
Received 22 April 2023, accepted 20 May 2023, date of publication 24 May 2023, date of current version 1 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3279355

Review on Partial Discharge Diagnostic
Techniques for High Voltage Equipment
in Power Systems
GHULAM AMJAD HUSSAIN 1, (Senior Member, IEEE), WAQAR HASSAN 2,
FARHAN MAHMOOD 3, MUHAMMAD SHAFIQ4, HABIBUR REHMAN 5, (Member, IEEE),
AND JOHN A. KAY 6, (Fellow, IEEE)
1College of Engineering and Applied Science (CEAS), American University of Kuwait, Safat 13034, Kuwait
2Department of Electrical Engineering and Applied Technology, Institute of Southern Punjab, Multan 60700, Pakistan
3Department of Electrical Engineering, University of Engineering and Technology at Lahore, Lahore 54890, Pakistan
4Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32306, USA
5College of Engineering, American University of Sharjah, Sharjah, United Arab Emirates
6Kitchener, ON N2G 1W2, Canada

Corresponding author: Waqar Hassan (waqarhassan@isp.edu.pk)

This work was supported by the Kuwait Foundation for the Advancement of Sciences (KFAS) under Project PR18-18EO-01.

ABSTRACT In modern power systems, condition based monitoring and diagnosis is essential to ensure the
effective and reliable operation of different high voltage equipment (HVE). Compared to other monitoring
techniques, partial discharges (PD) measurement is considered as a key method for assessing the insulation
health condition. The benefits of PD condition monitoring of HVE can be extended by proper detection,
identification, and interpretation of PD signal. Among both online and offline PD monitoring techniques,
online PD monitoring is a very promising technique that assists in robust monitoring system which reduces
the power failure incidents in power system components. Therefore, to understand recent developments and
trends in theory and in practice, it is necessary to establish a holistic analysis of current online PDmonitoring
techniques for HVE in power systems. This paper presents an intensive literature review of current online PD
monitoring techniques used for different high voltage electric components in power system. Finally, a smart
PD monitoring techniques based on wireless sensor board is proposed. The proposed smart PD monitoring
framework may be used to correctly estimate the insulation degradation in HVE and enhance the overall
performance of power systems.

INDEX TERMS Detection methods, feature extraction, high voltage equipment (HVE), online partial
discharges (PD) measurement, PD monitoring, PD classification.

I. INTRODUCTION
In electric power systems, insulation degradation is the major
cause of the failure of various electric components. Dur-
ing normal operation of any electric equipment, the electric
field stresses are uniformly distributed across the healthy
insulation between the electrodes. However, when the insu-
lation contains some defects (impurities, voids, air bubble,
or electric trees), the non-uniform distribution of electric
field stresses are produced across the insulation between the
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electrodes. This is because of different dielectric insulation
characteristics of healthy and defective insulation. Depending
on the type and size of defect, partial discharges (PD) occur
at a specific level of applied voltage. During PD activity,
the electric field strength is sufficiently high that provides
the force to the charges to penetrate through the insulation
material.

Generally, each insulation system of electric equipment
shows characteristic defects that depend on multiple factors
including insulation dielectric properties, thickness, load pro-
file, etc. For instance, thermal loading on the solid insulation
material containing of oil impregnated paper dominates the
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aging of a transformer. In generators and electric motors,
the aging is influenced by the multiple electrical, thermal,
and mechanical load processes. Similarly, the lifetime of
switchgear is affected by the degradation of bushing, cable
termination, current transformers (CTs), and potential trans-
formers (PTs). In summary, the lifetime expectancy and the
degradation of any electrical insulation system depends on
the TEAM stresses [1], [2].

This paper aims to present all the important PD measure-
ment, diagnostics, and monitoring techniques and compre-
hensively gather them with the list of research papers added
for quick reference. Several topics of the modern research
associated with PD including PD measurement techniques,
PD signal visualization and de-noising techniques, features
extraction and PD pattern classification are discussed. Fur-
thermore, the comparison of PD measurement techniques,
their advantages, limitations, performance, and applications
are presented. The future research trend and challenges are
also discussed. The comprehensive recent bibliography on
the PD is helpful for asset engineers, academicians, and
researchers working in the field.

The remainder of the paper is organized as: Section II
presents the PD phenomenon. The PD monitoring system
is detailed in Section III. Section IV presents the PD signal
detection and measurement techniques, their comparison and
applications. Section V presents the PD signal visualization
and de-noising techniques. Section VI presents several fea-
ture extraction methods and PD pattern classification meth-
ods. Section VII presents the proposed smart PD monitoring
system. In Section VIII, conclusions are drawn.

II. PARTIAL DISCHARGE PHENOMENON
According to International Electro-technical Commission
(IEC) 60270 technical standard, High-Voltage Test Tech-
niques – Partial Discharge Measurements, the PD is defined
as ‘‘a localized electrical discharge that only partially
bridges the insulation between conductors and which may
or may not occur adjacent to a conductor’’ [3], [4]. Mostly,
PD appears as current or voltage pulses having a very small
duration. These pulses are highly dependent on the applied
voltage (Ua), the nature of dielectric material and environ-
mental conditions. The main causes of PD are [5]:

• Surface contamination and irregularities in the solid
insulation.

• Voids produced in the solid insulation material at the
time of manufacturing.

• Cracks produced in the solid insulation due to mechani-
cal breakdown.

To comprehend the PD phenomenon, it is necessary to under-
stand the electrical mechanism of PD activity and mathemat-
ical formulation behind the various types of PD. PD can be
mainly classified into three categories including surface dis-
charges, internal (cavity and treeing) discharges and corona
discharges. The key concepts behind PD phenomenon are
presented in [6] and [7]. The PD characteristics can be
assessed using several parameters related to the PD signal,

which provide information about the PD severity and the
condition of insulation in HVE. They include PD inception
voltage (Ui), Accumulated apparent charge (qa), cumulative
Energy (CE) function, average discharge current (I ), dis-
charge power (P), and quadratic rate (D) [3].

III. PD MONITORING SYSTEM
PD activity can be monitored using different measurable
phenomena including heat, vibration, light, decomposition
of gas, and the emission of electromagnetic radiation. These
phenomena can be detected using a variety of detectors
including electrical [8], [9], [10], [11], [12], [13], [14], [15],
[16], electromagnetic [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], optical [27], [28], acoustic [11], [12], [16],
[19], [21], [29], [30], [31], thermal and chemical sensors
[10]. The main steps used in the analysis of PD signals
are the detection of PD signals, feature extraction, and the
representation of PD signals, as presented in Fig. 1 [32].

Each type of PD defect has a separate pattern and behavior
represented by some specific features [33]. These features are
extracted by pre-processing the raw PD data obtained from
the sensors [34]. The significant features convert the raw PD
signals into a set of discriminatory identifiable features. For
the fault detection and localization in HVE, the quantification
of statistical features [35], time resolved PD (TRPD) features
[36], and phase resolved PD (PRPD) features [37] have been
made by processing the PD signal obtained from multiple
PD defects. To process the features of PD signals, sev-
eral mathematical tools including Distance classifier (k-NN),
Neural Network (NN), Support Vector Machine (SVM),
Pulse Sequence Analysis (PSA), fuzzy logic, and decision
function classifiers are used to separate the PD defects
in HV equipment either using clustering or classification
[38], [39], [40].

IV. PD MEASUREMENT TECHNIQUES
PD measurement and diagnosis play a vital role in assessing
the lifetime of the insulation system, in addition to the routine
and type testing [42], [68], [69]. When PD event occur in
the insulation system, the detectable quantities including high
frequency voltage and current pulses, decomposed gases,
violet glow, hissing noise and electromagnetic waves are
produced [70]. Based on the parameters detected by the PD
sensor, the PD detection methods are divided into different
classes. The application of each PD detection method is
based on the detection range and physical quantity. Table 1
presents the various PD measurement techniques used in
electric power system.

The different physical quantities including PD pattern and
linearity are measured through both conventional and non-
conventional methods [71], [72], [73]. The conventional PD
detection technique is based on electric detection methods
that measure the current, resistance, and frequency response
of the captured signal. The electric detection techniques
include Coupling Capacitor Method [8], [16], [42], [43],
Pulse Capacitive Coupler Method [9], [12], [13], [14], [15],
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FIGURE 1. PD monitoring system based on the three components.

[44], [45], and High Frequency Current Transducer (HFCT)
Method [18]. Due to the presence of noise during online PD
measurement, the conventional PD detection technique may
have low sensitivity than laboratory measurements.

The non-conventional PDmeasurement is much more suit-
able for on-site and online PD measurement in which the
external interferences largely influence the measured signal.
The detection range of PD signal is increased using modern
non-conventional electrical coupling techniques that involve
foil electrodes and current transducer methods [74], [75]. The
most common system for continuous PD monitoring with
minimum physical contact is based on various types of UHF
sensors for the quantification of electromagnetic interference
produced due to PD activity [75]. Wireless PD sensors based
on radio frequency (RF) detection and analysis techniques
provide a cost-efficient alternative to hardwired sensors for
HV equipment [76], [77], [78]. The radio receivers are used to
detect and measure the electromagnetic signal emitted from
a 1-1000 ns current pulse during a PD event, eliminating the
need to install any additional hardware [79]. The electromag-
netic PD signal is similar to a classical decaying oscillation
[80], in a range of bandwidth from 50- 1000 MHz, depend-
ing on the type and structure of the fault [81]. However,
this bandwidth is usually limited to 50-800 MHz due to the
high-frequency attenuating metallic structures in the environ-
ment [82]. They are capable of providing real-time monitor-
ing of PD activity and can be used for predictive maintenance.
However, the application of wireless PD sensors in condition
monitoring for power system assets is still limited due to
several issues i.e., interference and noise, limited range, and
vulnerable to cyber-attacks.

Based on the noise and vibration, the PD detection in the
sealed components without any opening for the sensor is
made using acoustic sensors [39], [57], [83]. The occurrence
of PD in the gases cause the excitation process and a violet
glow is produced due to the ionization which can be detected
by the optical sensor [60], [61]. PD activities in oil or gas
insulated object can react chemically, emitting a by-product
of the chemical reaction [8], [66], [67]. The development
of chemical and optical methods for PD detection is still in
progress [39].

A. HYBRID PD MEASUREMENT TECHNIQUE
Generally, the electrical detection techniques are preferred
for PDmeasurement under offline condition or the laboratory
environment whereas electromagnetic and acoustic detection
methods can be applied under both offline and online con-
ditions. The efforts have been made to combine the two
techniques in order to overcome drawbacks of each method.
In particular, a combined solution is effectively applicative
on transformer and GIS. This kind of integrated approach can
detect PD occurrence with accuracy and scalable quantity in a
low noise environment. Fig. 2 presents the PD measurements
in power transformer using UHF (UHF 1–UHF 3) and acous-
tic (A1– A6) sensors.

Fig. 3 presents the online PD measurement using both
HFCT and UHF sensors in GIS with five types of insula-
tion defects including corona in GIS (A), internal defects
(B and C) in GIS, corona in cable (D), rupture in cable
terminal (E) and termination defect [18].

B. CONVENTIONAL VS NON-CONVENTIONAL PD
MEASUREMENT TECHNIQUES
The overall comparison of conventional and non-conventional
PD measurement techniques have been investigated in [84].
According to IEC 60270 and non- conventional methods,
PD measurement systems are measuring different quantities
including apparent charge, electromagnetic waves, acoustic
signal, light signal, etc., even when they come from the same
source. The comparison of both methods is given in Table 2
[71], [72], [73], [85], [86], [87].

C. ONLINE VS OFFLINE PD MEASUREMENT SYSTEM
Both offline and online PD diagnostics tests used for eval-
uating the internal condition of HVE have their own merits
and demerits, so they are complementary [88], [89], [90]. The
main characteristics of both offline [88], [91] and online [4],
[92], [93] PD measurements are presented in Table 3.

V. PD SIGNAL VISUALIZATION AND DE-NOISING
A. PD MONITORING VISUALIZATION
To analyze the PD signal, an appropriate display pattern
visualization of PD signal is very important. The trend of PD
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TABLE 1. Different conventional and non-conventional PD measurement techniques.

analysis is based on computer aided solutions [33]. The PD
pattern can be visualization using several techniques includ-
ing phase resolved PD (PRPD), Time resolved PD (TRPD),
and 3-phase amplitude relation diagram (3 PARD).

PRPD was proposed in the late 1970s. This method is
the most popular among almost all commercial PD measure-
ment system and has proven to be one of the most powerful

tools to interpret PD signal [33], [94]. As the name implies,
PD signal is presented with respect to the test voltage as
its phase resolved spot, as shown in Fig. 4(a). The most
relevant information shown in PRPD is the measured PD
signal with pulse magnitude, the phase angle at which PD
occur, and the number density [95], [96], [97]. Because PRPD
simply shows the most relevant quantities of PD, PRPD

VOLUME 11, 2023 51385



G. A. Hussain et al.: Review on PD Diagnostic Techniques for HVE in Power Systems

TABLE 2. Characteristics of conventional and non-conventional PD measurements.

TABLE 3. Comparison of offline and online PD measurement techniques.

FIGURE 2. Detection of PD defects in transformer using both UHF and
acoustic sensors.

analysis of each measurement has played an important role
to identify possible fault types on specific measured test
objects [85], [98].

Similarly, PD display based on measuring time is known as
time resolved PD data, as shown in Fig. 4(b). Since this visu-
alization focuses on more on the timing of PD occurrence,
time resolved data can provide information about PD local-
ization with several sensors placed at different spots rather
than PD magnitude. Other applications of time resolved data
is a Q-T diagram which uses the time between two con-
secutive discharges shown in [100]. Time versus frequency
analysis (TF map) conducted in [101] is the analysis methods
on time based PD measurement clustered by a fuzzy logic
classifier which has been realized by Techimp.

3-PARD, or a star diagram, is cross talk between more
than one phase on each measurement [87], [102]. So called
multi-terminal measurement, measuring three phases with
three couplers, can acquire synchronous PD data for all three
phases of the test object such as three phase transformer or
GIS. Thismethodmakes it possible to compare themagnitude
of PD occurrence on each phase, help to locate the PD source
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FIGURE 3. Detection of PD defects in GIS insulation using both HFCT and UHF sensors.

FIGURE 4. (a) Phase resolved PD pattern, (b) Time resolved PD pattern
(waveform).

FIGURE 5. PARD comparing PD magnitude on each phase [99].

occurring in perhaps one of the three phases, and eliminate the
external noise. The 3-PARD is a plot with a 120◦ phase shift
of the three phase axis, as shown in Fig. 5. This method has
been developed by the Technical University of Berlin [99].

B. DE-NOISING OF PD SIGNAL
The important issue during PD measurement is the presence
of noise. Especially, during online PD measurements, high
level noise signals remain present that can cover a true PD sig-
nal [103], [104]. Therefore, it is difficult to assess the features
of true PD from detected signal for PD identification and clas-
sification of different types of defects. The de-noising process
can be achieved by understanding the noise characteristics
and eliminating them from the true PD signal [105], [106].
Typical noise during PDmeasurement can be categorized into
sinusoidal noise, pulse type (repetitive or random) noise, and
white noise. The noise signals can be successfully captured

and reduced by several de-noising techniques, as presented
in Table 4.

VI. PD FEATURES EXTRACTION AND PATTERN
CLASSIFICATION
PD feature extraction is the process of detecting true PD data
to obtain the PD characteristics and possibly classified as dif-
ferent defects by a classification process. In other words, the
purpose of feature extraction is to decrease the dimensionality
of true PD pattern with calculation of certain properties of
the pattern [53]. Several effective tools are used to extract the
significant features from PD data. The statistical parameters
and cumulative energy function are used to investigate the
time and frequency domain characteristics of PD signal [34],
[38]. Also, the features of PD signal are extracted using
different image processing [107], [108] and signal processing
[56] techniques. In addition, Fractal features, cross wavelet
spectrum, wavelet coefficient, two pass split window (TPSW)
scheme [38], [109], and PD pulse shape analysis [110] are
used to extract the significant features of PD signal.

Features extraction through statistical parameters is suit-
able for quick and efficient identification of large PD datasets.
However, the results may be affected by noise and other
factors [111]. Image processing and signal processing tech-
niques extract the features of PD signals with high accuracy
and precision. However, these techniques require high quality
PD signals and a large amount of computational power, which
can be expensive and time consuming [38]. S-transform pro-
vides a more accurate representation of the signal in both
time and frequency domains. The accuracy of the signal
representation is dependent on the choice of parameters used
in the S-transform, which can be difficult to determine [112].
Fractal features can accurately model the complex shapes and
natural phenomena that cannot be adequately represented by
existing mathematical methods. Fractal features are invariant
to signal scaling, shifting, and rotation, which makes them
well-suited for PD signal analysis. However, fractal features
are sensitive to the selection of parameters, making them
difficult to tune and optimize for a specific application [39].
The cross wavelet spectrum can be used to locate regions in
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TABLE 4. PD signal de-noising techniques.

the frequency-time domain where two signals share a high
amount of power. The wavelet coefficient is able to cap-
ture the nonlinear correlations between different frequency
components [38]. However, it can be difficult to interpret
the results due to the complexity of the wavelet transforms
[113]. The TPSW technique proved to be effective in features
extraction and pre-processing method in various applications
like sonar signal processing and speech recognition. The
TPSW scheme is relatively easy to implement and does not
require complex signal processing algorithms [114].

The pattern classification of PD data is used for identi-
fication and separation of PD defects in the insulation sys-
tem [115]. For this purpose, different methods have been
introduced including artificial NN, fuzzy logic, genetic algo-
rism, and SVM [116], [117]. Mostly, these methods require
prior knowledge with respect to feature vectors of PD
measurement.

Counter propagation networks (CPN) is used to calculate
an approximation of a function based on a set of desired input-
output pairs and their inverse relationship. A probabilistic
NN (PNN) utilizes a probability density function (PDF) and
competitive learning based on the winner-takes-all principle,
with its foundation being the multivariate probability distri-
bution. The extension NN (EXNN) is a novel NN that com-
bines NN and extension theory to provide a unique distance
measurement for pattern recognition and leverage parallel
computing and learning capabilities [118]. The ANNs are
also prone to overfitting. Fuzzy logic provides a nonexclusive
method of classification which enables each pattern to be
assigned multiple classes, each with an associated degree
of membership. This is highly advantageous for cable fault
monitoring, as it allows formore flexible decisions to bemade

depending on the particular arrangement of the fuzzy classi-
fication result [38]. SVM is a supervised learning machine
that is capable of dealing with complex pattern classification
problems. SVM uses a linear classification to map data into a
higher dimensional space, and is particularly useful for small
sample sizes, high dimensional data, and nonlinear pattern
recognition tasks [119].

Table 5 presents the several PD signal detection, PD fea-
tures extraction, and PD classification techniques to classify
the PD defects in the insulation.

VII. PROPOSED SMART PD MONITORING SYSTEM
For reliable operation of advance power systems, the assess-
ment of insulation health condition is important to evaluate
the lifetime and the probability of failure in HVE. By adding
the value of smart grid concept, an approach to use a smart PD
sensing and monitoring system is essential for HVE installed
at remote locations. The PD voltage or current pulses aremea-
sured using coupling capacitor, HFCT, or electromagnetic
couplers in conjunction with the transmission system. The
PD monitoring system can be upgraded using wireless PD
sensors for the smart condition monitoring and service appli-
cation of HVE. Furthermore, the smartphones may be used
for the computation by acquiring PD data of the HVE using
wireless sensors through a compatible local communication
in the power system. These sensors with a battery backup
may be installed at various field components of the electric
power system either in standalone or act as a network. The
integration of PD sensors with other condition monitoring
devices is also important to use already measured electrical
quantities, thus reducing the time and cost required to perform
field measurements. For the accurate detection of PD faults,
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TABLE 5. PD signal detection, PD features extraction, and PD classification techniques.

FIGURE 6. Proposed smart PD monitoring system.

high speed data conversion rates are essential. However, use
of fast data conversion causes an increased cost, high power
dissipation and poor efficiency of the sensors. Therefore, it is
important to design sensors with high efficiency and low
power consumption.

The PD data of the field component captured by the
smart sensor may be stored and transmitted to the monitor-
ing and control center through wireless transmission system.

However, the communication of a bulk amount of data is
also a task. The implementation of advance signal processing
techniques can be made to resolve the problems in wireless
sensors i.e. limited computation capacity and energy con-
straints. We should obtain PD energy at a specific bandwidth
over a long period of time. This PD energy will be sensed
by the sensor to detect the intensity of PD. A proposed
approach for smart PD monitoring system is presented in
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Fig. 6. The proposed smart PD monitoring framework may
be used for correctly estimating the insulation degradation
in HVE and enhancing the overall performance of power
systems.

In future, this system will be implemented in a substation
for online field trials, and be able to analyze and log defects as
they are recorded. Additionally, it will report pertinent infor-
mation to the asset managers when necessary. Furthermore,
the integration of PD detector with an energy scavenging
system will be made, allowing the device to be self-powered
from the substation environment.

VIII. CONCLUSION
In power utility companies, it is important to guarantee high
reliability of HVE by identifying the insulation defects effec-
tively. As highlighted in this paper, PD monitoring can be
considered a very powerful tool to assess insulation condition
of HVE in power systems. Furthermore, PD diagnostics tests
have been widely used for commissioning and new equip-
ment installation for several decades. The online monitoring
on power system components by means of PD measurement
enhances the condition based effective HVE monitoring. The
most significant benefits provided by continuous online PD
monitoring are:

• Trend of insulation condition in real time.
• HVE monitoring while the system components are in
operation.

• The monitoring under the real operating condition.
• Location specific information regarding the insulation
condition and possible fault types.

• PD monitoring can be applied to all kinds of HVE.
The credible PD analysis and online monitoring make the
electric equipment (GIS/GITL, etc.) a low maintenance solu-
tion for the power utility companies for long time operation
without failure. The accurate fault detection and diagnoses at
initial stages regulate the performance of maintenance sys-
tem. However, the practical installation of online condition
monitoring system for HVE is still a developing area which
needs more research and experience. The addition of the PD
measurement sensors in the present protection panels and
SCADA systems leads the overall system very expensive.
In addition, a bulk amount of data acquisition of such high
frequency signals for PD analysis is required to determine
the prior maintenance schedule. These challenges need to be
addressed in future research work.

In summary, more advance detection and analysis tech-
niques with more precise diagnostic algorithms are further
required. More advanced PD sensors with perfect response
for different type of defects are still needed.
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