectral zeros as explained
in Algorithm 1, the selected SZs within the range nmin =

1x108 and nmax=4x1010 are
SZ = 10+8 [-0.0000 + 3.8932i, -0.0000 − 3.8932i, -
0.2364 + 0.3696i].
It is worth noting that the corresponding eigenvectors based
on the selected SZs construct the projection matrices U and
V using Eq.(13). Essentially, our problem now is to use these
projection matrices U ,V to generate the ROM of the system
using Eq.(4). The reduced ROM of order n = 3 is given as

Ĝcell =

 0 −0.0000 0.0000
0.0000 1.0122 −0.4472

−0.0000 −0.1529 0.5472

 ,

B̂cell =

−2.4152
0.0000

−0.0000

 ,

L̂cell =
[
2.4152 0.0000 0

]
,

Ĉcell =

 1.0000 −0.0000 0.0000
0.0000 1.0000 0.0000

−0.0000 0.0000 1.0000

 , D̂cell = 0.

It is important to observe here that GSP methods can be
used for the approximation of systems in other engineering
applications. In the Appendix at the end, we briefly discuss
the interconversion of state-space and rational function rep-
resentation of frequency-domain systems. Note that the GSP
technique is more appropriate for fitting functions, where the

FIGURE 1. The response of a small conductor with order n=79.

FIGURE 2. The response of a small conductor with original system order
of n=79. The reduced models using GSP, BSP, WSP, and USP are of order
k = 40. The result of the GSP method shows a close match with the
original system in comparison to other distributions.

FIGURE 3. The absolute error of the reduced orders compared to the
original system for the small conductor example using various statistical
methods for the selection of spectral zeros. The calculated mean absolute
error is -35.13 dB, −213.06 dB, −165.19 dB, and −35.13 dB for WSP, GSP,
BSP, and USP methods respectively.

interpolation points are chosen as bases of approximation.
The system, with representation in either state-space or ratio-
nal function, can take benefit of the proposed method.

IV. SIMULATION AND RESULTS
In this section, the accuracy, and performance of the pro-
posed GSP (Gaussianly distributed Spectral zeros Projec-
tion) method are compared with other statistical distribution
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Algorithm 1 Pseudocode of Gaussianly Distributed Spectral Zeros
INPUT = (Ccell , Gcell , Bcell , Lcell , Dcell , k , nmin, nmax)
OUTPUT = (Ĉcell , Ĝcell , B̂cell , L̂cell , D̂cell)
Function [Ĉcell , Ĝcell , B̂cell , L̂cell , D̂cell ] = GSP (Ccell , Gcell , Bcell , Lcell , Dcell , nmin, nmax , k)
Construct H̄ and Ē from ( Ccell ,Gcell , Bcell , Lcell , Dcell )
Perform QR decomposition of R : [Q, R] = qr (H̄, Ē)
Spectral Zeros of the system SZ = diag (R)
Define nmin, nmax : Range of min and max frequency
k: Reduced Order of the system
T : Gaussian distribution frequency point

Divide limits of frequency into Nth interval of frequency: Np = nmin + 2(nmax − nmin)
∑ (

k:T
T

)
,

Select Spectral Zeros
for p = 1: k
SZGSP = NP-|img(SZ )|

end
Generate S̄ and Q̄ using selected spectral zeros and their corresponding eigenvectors,

[Q̄xk , S̄, Q̄yk ] = svd(XTY )
Construct Projection Matrices U and V

U = XQ̄xk S̄−1, V = Y Q̄yk S̄−1

Generate Reduce order Model
Ĉcell = V TCcellU ; Ĝcell = V TGcellU ; B̂cell = V TBcell ; L̂cell = LcellU ; D̂cell = Dcell

techniques. The numerical simulation analysis is carried out
using Matlab and three design examples of on-chip intercon-
nect structures are selected to include a small conductor, spi-
ral inductor, and RLC network. These interconnect examples
are built using field solvers FastCap [46] and FastHenry [47],
which are capacitance and inductance extraction tools respec-
tively. These fast field solvers use the modified nodal analysis
to construct representation as shown in Eq.(1). The order of
the generated examples of small conductor, spiral inductor,
and RLC network are 79, 191, and 1202 respectively.

The first example is of a small conductor with an original
order of 79. Note that the state matrices defined in Eq.1,
are populated with extracted passive components using field
solvers as shown in Eq.2. In this example, the ROM is gener-
ated using spectral zeros selected by applying gaussian, bino-
mial, weibull, and uniform distributions. In the comparison,
we define the result of the selection of spectral zero using
various statistical distributions as follows

• GSP: Gaussianly distributed Spectral zeros Projection.
• BSP: Binomialy distributed Spectral zeros Projection.
• WSP: Weibully distributed Spectral zeros Projection.
• USP: Uniformly distributed Spectral zeros Projection.

It is important to define here some of the error indexes used
in simulation and analysis.

• Absolute Error: It is the absolute difference between the
value of the reduced and original model computed at
various wavelengths.

• Mean Absolute Error: It is the mean of the absolute error
computed at various wavelengths.

FIGURE 4. The system response generated by the spiral inductor with
order n = 191.

• Absolute Maximum and Minimum Error: It is the max-
imum and minimum of the absolute error computed at
various wavelengths.

The original system frequency response of the small con-
ductor of order n = 79 is shown in FIGURE 1. The compari-
son of the projected reduced model of order k = 40 using the
proposed GSP method with other statistical distributions is
given in FIGURE 2, which is showing a better response com-
pared to other distributions. The absolute error comparison
of all distributions is given in FIGURE 3, which also shows
a good match of the GSP method with the original system.

The better performance of the GSP method is further
highlighted by its detailed comparison with other statistical
distributions given in TABLE 1. The results in the table
show that the GSP method has a Minimum Mean error of
−213.06dB. In addition, it also shows reducedMinimum and
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FIGURE 5. The response of a spiral inductor with the original system of
order n = 191. The reduced models using GSP, BSP, WSP, and USP methods
are of order k = 40. The ROM generated by the GSP method shows a
close match with the original system in comparison to other distributions.

TABLE 1. Error Comparison of Small Conductor Example.

TABLE 2. Error Comparison of Spiral Inductor Example.

Maximum errors of −337.15dB and −20.17dB compared to
other statistical distribution results. The comparison in this
example of a small conductor shows that the proposed GSP
method gives accurate moment matching compared to other
statistical distributions.

The next example is a spiral inductor of order n = 191. The
original system frequency response of the spiral inductor is
plotted in FIGURE 4. The comparison of the ROM using the
proposed GSP method with different statistical distributions
is plotted in FIGURE 5. The absolute error comparison of the
reduced model (order p = 40) for all distributions is plotted
in FIGURE 6. The result shows a close match of the ROM
using the GSPwith the original system response and is further
highlighted in TABLE 2. The GSPmethod shows aMinimum
Mean error of −99.12dB as well as reduced Minimum and
Maximum errors of −306.51 dB and 26.88 dB respectively.
The results in TABLE 2 also show the lowest Mean, Min-
imum and Maximum error of −99.12dB, −306.51dB, and
26.88dB respectively by ROM generated by the proposed
GSP method.

The last higher-order interconnect example is an RLC net-
work of order 1202. The original system frequency response
is plotted in FIGURE 7. Note that large variations are seen
at the higher frequency response (frequency > 1Ghz) of the
original system, which is natural to the extracted response
of any on-chip interconnect model. The comparison of ROM
by all distributions is shown in FIGURE 8. The ROM using

FIGURE 6. The absolute error of the reduced orders compared to the
original system for the spiral inductor example using various statistical
methods for the selection of spectral zeros. The calculated Mean absolute
error is -33.93 dB, -99.12 dB, -67.17 dB, and -33.93 dB for WSP, GSP, BSP,
and USP methods respectively.

FIGURE 7. The response of an on-chip RLC network system with order n =
1202.

FIGURE 8. The response of an on-chip RLC network with the original
order of n = 1202. The order of the reduced models using GSP, BSP, WSP,
and USP is k = 40. The ROM generated by the GSP method shows a close
match in comparison to other distributions.

selected SZs generated by the proposed GSP method accu-
rately captures the behavior rather than binomial, weibull,
and uniform distributions. The RLC absolute error is plotted
in FIGURE 9. The error comparison is shown in TABLE 3,
which further emphasizes the efficiency and accuracy of our
suggested GSP method by displaying a minimum mean error
of −117.05 dB compared to other distribution methods.
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FIGURE 9. The absolute error of the reduced orders compared to the
original system for the RLC network example using various statistical
methods for the selection of spectral zeros. The calculated Mean absolute
error is -8.27 dB, -117.05 dB, -73.86 dB, and -8.27 dB for WSP, GSP, BSP,
and USP methods respectively.

FIGURE 10. The response of a small conductor with original system order
of n = 79. The ROM using GSP and PRIMA methods are of order k = 40.

TABLE 3. Error Comparison of RLC Network.

In order to compare the results with previous techniques,
a comparison of the projected ROM using the GSP method
of order k = 40 and PRIMA [25] for the small conductor
example is plotted in FIGURE 10. Note that the original
order of the example is n = 79 and the result for reduced
order shows a better response for both the PRIMA and GSP
methods. However, a close look at the absolute error response
in FIGURE 11 shows a better response from the GSP method
in comparison to PRIMA.

In model order reduction, computational complexity plays
an important role. Without loss of generality, we only com-
pare the time taken in reducing (using the GSP algorithm) and
simulating the ROM with the simulation time of the original
system. The comparison for the three examples is given in
Table 4. The comparison shows a significant improvement
in saving computational time by applying the GSP algorithm
and reducing the original model.

FIGURE 11. The absolute error of the reduced orders compared to the
original system for the RLC network example using various statistical
methods for the selection of spectral zeros. The calculated Mean absolute
error is -8.27 dB, -117.05 dB, -73.86 dB, and -8.27 dB for WSP, GSP, BSP,
and USP methods respectively.

TABLE 4. Comparison of Simulation Time.

V. CONCLUSION
MOR of an on-chip interconnect is an essential tool in deter-
mining the performance of very high-speed VLSI design sys-
tems. In this work, we developed a new gaussianly distributed
spectral zero projection method of MOR. The results show
that our method is both efficient and accurate and produces
stable ROM. In addition, the ROM preserves the passivity
and stability and can be used successfully to approximate
large-scale interconnect systems to mitigate the design com-
plexity challenges for the development and fabrication of
modern integrated circuits.

APPENDIX. RATIONAL FUNCTION AND STATE-SPACE
SYSTEM REPRESENTATION
In science and engineering, quite often the original system is
given either in state space or a rational function representa-
tion. Consider the following system representation

Ccell ẋ = Gcellx(t) + Bcellu(t),

y(t) = Lcellx(t) + Dcellu(t). (15)

Applying Laplace Transform

sCcellX (s) = GcellX (s) + BcellU (s),

Y (s) = LcellX (s) + DcellU (s). (16)

Let us solve the rational functionP(s) =
Y (s)

U (s)
, and first derive

the value of X(s) from the input equation.

X (s) = (sCcell − Gcell)−1BcellU (s).
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Using X (s), Y (s) can be expressed as

Y (s) = Lcell(sCcell − Gcell)−1BcellU (s) + DcellU (s),

=

(
Lcell(sCcell − Gcell)−1Bcell + Dcell

)
U (s).

Now, we can solve this for the rational function P(s) and can
write

P(s) =
Y (s)
U (s)

= Lcell(sCcell − Gcell)−1Bcell + Dcell . (17)

Similarly, a rational function 17 can also be converted into
state space form 15. Assuming zero initial conditions, the pro-
cess entails converting the rational function to a differential
equation and performing an inverse Laplace transform. The
differential equation is then expressed in state space form.
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