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ABSTRACT Diabetic retinopathy happens due to damage in blood vessels and is the prominent reason for
blindness worldwide. Clinical experts observe the fundus images to diagnose the disease, but it is often an
error-prone and tedious task. Computer-assisted techniques will help clinicians to detect the disease severity
levels. In medical imaging, experiments of automated diagnosis using CNN produce impressive results.
Even though disease classification tasks in retinal images via CNN face difficulty in retaining high-quality
information at the output. A new deep learning methodology is proposed based on a graph convolutional
neural network (GCNN). The proposed model aims to extract the essential retinal image features effectively.
The work focuses on extracting the features using a Variational autoencoder and identifying the underlying
topological correlations using GCNN. The experiments are carried out using two datasets: Kaggle and
EyePACS datasets. The performance of the proposed model is evaluated using accuracy, U-kappa, sensitivity
and specificity metrics. The results outperform when compared with other state-of-the-art techniques.

INDEX TERMS Diabetic retinopathy, graph neural networks, variational auto encoders, retinal image
classification.

I. INTRODUCTION
For diabetic patients worldwide, diabetic retinopathy (DR)
ends in premature blindness. Retinal disorders should be
diagnosed and treated using observations of blood vessels.
Early diagnosis, fundus screening, and timely intervention
can prevent diabetic retinopathy, a severe cause of vision loss
that may result in blindness [1]. More precise early screening
techniques are required in high-risk groups to reduce the
threat of vision loss by retinal disorders. Fundus pictures
with expert interpretation are an acceptable screening method
for preventing blindness [2]. The primary cause of diabetes’s
clinical signs is an increase in blood glucose levels, which can
harm the retina’s blood vessels when present for an extended
period. DR causes no visual problems in the early stages.
Complications in vision, such as floating patches or dark
lines, fuzziness or fluctuation, weak or dead areas of vision,
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and progressive blindness, may also develop as the condition
proceeds. Figure 1 illustrates the severity phases of retinal
neovascularization, which include non-proliferative diabetic
retinopathy (NPDR) and proliferative diabetic retinopathy
(PDR), as a result of venous beading. The best approach for
protecting the patient’s vision is an early diagnosis and timely
treatment. Therefore, a considerable requirement exists to
prevent lifelong retinal deterioration by efficient evaluation
techniques for differentiating retinopathy levels in visual
impairment.

Ophthalmologists must put in a lot of time and effort
to manually detect diabetic maculopathy. To improve the
retinal image structure analysis, image processing methods
are needed to design Computer Assisted Diagnostic (CAD)
systems. Conventional machine learning-based and deep
learning (DL)-based methods exhibit excellent performance
while performing automatically grading of DR and DME.
Traditional machine learning techniques have the advantage
of requiring fewer data and processing resources to train
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FIGURE 1. DR affected images.

the algorithm. However, for feature engineering, domain
knowledge is essential.

Gangwar and Ravi [3] designed a novel CNN model to
grade DR fundus images. The model consists of 10 layers of
3 × 3 convolutions similar to VGGNet and uses leaky
ReLu as the activation function. The model aims to
detect elements of the blood vessels, such as hemorrhages,
exudate, and micro-aneurysms, and then classify them
according to whether DR is absent, mild, moderate, severe,
or proliferative. The network struggled to acquire deep
enough characteristic learning to identify some of the more
complicated DR components, as shown by the network’s
poor sensitivity, especially in the mild and moderate classes.
To train a customized convolution network to learn the
discriminative features in a colour fundus image for DR
detection, Gargeya and Leng [4] applied the technique of
deep residual learning as in ResNet. A convolutional
visualization layer was added at the network’s end to
highlight the heatmap-based regions. Even though the
network is computationally less expensive, the sensitivity,
specificity and AUC values are poor while experimenting
with a small MESSIDOR dataset. Cost-effective, robust, and
automatic grading without clinical assistance are the key
advantages of the proposed system. However, the algorithm
needs more optimization for clinical adaptations. Li et al. [5]
implemented a multitask algorithm that generated a feature
map from retinal images using ResNet50. Attention modules
are then used to detect the correlation between two DR
grade severity levels. Pires et al. [6] presented a new CNN
architecture with convolution and pooling layers similar to
VGG-16. The work investigated the network performance
in three aspects: using a balanced dataset obtained by data
augmentation, multiresolution training, and robust feature-
extraction augmentation. Choi et al. [7] developed a deep
learning and machine learning-based model for performing
multiclass classification of retinal diseases. The deep learning
model includes a random forest transfer learning-based
VGG-19 architecture with which a 10-class and 3-class
classification was performed. Results prove that the deep
learning model for 10-class classification is less effective
due to a smaller number of images in the STARE dataset.
Deep learning techniques were ineffective due to the small
size of the dataset. The literature shows that transfer learning
techniques produce satisfactory results in image classification
tasks [8].

Although deep learning effectively captures underlying
patterns in data, there are many applications in which data
is represented graphically. Existing methods lack a unified
objective for inter- and intra-modality consistency learning
and struggle with out-of-sample data. To address these
challenges, a Graph Embedding Contrastive Multi-modal
Clustering network (GECMC) that integrates representation
learning and multi-modal clustering is proposed to enhance
both capacities simultaneously [9]. To address the chal-
lenges of multi-view learning, the idea of Learnable Graph
Convolutional Network and Feature Fusion (LGCN-FF)
that incorporates a learnable Graph Convolutional Network
(GCN) and a feature fusion network is proposed [10]. The
network combines features from various views usingmultiple
sparse autoencoders and a fully-connected network, resulting
in a comprehensive representation that captures the charac-
teristics of all views. To tackle the limited interpretability and
research gaps in multi-view learning of Graph Convolutional
Networks, a novel framework called InterpretableMulti-view
Graph Convolutional Network (IMvGCN), which focuses on
providing interpretability while solving multi-view learning
problems is proposed [11].

To our knowledge, only a few kinds of research have
been performed on retinal image classification using graph
neural networks. The images can be modelled as a graph
structure where each pixel is represented as a node [12].
Deep graph correlation network (DGCN) that utilizes a
convolutional graph network can capture natural correlations
between independently learnt retinal image features [13].
Graph convolutional networks used for multi-label clas-
sification can be used to learn the complicated topology
between lesion labels [14]. The vessel graph network (VGN)
proposed by [15] used a graph neural network (GNN) to
transfer information along vessel structures, have extracted
hierarchical patterns in an image. However, works of GNN
models that exploit the global structure of vessel shape and
their local appearances are limited.

This work consists of the following contributions:
• A Hybrid Graph Convolutional Network (HGCN) that
integrates Variational Autoencoder and GCN into a
single design.

• GCN layers are used to generate GCN features to
take advantage of these discriminative features while
learning graph representations.

II. MATERIALS AND METHODS
The architecture of the proposed method to classify retinal
images based on their DR severity measures is given in
Figure 2.

A. ROI EXTRACTION USING FCN
A Fully convolutional network will map pixels of an image
into its pixels using a convolutional neural network [16].
The input RGB retinal image is of dimension 224 × 224,
and the output produced is a 224 × 224 binary image.
The FCN model is constructed by stacking convolution
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FIGURE 2. Architecture of the proposed method.

blocks composed of 2D convolution layers (Conv2D) and
regularizers such as Dropout and BatchNormalization. The
VGG-16 architecture consists of 13 convolution layers, five
pooling layers and three fully connected layers, which total
21 layers, but it has only 16 weight layers. The kernel size
of convolution layers is 3, where the stride and padding
values are 1. The kernel size and the pooling stride value of
pooling layers are 2. The first and second fully connected
layers use ‘‘RELU’’ as the activation function, whereas
the third uses the ‘‘Softmax’’ function. The number of
channels is then converted into the number of classes using
a convolutional layer, and the height and width of the feature
maps are modified to match those of the input image using
the transposed convolution process. Hence, the output image
has the exact dimensions as the input image. The output
channel comprises the classes predicted for the input pixel
in the exact spatial location as the input pixel. The image
features are extracted by utilizing a ResNet-18 model trained
on the ImageNet dataset. It is then fine-tuned using the
corresponding datasets.

B. VAE FEATURE EXTRACTION
The extracted region proposals from the retinal fundus images
using FCN are given into the variational auto-encoder (VAE)
to extract the features. VAE is a generative model that
analyzes the training data’s probability function. The data
distribution’s mean and standard deviation are estimated
using a mean vector and a standard deviation vector,
respectively. VAE is utilized for feature extraction since auto-
encoders feed input into encoded vectors whose latent space
can map data available in the continuous form [1], [17].

The encoder module encodes the images into a latent
representation space z. The encoder can be represented
as input data x generates output z over the parameter.
This input image is given to the encoder, which outputs
two latent variables and the distribution parameters. After
quantizing the pixel data, the encoder module uses a Gaussian
distribution model, and noisy values are minimized by
producing a histogram of the final image. Kullback-Leibler
(KL) divergence approximates the VAE encoder module’s
loss function Li. It illustrates how this normal distribution’s
parameters differ from a unit normal distribution. This
divergence is a regularizer added between the encoder’s
distributions and p(z). A function Li that estimates the
quantity of information lost to represent z using q.

Li = KL (qθ (z | x) | p (z)) (1)

This function aimed to minimize the divergence magnitude
by optimizing the probability distribution parameters µ and
σ The more it optimizes, the parameters tune the output to
appear similar to the target data distribution. The difference is
calculated by KL loss over the distribution can be represented
with components as:

n∑
i=

σ 2
i + µ2

i − log (σi) − 1 (2)

The ROI extracted from the previous phase is compacted
using VAE and generates latent feature representation. This
feature matrix of dimension 330 × 220 was extracted from
all grading levels of the image. The ROI from the earlier
step is compressed using VAE to create a latent feature
representation. The 330 × 220 feature matrix was built using
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the grading levels of the full image. The decoder part of the
VAE is removed after training and extracting features from
the fundus images. On the next classification level, these
trained feature parameters are fed into the GCN classifier
model for accurate grading of retinal disease.

C. GCN FEATURE EXTRACTION
Graph Convolutional Networks (GCN) use an image’s node
feature information and graph. Similar to the convolutional
operation of a conventional CNN on an image, spatial-based
approaches define graph convolutions based on a node’s
spatial relations. Images can be treated as a particular type
of graph, where each pixel represents a node. A 3 × 3 patch
is filtered after a weighted average of the central node’s and
its neighbors’ pixel values across each channel is computed.
A graph neural network model can be defined as f(Mat, X)
and the rule for layer-wise propagation can be defined as:

Act(l+1)σ =

(
D̃−

1
2 X̃ D̃−

1
2Act(l)W (l)

)
(3)

Here, X̃= X+IM is the adjacency matrix of the undirected
graph G with added self-connections. IN is the identity
matrix, D̃ii =

∑
j .X̃ij andW

(l) is a layer-specific trainable
weight matrix. σ (·) denotes an activation function, such as
the ReLU (·) = max (0, ·) · H (l) ∈ RM×D is the matrix of
activations in the l th layer; Act(0) = Mat.
A neural network model can be created by stacking

numerous convolutional layers on top of one another.
A stacked model can lessen the overfitting problem of local
neighborhood structures in graphs. Deeper models can be
built and features extracted using this layer-by-layer linear
computation. The convolution operation on the GCN can be
formulated as:

θ ′

0x − θ ′

1D
−

1
2XD−

1
2 x (4)

where θ ′

0 and θ ′

1 are the parameters. The entire graph may
share the filtering parameters. The filters can be further
applied to convolve the kth-order neighborhood of a node,
where k is the number of successive filtering operations or
convolutional layers in the neural network model.

Let’s define a signal as Mat ∈ RM×C with C input
channels, where the C-dimensional feature vector is framed
for every node and F filters or feature maps as:

Z = D̃−
1
2XD̃−

1
2Mat2 (5)

where 2 ∈ RC×F , F is the filter parameter matrix and
Z ∈ RM×F is the convolved signal matrix. As a result,
implementing this filtering operation as the product of
two matrices—one dense and one sparse—can be done
effectively. The output of the last layer Z={Z1,Z2. . . .., Zk},
Z ∈ RM×F is the graph representation, and the feature matrix
obtained is notated as hg. The entire process involved in the
proposed model is summarized in algorithm 1.

Algorithm 1 Fused Graph Convolutional Neural Network
Input: Fundus Images (X, Y); where Y = {y/y ∈ {Normal,
Mild, Moderate, Severe, PDR}}
Output:Model to classify the Retinal image x ∈ X
Extract ROI using Fully Convolutional Neural Network
Segmentation

Design FC Layer 1
Stack 2D Convolutional Layers (filters=64,
kernel_size=1, strides=1)
Apply Dropout, Batch Normalization blocks,
Apply the RELU Activation function

Design FC Layer 2
Stack 2D Convolutional Layers (filters=len_classes,
kernel_size=1, strides=1)

Apply Dropout, Batch Normalization blocks,
Perform GlobalMaxPooling

Add 1 × 1 Conv Layer
Perform Transposed Convolution
Assign crop size, Loss= SoftmaxCrossEntropyLoss
Train and extract pixels

Extract Features using Variational Auto Encoder (VAE)
Design Encoder

Flatten Input Image
Define Dense Layers (200)

Design Decoder
Define Dense Layers (200)

Wrap Encoder and Decoder units
Train and re-estimate Gradient Descent

∇θ, φEqφ(z)[logpθ(x,z)−logqφ(z)]
where observed x ∈ X where X can be continuous or

discrete, and latent z ∈ Rk
Freeze Decoder and extract feature from encoder

Graph Learning (GL)
Perform Convolution operation

θ ′

0x − θ ′

1D
−

1
2XD−

1
2 x

Fuse features from VAE and GL: h = concatenate [hc, hg]
Apply Softmax Layers

D. ALGORITHM
The first step is Region of Interest segmentation, using a
Fully Convolutional Neural Network (FCN). The FCN is
designed with two Fully Convolutional layers. Each FC layer
is followed by 2D convolutional layers with 64 filters and
a kernel size of 1. Dropout and batch normalization blocks
are applied to prevent overfitting, and the rectified linear
unit (ReLU) activation function is used to introduce non-
linearity. The second FC layer has a number of filters equal
to the number of classes to enable classification. The FCN
helps identify and extract the relevant regions from the retinal
images for further analysis. After segmenting the ROIs, the
algorithm employs a Variational Auto Encoder (VAE) to
extract features from these regions. The VAE consists of an
encoder and a decoder. The encoder takes the segmented

51438 VOLUME 11, 2023



S. Sundar, S. Sumathy: Classification of DR Disease Levels by Extracting Topological Features Using Graph Neural Networks

ROI as input and flattens it. Dense layers with 200 units are
used to capture the latent representation of the image. The
decoder then reconstructs the image from the latent space.
The VAE is trained using gradient descent to optimize the
reconstruction loss and the Kullback-Leibler (KL) divergence
between the prior and posterior distributions of the latent
space. This process allows the VAE to learn meaningful
representations of the retinal images. Once theVAE is trained,
the decoder is frozen, and the encoder is used to extract
features from the ROIs. These features capture the distinctive
characteristics of the retinal images, which are crucial for
accurate classification. Graph Learning (GL) is performed by
applying convolutional operations to the features extracted
from the VAE. This step aims to enhance the representation of
the features by incorporating graph-based relationships. This
can help capture contextual information and further improve
the classification performance. The features obtained from
both the VAE and GL are then fused by concatenating
them, resulting in a combined feature vector. Finally,
a softmax layer is applied to the fused features to classify
the retinal image into the appropriate severity category.
The softmax layer provides the probability distribution over
the different severity classes, allowing the model to make
predictions.

E. EXPERIMENTATION ON DATASETS
The proposed model was initially trained using the Kag-
gle dataset (dataset 1) containing 3464 high-quality reti-
nal images. The dataset included high-resolution images
acquired under various imaging settings. Dataset 2, used
for experimenting with the proposed model, contains
35000 high-resolution fundus images provided by EyePACS
for diabetic competition. These images are captured under
various imaging conditions. Contrast enhancement was
performed on both datasets to adjust the image’s bright
or dark pixels to extract its hidden features. The contrast
between the retinal background and blood vessels in fundus
images is very low. Due to the imbalance issue, augmentation
is performed on both datasets, and the data size is increased.
In the course of model training, an iterative procedure is
employed to generate data for every mini-batch. Techniques
namely horizontal flip, width shift, height shift, fill mode,
and zoom range are used to increase the count of images.
The parameters which are used for augmenting retinal
images are shown in table 1. The number of images present
in both datasets before and after augmentation is shown
in table 2.

TABLE 1. Parameters and values used for image augmentation.

The ground truths corresponding to the images were
available in both dataset repositories.

TABLE 2. Dataset description.

FIGURE 3. Latent vector space representation using t-SNE.

The distribution of severity class obtained on EyePACS
dataset is illustrated in figure 3 using t-SNE. We can observe
that classes 0, 2, and 4 are distinctly separated in both spaces.
However, class 0 and class 1 are not distinctly separated.
In the case of classes 3 and 4, although the separation is not
perfect, it is possible to identify a discernible difference in the
location of both classes for both spaces.

III. RESULTS AND DISCUSSIONS
To classify diseases using computers, the performance of
experiments on retinal lesions must be evaluated. As a
multiclass task, retinal fundus image classification could be
classified as binary, multi-categorical classification, or ordi-
nal regression. The proposed model is viewed as a multi-
categorical classification model. The proposed method for
classifying DR images has been experimented with, and the
sensitivity, specificity, accuracy and U-kappa scores are eval-
uated. The kappa coefficient measures the agreement score
when classifying data into mutually exclusive categories.
Galton [18] and Smeeton and Nigel [19] initially used it in
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their works. It is estimated as:

Kappa =
p0 − pe
1 − pe

(6)

where Po indicates the class observed and Pe is the actual
class of the given image. The definitions of the various U-
kappa score ranges are displayed in Table 3. For the proposed
approach, a moderate U-kappa value is attained.

TABLE 3. Definition of U-Kappa score.

For a simpler model building with eager execution, the
operations are carried out using the Keras API in the
TensorFlow platform created by the Google Brain Team.
Training is performed in the ‘‘standard_gpu’’ configuration
powered by theNVIDIATesla V100GPUunit on PowerEdge
R740 server. The NVIDIA Tesla V100 is a high-end graphics
processing unit (GPU) designed based on NVIDIA’s Volta
architecture. The machine is configured with 640 Tensor
cores, 5120 CUDA cores and is designed to deliver high
performance for Artificial Intelligence and high-performance
computing (HPC) workloads. The model was trained for
2 hours 5 mins, and in total used 6.5e16 FLOPs during
training. Then, features are extracted using ‘‘/gpu:0,’’ a
GPU with a straightforward configuration and a single
virtual machine (VM) specification. The proposed technique
outperformed other techniques in terms of accuracy when
grading DR-affected images.

The proposed method employs both isolated background
pixels and vessel pixels as nodes in a graph. To examine the
impact of the isolated nodes, they are eliminated them from
the graph representation and perform experiments utilizing
only the vessel pixels as graph nodes. Each graph node
contains CNN features and hidden topological features are
shown in figure 4.

A. PROMINENT RELATED WORKS
Some of the prominent works proposed automated methods
for detecting diabetic retinopathy through a series of stages
including preprocessing, identifying and removing the optic
disc, separating and eliminating blood vessels, removing
fovea, and extracting features for Micro-aneurysm, retinal
hemorrhage, and exudates classification.

Reference [20] usedHSI conversion, DE noising in the pre-
processing stage and Contrast Limited Adaptive Histogram
Equalization (CLAHE) is used to ensure that the illumination
is evenly distributed. The technique of Circular Hough
Transform (CHT) is used for Optic disc-based detection and
removal whereas as a Bias Corrected Separated Possibilistic

FIGURE 4. Feature maps extracted after GNN module.

Neighborhood FCM (BCSPNFCM) algorithm is introduced
for Blood vessel-based segmentation and removal. Fovea
elimination is accomplished using morphology dilation
whilst splat properties and texture features are fed into
Deep Convolutional Networks (DCNN) for classification.
In the work of Gharaibeh et al. [21], Normalization, intensity
conversion, de-noising using logic statistics with wiener-2
function, and contrast enhancement using CLAHE is used in
the preprocessing stage and a modified canny edge detection
algorithm is adapted for localization and elimination for optic
disc. After segmenting and eliminating blood vessel using
Modified spatial weighted fuzzy c-means algorithm, efficient
Haralick features are selected using Unsupervised Particle
Swarm Optimization based Relative Reduct (US-PSO-RR)
algorithm is then given to Maximum Likelihood Classifier
(MLC) and Support VectorMahcine(SVM) for classification.
HSI conversion and DE noising is performed by before
CHT for optic disc detection, is then followed by Spa-
tially Constrained Possibilistic Fuzzy C-Means (SCPFCM)
algorithm for blood vessel segmentation [22]. The SVM-
Genetic algorithm (SVMGA) classifier separated the features
extracted using Deep Belief Networks (DBN).

B. COMPARISON WITH OTHER MODELS
The performance of the proposed model is compared with
other models that use same Kaggle Dataset and EyePACS
dataset used for DR and DME grading tasks in the literature.

Samanta et al. [23]: used a transfer learning-based CNN
architecture and investigated the classification performance
on a smaller dataset. The contrast difference between blood
vessels and retinal background is relatively fewer. Hence,
contrast enhancement is used as the pre-processing technique
to fine-tune the bright and dark pixels. This helped to
amplify the pixel contrast of pixels near the retinal area
to extract the hidden features. The stacked convolutional
layer model is fine-tuned and tested using Inceptionv1,
Inceptionv2, Inceptionv3, Xception, VGG16, ResNet-50,
DenseNet and AlexNet. Since DenseNet exhibited the best
results and simplest architecture among others, it is taken
as the baseline architecture. DenseNet121’s fully connected
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layers were eliminated and replaced with two fully connected
layers of 1024 and a dropout of 0.5. The model has been
trained on pre-processed RGB images with dimensions of
360 × 360 over 50 iterations. Nesterov momentum was
chosen as the optimizer with a momentum rate of 0.01.
For the first 30 epochs, a learning rate of 0.003 was
chosen with a decay of 0.02, is then reduced to 0.001 after
30 iterations.

Reference [24]: The input image size is reduced from
3888 × 2951 to 786 × 512. Ensemble models such as
Bagging, Boosting and Stacking are used to enhance the
model’s performance, out of which the Stacking exhibited the
best results. Five deep CNN models were ensembled in the
method proposed: Resnet50, Inceptionv3, Xception, Dense-
121, and Dense169. Categorical cross entropy and Nesterov-
accelerated Adaptive Moment Estimation are used as loss
functions and optimizers, respectively. The experiment is
carried out for 50 epochs with an initial rate α of 10−2 and
decreased by a factor of 0.1 to 10−5.
Reference [25]: Based on Inception V3, Qummar et al.

developed a unique Siamese-like CNN model with weight-
sharing layers. All the images are clipped to 299×299 pixels
to unify the size of the whole image. Each pixel value in an
image is subtracted from the weighted mean of the pixels
around it and then added to 50% grayscale. The weights
from the Inception V3 model, which was pre-trained on
the ImageNet data set, are taken initially. Adam is used as
the optimizer, and training is carried out in the server with
NVIDIA GeForce GTX1080TI graphics cards.

[26]: Pao et al. resized the whole image into
100 × 100 pixels, and the green component is extracted
from the retinal image. The green component of the fundus
photograph was used to compute the entropy image, which
was then proposed. Before calculating the entropy images,
pre-processing is done using image enhancement by unsharp
masking (UM). A bichannel CNN, including the features
of both the entropy images of the grey level and the green
component, is used.

In our experiments, the entire dataset is divided into
80% and 20% for training and validation respectively. The
accuracy and kappa score obtained after the experimentation
of the proposedmodel onKaggle dataset is comparedwith the
Densenet technique used in [23]. An improvement of 6.59%
and 4.19% is obtained for accuracy and kappa score. The
results obtained are illustrated in fig. 5. While performing
the experiments on EyePACS dataset, the proposed model
obtained an accuracy of 90.34%. It is found that the
result exhibited 2.85% accuracy improvement than the top
models worked on EyePACS dataset classification. Also,
the sensitivity and specificity scores obtained were 97.54%
and 89.56% for sensitivity and specificity respectively. The
results were pretty impressive when comparing the results of
other top-performed algorithms [24], [25], [26] experimented
on the same dataset. The results are illustrated in fig. 6.

The confusion matrix obtained after performing experi-
ments using datasets 1 and 2 are shown in fig. 7 and fig. 8,

FIGURE 5. Accuracy score comparison and Kappa score comparison of
the proposed model with DenseNet121 [23] using Kaggle Dataset.

FIGURE 6. Performance comparison of the proposed model with other
models using EyePACS dataset.

respectively. The Siamese networks used in [24] require a
large amount of data since it works on pair of classes. Also,
it is very sensitive to variations in the input. The ensemble
model [25] tried to utilize and fuse the features generated
using various models. Bi-channel model [26] requires more
trainable parameters, thus making the model complex and
failing to extract the neighborhood information in an efficient
manner.

The accuracy scores observed over various number of
iterations after experiments on Kaggle dataset and EyePACS
dataset are shown in fig 9 and fig 10 respectively. Kaggle
dataset got a convergence in results upon reaching 60 iter-
ations, wherein EyePACS dataset took 150 iterations.
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FIGURE 7. Confusion matrix on grading DR images using Kaggle dataset.

FIGURE 8. Confusion matrix on grading DR images using EyePACS
dataset.

FIGURE 9. Accuracy obtained over various iterations using Kaggle
dataset.

C. PERFORMANCE ON FEWER DATA
The images in both datasets are separated at random into
percentage groupings of 10%, 20%, 30%, and 40%. Training
with these percentages of data generates a model, which is
subsequently used for fine-tuning and testing with IDRiD
data. The average accuracy is estimated by repeating the

FIGURE 10. Accuracy obtained over various iterations using EyePACS
dataset.

training phase for 60 epochs. The performance of the
proposed model over various percentages of training data
on both datasets is shown in fig. 11. The performance
of the model over various folds considering the 80%
percentage of training data in Kaggle dataset and EyePACS
datasets, respectively. The results are shown in fig. 12.
The accuracy of the results was observed to improve as
the amount of data utilized for training and no. of folds
grew larger, implying that important features were being
extracted.

FIGURE 11. Performance of the proposed model on various percentage of
data on Kaggle dataset and EyePACS dataset.

FIGURE 12. Performance of the proposed model over various folds on
Kaggle dataset and EyePACS dataset.
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D. PERFORMANCE IN DEALING WITH UNLABELED DATA
To evaluate the capability of the model to learn data
distributions in addition to learning of labels, the following
experimental methodologies were conducted in two random
conditions. The EyePACS dataset is randomly divided into
three groups. Scenario 1 contains 50%, 30%, and 20% of
the total samples, and scenario 2 includes 65%, 15%, and
20%. In both conditions, the first set comprises data which
are labelled, whereas data in the second and third sets are
unlabeled. Initial training is conducted on the first set of data,
and the trained model is then utilized to label the second
set. The second set’s annotated labels were not used for
training initially; hence the second set is then utilized for
testing. Further, testing is conducted on the unlabeled third
set using trained model. In both scenarios, the experiment
is carried out for 150 epochs, with the weight sets being
automatically reinitialized at each stage and technique of
early stopping is used. Figure 13 shows the classification
accuracies obtained using the model after these observations.
Previous sections include the experimental outcomes and
performance evaluation.

FIGURE 13. Performance of the proposed model in dealing unlabeled
data over various folds of unlabeled data using EyePACS dataset.

IV. CONCLUSION
The challenge of performing early analysis of DR using
manual techniques raised the necessity for computer-assisted
diagnosis. In this work, a fusion method based on GCN
is proposed and implemented to classify retinal images
according to their DR severity based on their abnormalities.
It combines the image features extracted from the variational
autoencoder and graph representative features extracted
from the graph CNN. The technique learns both local
appearances and global vessel structures of the retinal images
jointly. Graph convolutional neural networks extract the
topological correlations between neighbor pixels using the
graph representation and convolution operations. Analyzing
and using correlations between each image’s appearance
features will help to classify retinal severity. This helped to
retain feature representation invariant even if the severity-
affected pixels are available in different parts of the image.
Thus, the proposed technique tried to learn independent
features from the retinal images. Also, VAE followed a

tendency to ignore features that occupy few pixels. After
implementing the technique, the experimental results are
validated using sensitivity, specificity, accuracy and U-kappa
scores. It outperformed the top performed algorithms used
for retinal image’s DR severity. An accuracy improvement
of 6.59% and 2.85% is obtained on comparing with Densenet
and Bichannel CNN that worked on Kaggle and EyePACS
datasets respectively. The proposed fused network model
utilized modularity-based graph learning and GCN process
to learn the structural influence present in retinal image
samples. Additionally, it also leverages more discriminative
information present in the images. On the other hand, it is
found that the Graph model struggles to utilize images sharp
edges and fine details. This happened might be because of the
diffusion of GNN vertex features.

REFERENCES
[1] S. Sundar and S. Sumathy, ‘‘An effective deep learning model for grading

abnormalities in retinal fundus images using variational auto-encoders,’’
Int. J. Imag. Syst. Technol., vol. 33, no. 1, pp. 92–107, Jan. 2023.

[2] S. Kumari, P. Venkatesh, N. Tandon, R. Chawla, B. Takkar, and A. Kumar,
‘‘Selfie fundus imaging for diabetic retinopathy screening,’’ Eye, vol. 36,
no. 10, pp. 1988–1993, Oct. 2022.

[3] A. K. Gangwar and V. Ravi, ‘‘Diabetic retinopathy detection using transfer
learning and deep learning,’’ in Evolution in Computational Intelligence:
Frontiers in Intelligent Computing: Theory and Applications, vol. 1.
Singapore: Springer, 2021.

[4] R. Gargeya and T. Leng, ‘‘Automated identification of diabetic retinopathy
using deep learning,’’ Ophthalmology, vol. 124, no. 7, pp. 962–969,
Jul. 2017.

[5] X. Li, X. Hu, L. Yu, L. Zhu, C. Fu, and P. Heng, ‘‘CANet: Cross-disease
attention network for joint diabetic retinopathy and diabetic macular
edema grading,’’ IEEE Trans. Med. Imag., vol. 39, no. 5, pp. 1483–1493,
May 2020.

[6] R. Pires, S. Avila, J. Wainer, E. Valle, M. D. Abramoff, and A. Rocha,
‘‘A data-driven approach to referable diabetic retinopathy detection,’’ Artif.
Intell. Med., vol. 96, pp. 93–106, May 2019.

[7] J. Y. Choi, T. K. Yoo, J. G. Seo, J. Kwak, T. T. Um, and T. H. Rim, ‘‘Multi-
categorical deep learning neural network to classify retinal images: A pilot
study employing small database,’’ PLoS ONE, vol. 12, no. 11, Nov. 2017,
Art. no. e0187336.

[8] S. Sumod and S. Sumathy, ‘‘Transfer learning approach in deep neural
networks for uterine fibroid detection,’’ Int. J. Comput. Sci. Eng., vol. 25,
pp. 52–63, Jan. 2022.

[9] W. Xia, T. Wang, Q. Gao, M. Yang, and X. Gao, ‘‘Graph embedding
contrastive multi-modal representation learning for clustering,’’ IEEE
Trans. Image Process., vol. 32, pp. 1170–1183, 2023.

[10] Z. Chen, L. Fu, J. Yao, W. Guo, C. Plant, and S. Wang, ‘‘Learnable graph
convolutional network and feature fusion for multi-view learning,’’ Inf.
Fusion, vol. 95, pp. 109–119, Jul. 2023.

[11] Z. Wu, X. Lin, Z. Lin, Z. Chen, Y. Bai, and S. Wang, ‘‘Inter-
pretable graph convolutional network for multi-view semi-supervised
learning,’’ IEEE Trans. Multimedia, early access, Mar. 23, 2023, doi:
10.1109/TMM.2023.3260649.

[12] Z.Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, ‘‘A comprehensive
survey on graph neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 32, no. 1, pp. 4–24, Jan. 2021.

[13] G. Zhang, B. Sun, Z. Chen, Y. Gao, Z. Zhang, K. Li, and W. Yang,
‘‘Diabetic retinopathy grading by deep graph correlation network on retinal
images without manual annotations,’’ Frontiers Med., vol. 9, Apr. 2022,
Art. no. 872214.

[14] Y. Cheng, M.Ma, X. Li, and Y. Zhou, ‘‘Multi-label classification of fundus
images based on graph convolutional network,’’ BMC Med. Informat.
Decis. Making, vol. 21, no. 2, pp. 1–9, Jul. 2021.

[15] S. Y. Shin, S. Lee, I. D. Yun, and K. M. Lee, ‘‘Deep vessel segmentation
by learning graphical connectivity,’’Med. Image Anal., vol. 58, Dec. 2019,
Art. no. 101556.

VOLUME 11, 2023 51443

http://dx.doi.org/10.1109/TMM.2023.3260649


S. Sundar, S. Sumathy: Classification of DR Disease Levels by Extracting Topological Features Using Graph Neural Networks

[16] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks
for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[17] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins,
and A. Lerchner, ‘‘Understanding disentangling in β-VAE,’’ 2018,
arXiv:1804.03599.

[18] F. Galton, Finger Prints. London, U.K.: MacMillan, 1892.
[19] N. C. Smeeton, ‘‘Early history of the Kappa statistic,’’ Biometrics, vol. 41,

p. 795, Jan. 1985.
[20] O. M. Al-hazaimeh, A. Abu-Ein, N. Tahat, M. Al-Smadi, and

M. Al-Nawashi, ‘‘Combining artificial intelligence and image processing
for diagnosing diabetic retinopathy in retinal fundus images,’’ Int. J.
Online Biomed. Eng. (iJOE), vol. 18, no. 13, pp. 131–151, Oct. 2022.

[21] N. Gharaibeh, O. M. Al-hazaimeh, A. Abu-Ein, and K. M. O. Nahar,
‘‘A hybrid SVMNaïve-Bayes classifier for bright lesions recognition in eye
fundus images,’’ Int. J. Electr. Eng. Informat., vol. 13, no. 3, pp. 530–545,
Sep. 2021.

[22] N. Gharaibeh, O. M. Al-Hazaimeh, B. Al-Naami, and K. M. Nahar,
‘‘An effective image processing method for detection of diabetic retinopa-
thy diseases from retinal fundus images,’’ Int. J. Signal Imag. Syst. Eng.,
vol. 11, pp. 206–216, Jan. 2018.

[23] A. Samanta, A. Saha, S. C. Satapathy, S. L. Fernandes, and Y.-D. Zhang,
‘‘Automated detection of diabetic retinopathy using convolutional neu-
ral networks on a small dataset,’’ Pattern Recognit. Lett., vol. 135,
pp. 293–298, Jul. 2020.

[24] X. Zeng, H. Chen, Y. Luo, and W. Ye, ‘‘Automated diabetic retinopathy
detection based on binocular Siamese-like convolutional neural network,’’
IEEE Access, vol. 7, pp. 30744–30753, 2019.

[25] S. Qummar, F. G.Khan, S. Shah, A.Khan, S. Shamshirband, Z. U. Rehman,
I. A. Khan, and W. Jadoon, ‘‘A deep learning ensemble approach for
diabetic retinopathy detection,’’ IEEE Access, vol. 7, pp. 150530–150539,
2019.

[26] S.-I. Pao, H.-Z. Lin, K.-H. Chien, M.-C. Tai, J.-T. Chen, and G.-M. Lin,
‘‘Detection of diabetic retinopathy using bichannel convolutional neural
network,’’ J. Ophthalmol., vol. 2020, pp. 1–7, Jun. 2020.

SUMOD SUNDAR (Member, IEEE) received the
B.Tech. degree in IT from Anna University, Chen-
nai, and the M.Tech. degree in CSE from the TKM
College of Engineering, Kollam, Kerala. He has
nearly eight years of teaching experience. He is
currently a Research Scholar with the School of
Computer Science and Engineering, VIT, Vellore.
His research interests include medical imaging
and cybersecurity using deep learning techniques.
He is the former Academic Relations of the IEEE
Kerala YP.

S. SUMATHY received the bachelor’s degree in
electronics and communication engineering from
Madras University, and the M.Tech. degree in
computer science and engineering and the Ph.D.
degree in computer science from the Vellore
Institute of Technology (VIT), Vellore, India.
She has nearly 25 years of teaching experience.
She is currently a Professor with the School of
Information Technology, Engineering, VIT. She
has published more than 50 articles in reputed

journals in national and international level. Her research interests include
trust and reliability in wireless networks, cloud, fog and edge computing,
machine learning, and data mining.

51444 VOLUME 11, 2023


