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ABSTRACT Traversability estimation for mobile robots in off-road environments requires more than
conventional semantic segmentation used in constrained environments like on-road conditions. Recently,
approaches to learning a traversability estimation from past driving experiences in a self-supervised man-
ner are arising as they can significantly reduce human labeling costs and labeling errors. However, the
self-supervised data only provide supervision for the actually traversed regions, resulting in epistemic uncer-
tainty due to the lack of knowledge on non-traversable regions, also referred to as negative data. Negative
data can rarely be collected as the system can be severely damaged while logging the data. To mitigate the
uncertainty in the estimation, we introduce a deep metric learning-based method to incorporate unlabeled
data with a few positive and negative prototypes. Our method jointly learns binary segmentation that reduces
uncertainty in addition to the regression of traversability. To firmly evaluate the proposed framework,
we introduce a new evaluation metric that comprehensively evaluates the segmentation and regression.
Additionally, we construct a driving dataset ‘Dtrail’ in off-road environments with a mobile robot platform,
which is composed of numerous complex and diverse representations of off-road environments. We examine
our method on Dtrail as well as the publicly available SemanticKITTI dataset.

INDEX TERMS Self-supervised traversability, semantic segmentation, deep metric learning, mobile robots,
autonomous driving.

I. INTRODUCTION
Estimating traversability for mobile robots is an important
task for autonomous driving and machine perception. How-
ever, the majority of the relevant works focus on constrained
road environments like paved roads which are all possibly
observed in public datasets [1], [2], [3]. In urban scenes,
road detection with semantic segmentation is enough [4], [5],
but in unconstrained environments like off-road areas, the
semantic segmentation is insufficient as the environment can
be highly complex and rough [6] as shown in Fig. 1a. Several
works from the robotics field have proposed a method to
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estimate the traversability cost in the unconstrained environ-
ments [7], [8], [9], [10], and to infer probabilistic traversabil-
ity map with visual information such as image [11] and 3D
LiDAR [6].

Actual physical state changes that a vehicle undergoes
can give meaningful information on where it can traverse
and how difficult it would be [12], [13], [14]. The data
incorporating physical changes encountered by the vehicle
itself are known as self-supervised data. Accordingly, self-
supervised traversability estimation can offer more robot-
oriented prediction [11], [15], [16]. Fig. 1c shows an example
of the self-supervised traversability data. Previously, haptic
inspection [11], [16] has been examined as traversability
in the self-supervised approaches. These works demonstrate
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FIGURE 1. Illustration of motivation of our framework. The color map for the traversability shows that the higher (green), the traversability is, the easier
to traverse, and the lower (purple), the traversability is, the harder to traverse. Self-supervised traversability estimation should be considered to minimize
the epistemic uncertainty by filtering out the non-traversable regions to which no supervision is given in terms of traversability.

that learning self-supervised data is a promising approach
for traversability estimation, but are only delved into the
proprioceptive sensor domain or image domain. Addition-
ally, supervision from the self-supervised data is limited
to the actually traversed regions as depicted in Fig. 1c,
thereby inducing an epistemic uncertainty when inferring
the traversability on non-traversed regions. An example of
such epistemic uncertainty is illustrated in Fig. 1b. Hazardous
regions, such as trees and steep slopes, that are impossible to
drive over are regressed with high traversability, whichmeans
they are easy to traverse. For safe navigation in off-road
environments, such non-traversable areas with considerable
uncertainty should be explicitly identified so that dependable
prediction is ensured.

In this paper, we propose a self-supervised framework
on 3D point cloud data for traversability estimation in
unconstrained environments concentrated on alleviating epis-
temic uncertainty. Our goal is to learn a model that pre-
dicts traversability that is masked on regions with high
uncertainty (as shown in Fig. 1d) leveraging self-supervised
traversability data (Fig. 1c). To achieve this, we jointly learn
semantic segmentation along with traversability regression
via deep metric learning to filter out the non-traversable
regions (see Fig. 1d.) Also, by harnessing the unlabeled data
from the non-traversed area, we introduce the unsupervised
loss similar to the clustering methods [17]. To better evaluate
our task, we develop a new evaluation metric that can both
evaluate the segmentation and the regression, while highlight-
ing the false-positive ratio for reliable estimation. To test our
method on more realistic data, we build an off-road vehicle
driving dataset named ‘Dtrail.’ Experimental results are both
shown for Dtrail and SemanticKITTI [18] dataset. Abla-
tions and comparisons with the other metric learning-based
methods show that our method yields quantitatively and

qualitatively robust results. Our contributions can be summa-
rized in five points as follows:

• We introduce a self-supervised traversability estimation
framework on 3D point clouds that mitigates the uncer-
tainty by adopting deep metric learning and by actively
utilizing self-supervised traversability data.

• We jointly learn the binary segmentation and the
traversability regression to obtain reliable predictions in
off-road environments.

• We also adopt the unsupervised clustering-based loss to
utilize the advantage of the affluent unlabeled data in the
self-supervised settings.

• We devise a new metric (Traversability Precision Error)
to evaluate the self-supervised traversability estimation
properly. Compared to the conventional metric (e.g.,
mIoU.) This metric can more appropriately measure the
effect of the false positive occurrences on traversability
estimation.

• We present a new 3D point cloud dataset for off-road
mobile robot driving in unconstrained environments that
includes IMU data synchronized with LiDAR.

II. RELATED WORKS
A. TRAVERSABILITY ESTIMATION
Traversability estimation is a crucial component in mobile
robotics platforms for estimating where it should go. In the
case of paved road conditions, the traversability estimation
task can be regarded as a subset of road detection [5], [19] and
semantic segmentation [20]. However, the human-supervised
method is clearly limited in estimating traversability for
unconstrained environments like off-road areas. According to
the diversity of the road conditions, it is hard to determine
the traversability of a mobile robot in advance by man-made
predefined rules.
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FIGURE 2. Examples of our task data settings: query and support data.
(a) is an example of query data. Unlabeled points are colored black, and
non-black points indicate the robot’s traversable region. Traversability is
mapped only on the positive points. (b) is an example of support data.
Traversable and non-traversable are manually labeled as red and blue,
respectively. Only evident regions are labeled and used for the training in
the support data.

Self-supervised approaches [16], [21], [22], [23] are sug-
gested in the robotics literature to estimate the traversability
using proprioceptive sensors such as inertial measurement
and force-torque sensors [16]. Since these tasks only mea-
sured traversability in the proprioceptive-sensor domain, they
do not affect the robot’s future driving direction. To solve this
problem, a study to predict terrain properties by combining
image information with the robot’s self-supervision has been
proposed [11]. They identify the terrain properties from hap-
tic interaction and associate them with the image to facilitate
self-supervised learning. This work demonstrates promising
outputs for traversability estimation, but it does not take epis-
temic uncertainty into account that necessarily exists in the
self-supervised data. Furthermore, image data-based learn-
ing approaches are still vulnerable to illumination changes
that can reduce the performance of the algorithms. There-
fore, range sensors such as 3D LiDAR can be a strong
alternative [24].

To overcome such limitations, we propose a self-supervised
traversability estimation method based on 3D point clouds
that can alleviate the uncertainty problem in unconstrained
environments.

B. DEEP METRIC LEARNING
One of the biggest challenges in learning with few labeled
data is epistemic uncertainty. To handle this problem,
researchers proposed deep metric learning (DML) [25],
which learns embedding spaces and classifies an unseen
sample in the learned space. Several works adopt the sampled
mini-batches called episodes during training, which mimics
the task with few labeled data to facilitate DML [26], [27],
[28], [29]. These methods with episodic training strategies
epitomize labeled data of each class as a single vector,
referred to as a prototype [20], [30], [31], [32], [33]. The
prototypes generated by these works require non-parametric
procedures and insufficiently represent unlabeled
data.

Other works [34], [34], [35], [36], [37], [38], [39] develop
loss functions to learn an embedding space where similar

examples are attracted, and dissimilar examples are repelled.
Recently, proxy-based loss [40] is proposed. Proxies are rep-
resentative vectors of the training data in the learned embed-
ding spaces, which are obtained in a parametric way [41],
[42]. Using proxies leads to better convergence as they reflect
the entire distribution of the training data [40]. A majority
of the works [41], [42] provides a single proxy for each
class, whereas SoftTriple loss [43] adopts multiple prox-
ies for each class. We adopt the proxy-based DML loss,
as traversable and non-traversable regions are represented
as multiple clusters rather than a single one in the unstruc-
tured driving surfaces according to their complexity and
roughness.

III. METHODS
A. OVERVIEW
Our proxy bank-guided self-supervised framework (PBG)
aims to learn a mapping between point clouds to traversabil-
ity. We call input data containing the traversability informa-
tion as ‘query.’ The traversable regions are referred to as the
‘positive’ class, and the non-traversable regions are referred
to as the ‘negative’ class in this work. In query data, only
positive data can be labeled along with their actual driving
experience. The rest remains as unlabeled regions. Non-black
points in Fig. 2a indicate the positive regions and the black
points indicate the unlabeled regions.

However, there exists a limitation in that the query data is
devoid of any supervision about negative regions. With query
data only, results would be unreliable, as negative regions can
be regressed as a good traversable region due to the epistemic
uncertainty (Fig. 1b) Consequently, our task aims to learn
binary segmentation along with traversability regression to
mask out the negative regions, thereby mitigating the epis-
temic uncertainty. Accordingly, we utilize a very small num-
ber of hand-labeled point cloud scenes and call it ‘support’
data. In support data, traversable and non-traversable regions
are manually annotated as positive and negative, respectively.
Manually labeling entire scenes can be biased with human
intuitions. Therefore, only evident regions are labeled and
used for training. Fig. 2b shows the example of labeled sup-
port data.

The overall schema of our task is illustrated in Fig. 3
and the symbols used for the description of our method are
presented in Table 1. When the input point cloud data is
given, a segmentation mask is applied to the initial version
of the traversability regression map, producing a masked
traversability map as a final output. For training, we form
an episode composed of queries and randomly sampled sup-
port data. We can optimize our network over both query
and relatively small support data with the episodic strat-
egy [20]. Also, to properly evaluate the proposed framework,
we introduce a new metric that comprehensively measures
the segmentation and the regression, while highlighting the
nature of the traversability estimation task with the epistemic
uncertainty.
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FIGURE 3. Illustration of our task definition in the inference step. Given the point cloud data, the initial traversability map and binary segmentation
mask are processed. Finally, the final output is obtained by masking out the non-traversable regions of the initial traversability map.

FIGURE 4. Illustration of the effect of adopting the unlabeled data. Red
and blue nodes are embedding vectors of positive and negative data.
Gray nodes with a question mark indicate the unlabeled data, and the
black ones indicate proxies. The background color and lines indicate
decision boundaries in the embedding space. The embedded
vectors (non-black nodes) assigned to the proxies are connected to each
other with solid lines. (a) Without unlabeled data, proxies and decision
boundaries are optimized only with labeled data. (b) With unlabeled
data, the optimization exploits the broader context of the training data,
resulting in a more precise and discriminative decision boundary.

B. BASELINE METHOD
Let query data, consisting of positive and unlabeled data,
as Q = {QP, QU }, and support data, consisting of positive
and negative data, as S = {SP, SN }. Let Pi ∈ R3 denotes
the 3D point, ai ∈ R denotes the measured traversability,
and yi ∈ {0, 1} denotes the class of each point. Accordingly,
data from QP, QU , SP, and SN are in forms of {Pi, ai, yi},
{Pi}, {Pi, yi}, and {Pi, yi}, respectively. Let fθ denote a feature
encoding backbone where θ indicates a network parameter,
xi ∈ Rd as encoded features extracted from Pi, and hθ as
the multi-layer perceptron (MLP) head for the traversability
regression. gθ denotes the MLP head for the segmentation
that distinguishes the traversable and non-traversable regions.

A baseline solution learns the network with labeled data
only. QP is used for the traversability regression and QP
and S are both used for the segmentation. We obtain the

traversability map ti = h(xi), ti ∈ R, and segmentation map
si = g(xi), si ∈ {0, 1}. The final masked traversability map
Ti is represented as element-wise multiplication, Ti = ti ⊙ si.
The regression loss Lreg is computed with Qp and based on a
mean squared error loss as Eq. (1), where xi is the i-th feature
of point in QP.

Lreg(xi) = (h(xi) − ai)2. (1)

For the segmentation loss Lseg, binary cross-entropy loss
is used in the supervised setting as Eq. (2), where xi refers to
the i-th element of either QP and S. Both the positive query
and the support data can be used for the segmentation loss as
follows:

Lseg(xi) = −

(
yi log(g(xi)) + (1 − yi) log(1 − g(xi))

)
. (2)

Combining the regression and the segmentation, the
traversability estimation loss in the supervised setting is
defined as follows:

LBaseline(QP, S) =
1

|QP|

∑
xi∈QP

(
Lreg(xi) + Lseg(xi)

)
+

1
|S|

∑
xi∈S

Lseg(xi). (3)

Nonetheless, it does not fully take advantage of data cap-
tured under various driving surfaces. Since the learning is
limited to the small number of labeled data (Support S) and
the only positive supervision in Positive Query QP, it can
not capture the whole characteristics of the training data.
This drawback hinders the capability of the traversability
estimation trained in a supervised manner.

C. PROXY BANK GUIDANCE WITH METRIC LEARNING
To overcome the limitation of the supervised manner solu-
tion, we propose Proxy Bank Guidance (PBG) with a metric
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FIGURE 5. Illustration for the learning procedure of the proposed framework with deep metric learning.

learning mechanism. To this end, we adopt a proxy-based
loss [42] by exploiting all available collected data including
the unlabeled query data (QU .) The proxy-based loss utilizes
a metric learning mechanism so that we can learn embedding
space and find the representation vectors that epitomize the
train data in the learned embedding space. The representa-
tion vector that summarizes the data is called a proxy. The
embedding network is updated based on the position of the
proxies, and the proxies are adjusted by the updated embed-
ding network, iteratively.We refer this set of proxies as ‘Proxy
Bank,’ denoted as B = {BP, BN }, where BP and BN indicate
the set of proxies for each class. The segmentation map is
inferred based on the similarity between feature vectors and
the proxies of each class, as si = g(B, xi).
The representations of traversable and non-traversable

regions exhibit large intra-class variations, where numerous
sub-classes exist in each class; flat ground or gravel road
for positive, and rocks, trees, or bushes for negative. For
the segmentation, we use SoftTriple loss [43] that utilizes
multiple proxies for each class. The similarity between xi
and class c, denoted as Si,c, is defined by a weighted sum of
cosine similarity between xi and Bc = {p1c, . . . , p

K
c }, where

c denotes positive or negative, K is the number of proxies
per class, and pkc is k-th proxy in the proxy bank. The weight
given to each cosine similarity is proportionate to its value.
Si,c is defined as follows:

Si,c =

∑
k

exp( 1T x
⊤
i p

k
c )∑

k exp(
1
T x

⊤
i p

k
c )
x⊤
i p

k
c , (4)

where T is a temperature parameter to control the softness
of assignments. Soft assignments reduce sensitivity between
multiple centers. Note that the l2 norm has been applied to
embedding vectors to sustain divergence of magnitude. Then
the SoftTriple loss for the binary classification can be defined

as follows:

LSoftTriple(xi) = − log
exp(λ(Si,yi − δ))

exp(λ(Si,yi − δ)) +
∑

j̸=yi exp(λSi,j)
,

(5)

where λ is a hyperparameter for smoothing effect and δ is a
margin. Hence, the segmentation loss using the proxy bank is
represented as Eq. (6). Here, yi indicate a positive or negative
proxy in B. The traversability estimation loss using the proxy
bank is defined as Eq. (7).

Lseg(xi, B) = − log
exp(λ(Si,yi − δ))

exp(λ(Si,yi − δ)) + exp(λSi,1−yi )
.

(6)

LProxy(QP, S, B) =
1

|QP|

∑
xi∈QP

(
Lreg(xi) + Lseg(xi, B)

)
+

1
|S|

∑
xi∈S

Lseg(xi, B). (7)

Unlabeled data, which is abundantly included in
self-supervised traversability data, has not been considered
in previous works. To enhance the supervision we can extract
from the data, we utilize the unlabeled data in the query data
in the learning process. The problem is that the segmentation
loss cannot be applied to the QU because no class labels
yi exist for them. We assign an auxiliary target for each
unlabeled data as clustering [44]. Pseudo class of i-th sample
ŷi is assigned based on the class of the nearest proxy in the
embedding space as ŷi = argmaxc∈{P,N } Si,c.
The unsupervised loss for the segmentation, denoted as

LU , is defined as Eq. (8) using the pseudo-class, where xi is
an embedding of i-th sample in QU .

LU (xi, B) = − log
exp(λ(Si,ŷi − δ)

exp(λ(Si,ŷi − δ)) + exp(λSi,1−ŷi ))
(8)

Fig. 4 illustrates the benefit of incorporating unlabeled
loss. The embedding network can learn to capture the more
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TABLE 1. Nomenclature.

broad distribution of data, and learned proxies would repre-
sent training data better. When unlabeled data features are
assigned to the proxies (Fig. 4a,) the embedding space and
proxies are updated as Fig. 4b, exhibiting more precise deci-
sion boundaries.

Combining the aforementioned objectives altogether,
we define our final objective as ‘Traverse Loss,’ and is
defined as Eq. (9). The overall high-level schema of the
learning procedure is depicted in Fig. 5.

LTraverse(Q, S, B) = LProxy(QP, S, B)+
1

|QU |

∑
xi∈QU

LU (xi, B)

(9)

D. RE-INITIALIZATION TO AVOID TRIVIAL SOLUTIONS
Our PBG method can suffer from sub-optimal solutions,
which are induced by empty proxies. Empty proxies indicate
the proxies to which none of the data are assigned. Such
empty proxies should be redeployed to be a good representa-
tion of training data. Otherwise, the model might lose the dis-
criminative power and the bank might include semantically
poor representations.

Our intuitive idea to circumvent an empty proxy is to
re-initialize the empty proxy with support data features.
By updating the empty proxies with support data, the proxy
bank can reflect training data that was not effectively cap-
tured beforehand. In order to obtain representative feature
vectors without noises, M number of prototype feature vec-
tors, denoted as µ+

= {µ+
m,m = 1, . . . ,M} and µ−

=

{µ−
m,m = 1, . . . ,M}, are estimated using an Expectation-

Maximization algorithm [45]. We followed the implementa-
tion of the EM algorithm from [33] that uses the vector dis-
tance function. The EM algorithm consists of iterative E-steps
andM-steps. In each E-step, the expectation of each feature to
the prototypes is computed, which can be regarded as cluster
assignment. Then, for each M-step, the prototype vectors
are updated as weighted averages of features. The prototype
vectors are cluster centers of support features. We randomly
choose the prototype vectors with small perturbations and use
them as re-initialized proxies. Algorithm 1 summarizes the
overall training procedure of our method, and Fig. 9 shows
the three different states of proxies; initial, trivial, and optimal
states.

E. TRAVERSABILITY PRECISION ERROR
We devise a new metric for the proposed framework,
‘Traversability Precision Error’ (TPE). The new metric
should be able to comprehensively evaluate the segmenta-
tion and the regression while taking the critical aspect of
the traversability estimation into account. One of the most
important aspects of traversability estimation is to avoid the
false-positive of the traversable region, the region that is
impossible to traverse but inferred as traversable.

Self-supervised traversability estimation produces
overconfident predictions when confronted with out-of-
distribution samples, which can result in catastrophic failure
while exploring unfamiliar terrain. If such a region is esti-
mated as traversable, a robot will likely go over that region,
resulting in undesirable movements. In other words, the pri-
mary goal of the task is to eliminate false positive estimations
of non-navigable locations in order to ensure safe navigation.
The impact of the false-positive decreases if they are esti-
mated as less traversable. The metrics should take this aspect
into account the characteristic that non-traversable regions
predicted as highly traversable are much more unfavorable
than non-traversable regions estimated as less traversable.

Therefore, TPE computes the degree of false-positive
of the traversable region, extenuating its impact with the
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Algorithm 1 Single Epoch of Traversability Estima-
tion With Metric learning
Input: Query data Q = {QP, QU } and Support Data

S = {SP, SN }, where |Q| ≫ |S|

Output: Network f with parameters θ , proxy bank
B = {BP, BN }

for each query data do
Random Sample support data from S
Feed query and support data to fθ , and Get
embedding features xi

Calculate similarity between xi and B
Estimate Pseudo-class ŷi for xi ∈ QU

Calculate LTraverse

Update θ and B
end
Calculate the membership of each proxy
if an empty proxy exists then

Feed S to fθ , and Get embedding features
EstimateM cluster centers for each class,
µ = {µ+, µ−

}, by the EM algorithm
Re-initialize empty proxy to µ with small random
perturbation

end

traversability ti. The TPE is defined as Eq. (10) where TN ,
FP, andFN denote the number of true negative, false positive,
and false negative points of the traversable region, respec-
tively.

Traversability Precision Error (TPE)=
TN

TN+ FP(1 − ti) + FN
(10)

IV. EXPERIMENTS
In this section, our method is evaluated withDtrail dataset for
traversability estimation on off-road environments along with
SemanticKITTI [18] dataset. Our PBG method is compared
to other metric learning methods based on episodic training
strategies. Furthermore, we conduct various ablation studies
to show the benefits of our method. For better clarity, we first
define the ablation options as Table 3.

A. DATASETS
1) DTRAIL: OFF-ROAD TERRAIN DATASET
In order to thoroughly examine the validity of our method,
we build the Dtrail dataset, a real mobile robot driving dataset
of high-resolution LiDAR point clouds from mountain trail
scenes. We collect point clouds using one 32 layer and two
16 layers of LiDAR sensors equipped on our caterpillar-type
mobile robot platform, shown in Fig. 6a. Our dataset con-
sists of 119 point cloud scenes and each point cloud scene
has approximately 4 million points. Corresponding sample
camera images of point cloud scenes are shown in Fig. 6b.
For the experiments, we split 98 scenes for the query set and

FIGURE 6. Dtrail dataset. (a) Our mobile robotic platform with one
32-layer and two 16-layers of LiDARs. (b) Images of the mountain trail
scenes where we construct the dataset.

4 scenes for the support set, and 17 scenes for the evaluation
set. For the traversability, the magnitude z-acceleration from
the Inertial Measurement Unit (IMU) of the mobile robot is
re-scaled from 0 to 1 andmapped to points that the robot actu-
ally explored. Also, in terms of data augmentation, a small
perturbation is added along the z-axis on some positive points.

2) SemanticKITTI
We evaluate our method on the SemanticKITTI [18] dataset,
which is an urban outdoor-scene dataset for point cloud seg-
mentation. Since it does not provide any type of attributes
for traversability, we conducted experiments on segmentation
only. It contains 11 sequences, 00 to 10 as the training set,
with 23, 210 point clouds and 28 classes.We split 5 sequences
(00, 02, 05, 08, 09) with 17, 625 point clouds for training and
the rest, with 5, 576 point clouds, for evaluation. We define
the ‘road’, ‘parking’, ‘sidewalk’, ‘other-ground’, and ‘terrain’
classes as positive and the rest classes as negative. For query
data, only the ‘road’ class is labeled as positive, and left other
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TABLE 2. Comparison results on Dtrail and SemanticKITTI dataset. Our methods with different objectives are annotated as follows. PBG (Baseline):
Eq. (3) that is trained in supervised manner. PBG (w.o. Unsupervised): Eq. (7) that does not leverage unlabeled data. PBG (w.o. Re-init): Eq. (9) excluding
the re-initialization step. PBG (All): Eq. (9).

FIGURE 7. Qualitative results for Dtrail dataset. (a) Camera image of each scene. (b)-(d) Support data and inference results of segmentation. A red
point indicates a traversable region, a blue one indicates a non-traversable region, and a black point is an unlabeled region. (e) The final output of
our traversability estimation. The traversability of non-traversable regions is masked out using the segmentation result.

positive classes as unlabeled. We expect the model to learn
the other positive regions using unlabeled data without direct
supervision.

B. EVALUATION METRIC
We evaluate the performance of our method with TPE, the
new criteria designed for the traversability estimation task,
which evaluates segmentation and regression quality simul-
taneously. Additionally, we evaluate the segmentation quality
with mean Interaction over Union [46] (mIoU). For each

class, the IoU is calculated by IoU =
TP

TP+FP+FN , where
TP, FP, and FN denote the number of true negatives, false
positives, and false negative points of each class, respectively.

C. IMPLEMENTATION DETAILS
1) EMBEDDING NETWORK
RandLA-Net [4] is fixed as a backbone embedding network
for every method for a fair comparison. Specifically, we use
2 down-sampling layers in the backbone and excluded global
(x, y, z) positions in the local spatial encoding layer, which
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FIGURE 8. Qualitative results for SemanticKITTI. A red-colored point indicates a traversable region, a blue-colored point indicates a non-traversable
region, and a black point is an unlabeled region.

TABLE 3. Applied components for the ablation studies. (All other
components not listed here are used).

aids the network to embed local geometric patterns explicitly.
The embedding vectors are normalized with l2 norm and are
handled with cosine similarity.

2) TRAINING
We train the model and proxies with Adam optimizer with
the exponential learning rate decay for 50 epochs. The initial
learning rate is set as 1e−4. For query and support data,
K-nearest neighbors (KNN) of a randomly picked point is
sampled in training steps. We ensure that positive and nega-
tive points exist evenly in sampled points of the support data.

3) HYPERPARAMETER SETTING
For learning stability, proxies are updated exclusively for
the initial 5 epochs. The number of proxies K is set to
128 for each class and the proxies are initialized with nor-
mal distribution. We set small margin δ as 0.01, λ as 20,
and temperature parameter T as 0.05 for handling multiple
proxies.

D. RESULTS
1) COMPARISON
We compare the performance to ProtoNet [29] which uses
a single prototype and MPTI [20] which adopts multiple

FIGURE 9. t-SNE visualization of the embedding space according to the
distribution of data. Red and blue colors correspond to positive and
negative proxies, respectively.

prototypes for few-shot 3D segmentation. Also, we com-
pare the performance with our supervised manner method,
denoted as ‘PBG (Baseline).’ Table 2 summarizes the result
of experiments. Our method shows a significant margin
in terms of IoU and TPE compared to the ProtoNet and
MPTI. It demonstrates that generating prototypes in a
non-parametric approach does not represent the whole data
effectively. Moreover, it is notable that we show the per-
formance of our proxy bank guidance with metric learning
method is better than the supervised setting designed for our
task. It verifies that ours can reduce epistemic uncertainty
by incorporating unlabeled data by unsupervised loss. For
SemanticKITTI, the observation is similar to that of the
Dtrail dataset. Even though the SemanticKITTI is based on
urban scenes, our method shows better performance than
other few-shot learning methods by 6% and the supervised
manner (PBG (Baseline)) by 2%.

2) ABLATION STUDIES
We repeat experiments with varying support-to-query
ratio (|S|/|Q|) to evaluate robustness regarding the amount of
support data. Table 2 shows that our metric learning method
is much more robust from performance degradation than the
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TABLE 4. Ablation study on Dtrail according to the number of proxies K .

FIGURE 10. Proxy visualization of the scene in our Dtrail dataset. The color of each point represents the proxy assigned to the point. It shows that the
learned proxies are well-clustered, and mapped with the semantic features on the point cloud scene. The viewpoint of the camera and LiDAR image
slightly differs, according to the different sensor locations.

others when the support-to-query ratio decreases. When the
ratio decreases from 4% to 1% in the Dtrail dataset, the TPE
of our metric learning method only decreases about 4%while
the TPE of others dropped significantly: 39% for ProtoNet,
13% for MPTI, and 16% for PBG (Baseline). It verifies
that our method can robustly reduce epistemic uncertainty
with small labeled data. This experiment firmly shows that
PBG (Baseline) shows stable performance compared to other
methods, on the strength of the unlabeled data. Note that
all PBG (Baseline) can utilize the small number of support
data (S) and query data (Q) that includes only a large amount
of positive data, while other methods (ProtoNet [29] and
MPTI [20]) do not.

Moreover, we observe that performance increases by 6%
on average on TPE when adopting the re-initialization step.
It confirms the re-initialization step can help avoid triv-
ial solutions. Also, it is shown that adopting the unsuper-
vised loss can boost the performance up to 6% on aver-
age. It verifies that the unlabeled loss can give affluent
supervision without explicit labels. Table 3 shows the con-
ditions for conducting ablation studies on our PBG. For the
fair experiments on the effects of Unsupervised loss and
Re-initialization, all methods not listed in the table are basi-
cally applied. Moreover, as shown in Table 4, an increasing
number of proxies boost the performance until it converges
when the number exceeds 32, demonstrating the advantages
of multiple proxies.

3) QUALITATIVE RESULTS
Fig. 7 shows the traversability estimation results of our
supervised-based (PBG (Baseline)) and metric learning-
based method (PBG (All)) on the Dtrail dataset. We can

examine that our metric learning-based method performs bet-
ter than the supervised-based method. Especially, our method
yields better results on regions that are not labeled on train-
ing data. We compare the example of segmentation results
with the SemanticKITTI dataset in Fig. 8. The first column
indicates the ground truth and the other columns indicate
the segmentation results of the supervised learning-based
method and our method. Evidently, our method shows better
results on unlabeled regions, which confirms that our metric
learning-based method reduces epistemic uncertainty.

Fig. 9 shows the t-SNE visualization of the proxy banks.
The proxies are initialized with random distribution in the
initial state, as shown in Fig. 9a. After learning without
proxy re-initialization, empty proxies, in which no data are
assigned, occur. It leads to a state where proxies have sim-
plistic distributions, as shown in Fig. 9b. It loses the ability
to represent diverse representations to distinguish positive
and negative features. On the other hand, the proxies learned
with re-initialization algorithms result in an optimal state of
proxies, in which proxies are precisely positioned to discrim-
inate between traversable and non-traversable regions.

Fig. 10 shows the visualization of the proxies assigned
to the point cloud scenes. For better visualization, proxies
are clustered into three representations. We observe that the
learned proxies successfully represent the various semantic
features. Leaves, grounds, and tree trunks are mostly colored
green, black, and blue, respectively.

V. CONCLUSION
We propose a self-supervised traversability estimation frame-
work on 3D point cloud data in terms of mitigating epistemic
uncertainty. Self-supervised traversability estimation suffers
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from the uncertainty that arises from the limited supervision
given from the data. We tackle the epistemic uncertainty
by concurrently learning semantic segmentation along with
traversability estimation, eventually masking out the non-
traversable regions. We start from the fully-supervised set-
ting and finally developed the deep metric learning method
with unsupervised loss that harnessed the unlabeled data.
To properly evaluate our method, we also devise a new
evaluation metric according to the task’s settings and under-
line the important criteria of the traversability estimation.
We build our own off-road terrain dataset with the mobile
robotics platform in unconstrained environments for realistic
testing. Various experimental results show that our method is
promising.

Future work.Our proposed method presents a method for
learning a deep learning network that can predict traversabil-
ity by properly utilizing unlabeled data, and showed that it
can have excellent performance with the help of a very small
amount of support data. However, our algorithm still requires
support data based on human-annotated positive and negative
labels. In future work, we plan to conduct research that can
overcome these limitations by utilizing a zero-shot learning
method or domain adaptation method.
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