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ABSTRACT Despite hand gesture recognition is a widely investigated field, the design of myoelectric
architectures for detecting finer motor task, like the handwriting, is less studied. However, writing tasks
involving cognitive loads represent an important aspect toward the generalization of myoelectric-based
human-machine interfaces (HMI), and also for many rehabilitative tasks. In this study, the handwriting
recognition of the ten digits was faced under the myoelectric control perspective, considering the probes
setup and the feature extraction step. Time and frequency domain features were extracted from surface
electromyography (sEMG) signals of 11 subjects who wrote the ten digits following a standardized template
and 8 sEMG probes were equally distributed between forearm and wrist. Feature class separability was
investigated and an aggregated feature set was built to train pattern recognition architectures, i.e. linear
discriminant analysis (LDA) and quadratic support vector machine (QSVM). Also, four reduced probes
setups were investigated. LDA and QSVM showed mean accuracy of about 97%, with all the forearm
and wrist sEMG information. A significant reduction of performances was observed considering the wrist
or the forearm only (≤92%) and when LDA and QSVM were trained with two electrodes information
(≤90%). For the reliable classification performances in a motor task involving high cognitive demands,
like the handwriting, it is required the use of probes fully covering forearm and wrist. Outcomes support the
methodological transfer from myoelectric hand gesture to the handwriting recognition, which represents a
key aspect in the development of new HMI for rehabilitation tasks.

INDEX TERMS Handwriting, myoelectric pattern recognition, feature extraction, human-machine interface.

I. INTRODUCTION
Recently, the use of surface electromyography (sEMG) for
human-machine interfaces (HMI) is finding a widespread
consensus in the literature [1], [2], [3], [4]. Indeed, myoelec-
tric control proved to be valuable in different fields, i.e. from
robotics to prosthesis, where the sEMG signals are used for
decoding human intent in high-level control architectures [3],
[5], [6]. This signal can be used to opportunely interact
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in virtual and augmented reality scenarios, substantially
contributing to the development of sEMG-basedHMI [7], [8],
[9], [10] for gaming and medical diagnosis aims [2], [11].

Despite, both proportional and pattern recognition archi-
tectures (PRA) can be employed for the development of
HMI [2], [3], [12], the PRA solutions demonstrated to be
particularly appealing and widely employed in real applica-
tions [13]. However, it is desirable to select commands from
a large set of possible hand gestures since it allows to make
more rich and fluent the human-machine interaction [2],
[3]. This can be reached by considering finer movements of
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the hand in addition to the commonly used set of grasps,
fingers, and wrist motions [14], [15], [16]. Such tendency
can be recognized in recent studies, where a large number of
gestures is taken into account in designing PR architectures
for myoelectric control [2], [17]. Moreover, the technological
advancements observed in the field of wearable devices
shifted the attention to new devices that can be placed either
on the forearm or on the wrist [2], [14]. In particular, the
information acquired by sensing muscles activity closed to
such joint appeared to be promising for developing HMI and
the interest to change the focus from forearm to wrist in
the development of EMG-based HMI was confirmed in [2].
Indeed, the PRA trained on wrist data provided similar or
superior performances with respect to those based on forearm
EMG signals [2]. Such change of perspective can be justified
not only by the goodness of the results, but also by the
needs behind the development of minimally cumbersome
interfaces [2].

The assessment of PRA based on wrist EMG data deserves
to be further investigated to get a deeper awareness of the
potential role that such joint can play for the above mentioned
purposes. Thus, to understand whether the wrist can be a
reliable landmark, it appears reasonable to investigate more
challenging hand movements involving a finer motor control.
For this reason, in this work, the recognition of handwritten
digits on paper, based on forearm and wrist myoelectric
activity, was faced. In the handwriting, the central nervous
system integrates visual-spatial information and regulates all
the subtle contractions of the upper limb muscles, in order
to adjust the movement of the pen [18], [19]. This produces
synergistic muscle activation of the hand, wrist, and forearm
muscles that may challenge the automatic recognition of
complex task as the handwriting.

As a matter of fact, in previous studies [6], [20], [21],
[22], the recognition of a hand written characters from sEMG
data was faced through template matching, dynamic time
warping, and deep learning approaches, which require large
databases with a high computational burden in the training
step. For instance, in [22] each subject wrote 36 characters
on a screen, and each character was repeated one thousand
times in order to create the dataset. This unavoidably hampers
its application in a practical scenario, since the subject has to
undergo long acquisition sessions. Further, similarly to [21],
before the classification step, sEMG data were mapped in
pen coordinates, acquired upon the plane. This is consistently
different with respect to the approaches employed in the
classical hand gesture recognition field, where typical data
labeling and machine learning techniques are adopted [2],
[12], [23], [24].

The aim of this study is to understand whether it is possible
to detect the hand-written digits through PRA specific for
the EMG based hand gesture recognition [2], [14], [23],
extending such methodologies toward a not fully investigated
motor task. Moreover, it has been also investigated the
role played by the wrist in the development of sEMG-
based PRAs for handwritten digits recognition. For these

FIGURE 1. Eight EMG electrodes configuration. Panels 1(a) and 1(b) show
how sEMG probes were distributed respectively on the frontal and ventral
part of the arm.

purposes, an opportune dataset was collected taking into
account 11 subjects who wrote all the digits by matching
a given template. Then, multiple PRA were trained taking
into account different electrodes setups, i.e. considering
data coming from forearm channels, wrist channels, and
considering all the channels together.

II. MATERIALS AND METHODS
A. DATA COLLECTION
Eight self-adhesive bipolar surface electrodes (BTS Bio-
engineering FREEEMG) with sampling frequency 1000 Hz
were used. Four probes were placed around the proximal
forearm, whereas the remaining surrounded the wrist cir-
cumferentially [2]. In particular, following the electrode
placement in [2], two forearm probes were placed over
the extensor digitorum (channel 1, CH1) and flexor carpi
radialis (channel 2, CH2). The other two electrodes were
equidistantly located on the opposite side of the forearm,
covering brachioradialis (channel 3, CH3) and flexor carpi
ulnaris respectively (channel 4, CH4) (Fig. 1). Regarding
the wrist electrodes, two probes covered extensor digitorum
minimi (channel 5, CH5) and extensor digiti (channel 6,
CH6), on the posterior side of the wrist proximally to the
ulnar styloid process. The other two probes were arranged on
the anterior side of the wrist, covering distal ending of flexor
carpi radialis in correspondence to the deep flexor pollicis
longus (channel 7, CH7) and flexor digitorum superficialis
(FD, CH8), respectively (Fig. 1).

B. EXPERIMENTAL PROTOCOL
For the experiment, 11 healthy subjects, 6 males and
5 females aged between 21 and 50, were recruited. All
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FIGURE 2. Template of ten digits. Red arrows indicate the writing pattern.
Note that digit 4 and 9 are multi-stroke signs whereas all other digits are
single stroke.

participants gave their written informed consent and the study
was approved by the institutional ethic committee. Volunteers
were asked to write numbers from 0 to 9 with their dominant
hand, sitting in a comfortable position and leaning the arm
against desk to avoid fatigue during the task. In order to
standardize the writing pattern of every digit, a standard
template of numbers is followed, as shown in Fig. 2. Each
digit was written ten time and subjects alternated a writing
phase of 3 seconds and a resting phase of 5 seconds for every
repetition, resulting in a total duration of about 15 minutes for
each experiment.

C. SIGNAL PRE-PROCESSING
All the raw sEMG signals underwent the same pre-processing
steps. Signal amplitude was normalized with respect to the
maximum peak value. A second order, zero phase, band-
pass Butterworth filter with 30 Hz lower cut-off frequency
and 450 Hz higher cut-off frequency was applied. An ON-
OFF time instants detection was performed in order to extract
features in the contraction phase [14], [25]. An example of the
sEMG signals recorded from a trial were reported in Fig. 3.
At the end of this process, data are organized in a 10×8 array
(10 activations × 8 recordings).

Each detected activation burst was then segmented with
150 ms length windows overlapping of 75 ms each other,
consistently with common practice in myoelectric pattern
recognition problems [26], [27], [28]. Eventually, for each
subject, a total of 3900 samples were obtained for training
and testing machine learning models.

D. FEATURE EXTRACTION AND ANALYSIS
Selection and extraction of highly effective features is one of
the most crucial aspect in pattern recognition and myoelectric
control design [12], [29]. To this point, two kind of analysis
were performed. As first, a total of 26 features were
extracted form each sEMG segment: 16 time-domain (TD)
and 10 frequency-domain (FD) features [2], [4], [14]. Each
feature dimension depends both on the number of channels
and on the type of feature, i.e. single or multi-dimensional.
By indicating n as the number of channel considered, the
feature dimension is obtained accordingly as reported in
Table 1.
Then, they were aggregated in sets made by the same

features computed for all the channels. For each of these

data sets, a class separability assessment (Section II-E) was
performed in order to verify the capabilities of each feature
in highlighting the myoelectric patterns.

The second analysis regarded the evaluation of PRA over
an aggregated feature set obtained by including the TD and
FD features that respectively showed the best separability
properties. Hence, such feature set was considered in different
sEMG channels configurations:

• all the channels of the forearm and wrist (ALL);
• the forearm channels, i.e. from 1 to 4 (FA);
• the forearm reduced setup 1, i.e. channels 1 and 2 (FA1);
• the forearm reduced setup 2, i.e. channels 3 and 4 (FA2);
• the wrist channels, i.e. from 5 to 8 (WR);
• the wrist reduced setup 1, i.e. channels 5 and 6 (WR1);
• the wrist reduced setup 2, i.e. channels 7 and 8 (WR2).

Please, notice that, in accordance with Table 1, feature space
dimension is 48 for ALL, 24 and 12 for FA, WR and
FA1, FA2, WR1, WR2, respectively. This was done in order
to asses how different setup configurations impact on the
performances of PRA. Please note that all the reduced setups,
i.e. FA1, FA2, WR1 and WR2 encompasses a couple of
agonist/antagonist muscles. This guaranteed a functional and
minimal covering for the hand tasks.

E. CLASS SEPARABILITY PROPERTIES
In the first analysis, three indexes were computed to evaluate
the cluster separability properties of each EMG feature space.
The first two indexes were the separability index (SI) and the
mean semi-principal axis (MSA) [30], [31]. The former
quantifies the distances between the different clusters present
in a data set, hence mirroring how much the classes are
separable. The SI can be computed as [30] and [32]:

SI =
1
N

N∑
j=1

(
1
2

√
(µj − µcj)T S−1(µj − µcj)) (1)

where N is the number of classes, µj is the centroid of class j,
µCj is the centroid of the most conflicting class (with respect
to class j), and S is defined as:

S =
Sj + SCj

2
(2)

where Sj is the covariance of class j and SCj is the
covariance of the most conflicting class (with respect to
class j). The larger the SI value, the more distinct the classes
are [30].

The MSA was proposed as a measure for intra-class
variability and it considers the points of each class as a
cluster in the shape of a hyper-ellipsoid [31], complementing
the information provided by the SI. Indeed, it may happen
that an increase in classes separability may result from
clusters that are compact, or from clusters that are located
farther apart. Thus, accessing information on distribution
of data within single class and evaluating the spatial size
of cluster is an important aspect to take into account.
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TABLE 1. Features extracted for time and frequency domains. More information regarding their computation can be found in [12], [14], [24], and [29]. Last
column of the table reports the dimension of the feature, which depends on the number n of channels considered.

MSA can be computed as:

MSA =
1
N

N∑
j=1

((
n∏

k=1

ajk )
1
n ) (3)

where a ajk is the k th of n singular values of class j and n
is equal to the number of feature space dimensions. The n
value varies according to the number of features contained in
each feature set. Thus, the greater is the density of the clusters
the lower is the variability among data, resulting in a lower
MSA.

A further index commonly employed to asses
the class separability properties was the Davies-
Bouldin (DB) [2], [33]:

DB =
1
N

N∑
i=1

max(Rij) (4)

where Rij is cluster similarity

Rij =
Si + Sj
Dij

(5)

Si and Sj are the dispersions of the ith and jth clusters
respectively, andDij is the distance between their mean value.
In other words, the DB index describes how badly the clusters
overlap their closest neighbors [34]. Thus, lower values of the
DB index stand for a higher degree of cluster separability.

F. CLASSIFICATION EXPERIMENTS
A first comparison was performed using the eight sEMG
channels in order to test the goodness of feature selected
through class separability metrics with respect to all the
features, i.e., TD and FD, and with respect to a feature set
obtained by a gold-standard feature selection procedure [2],
[28]. In particular, a modified version of the forward feature
selection algorithm (FFS) was used to select those features
that were more representative of the population, avoiding
possible bias effects due to individual characteristics and
probes location. For this reason, the FFS selected the features
that minimizes the ten-fold validation error averaged among
the 11 subjects by adding at each step the same block of
feature computed over all the channels. Then, the feature set
made by the features that showed the best class separability
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FIGURE 3. The eight sEMG signals obtained from an experimental record of a representative subject. Red
traces are relative to the forearm probes, whereas blue traces indicate probes placed on the writs.

properties was employed for PRA experiments in 7 different
conditions, as reported in Section II-D.

Two types of PRA that showed reliable performances
in myoelectric control were used: the linear discriminant
analysis (LDA) classifier, and the support vector machine
with a quadratic kernel (QSVM) [2], [23], [35], [36]. These
architectures were trained and validated through a ten fold
cross validation. In particular, in order to reduce possible
issues due to data leakage problems, a class-balanced random
split was employed to create the folds. This broke possible
time correlation among them, that otherwise can lead to
over-optimistic models. The within subject accuracy (WSA),
averaged over the ten folds and the macro F1 score were
used as metrics to evaluate the performances of both LDA
ans QSVM [37].

For each setup condition, pair comparisons between the
LDA and QSVM accuracy were performed through the
Wilcoxon rank sum test [25]. This was done to assess
whether one PRA presented actual advantages with respect
to the other one for the considered motor task. Further, the
aforementioned statistical test was used for other compar-
isons involving different setup condition. In particular, WSA
obtained in the ALL condition was compared with those
provided in FA and WR ones (Section II-D). Following
the same line, also the WSA of WR were compared with
those in FA. This first set of comparisons was defined in
order to understand whether a reduction in the number of
recordings of the upper limb muscles activity would degrade
the performances of LDA and QSVM. Then, within each
anatomical muscles group, i.e. FA and WR, a minimal
configuration involving two electrodes would be preferable
with respect to the four channels configuration. Hence, WSA
provided in FA were compared with those obtained in FA1
and FA2, and the same was done among WR, WR1 and
WR2 (second set of comparisons). For each comparison,
significance was set at 0.05.

TABLE 2. Mean and standard deviation of MSA, SI and DB value of
11 subjects calculated for time-domain features. The features that
presented the best class separability properties are highlighted in bold.

III. RESULTS
A. CLASS SEPARABILITY PROPERTIES
Table 2 shows the clustering metrics calculated for each time-
domain feature, averaged among the 11 subjects. In particular
the analysis reported in Section II-E highlighted three TD
and three FD features that presented good class separability
properties. Concerning the TD ones, MAV, DAMV, DASDV
showed the best performances in terms of SI and MSA,
whereas the DB showed large set of features with values
around 0.7, resulting less sensitive with respect to the other
metrics.

The same was done for the FD features (Table 3). The
first three spectral moments presented superior separability
properties. Indeed, for SM1, SM2, and SM3, the relative
lower DB indexes agree with higher SI. Moreover, the MSA
values obtained with respect to other FD features indicate that
the spectral moments are able to map hand movements in
compact clusters. Hence, based on these results, the proposed
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TABLE 3. Mean and standard deviation of MSA, SI and DB value of
11 subjects calculated for frequency-domain features. The features that
presented the best class separability properties are highlighted in bold.

TABLE 4. Table shows the mean WSA of the 11 subjects obtained for LDA
and QSVM using ALL condition respectively with the proposed feature
set, the one obtained through FFS and all the features together.

feature set used in the pattern recognition experiments was
composed by MAV, DAMV, DASDV, SM1, SM2 and SM3.

B. PATTERN RECOGNITION EXPERIMENTS
Table 4 shows themeanWSA obtained among the 11 subjects
for the proposed feature set, for FFS set and when all
the features are used together in ALL condition.The FFS
highlighted 8 features, i.e., RMS, WFL,DASDV, SSC,
FUZZYEN, SM1, HIST and AR, eventually resulting in a
feature space of dimension 160. Such input size is lower
if compared to use all the features together, i.e., 360, but
consistently higher with respect to the proposed set that has
a dimension of 48. Moreover, the proposed feature set has
a reduced dimension with respect to the other two feature
sets,guaranteeing at the same time no statistically significant
drop of accuracywhen comparedwith the other two sets using
both LDA and QSVM.

Table 5 shows the mean WSA for the LDA and QSVM
architectures in all the setup configurations. For each
condition, no statistical difference was observed between the
mean WSA provided by LDA and QSVM. This was further
supported by the low value of standard deviation obtain in
each PRA experiment, i.e. not greater than 2.72%. Regarding
the first set of comparisons (Section II-F), the ALL setup
configuration performed better than FA and WR, whereas
FA showed significant differences with respect to WR. In the
ALL case, mean WSA was greater than 97% for both LDA
and QSVM, but it reduced in FA and WR, although in the
latter case showed values slightly lower than 92% (Table 5).

Regarding the second set of comparisons (Section II-F),
FA showed significant greater accuracy with respect to
the two reduced configurations FA1 and FA2 (Table 5).
However, no significant differences were observed between
FA1 and FA2, neither for LDA nor for QSVM. Similarly,
WR performed significantly better than WR1 and WR2,
whereas no significant difference was observed between the

reduced wrist configurations WR1 and WR2. Despite the
accuracy were consistently reduced with respect to FA and
WR, all the minimal-setup configurations FA1, FA2, WR1,
and WR2 showed mean WSA accuracy greater than 86%,
indicating good performances even when only two electrodes
were used.

Since the gap in the accuracy between FA (WR) and
FA1 (WR1), FA2 (WR2) is small, one may wonder whether
two channels configuration can be an efficient compromise
for practical applications. For this reasons macro F1 was
used to further investigate such aspect (see section II-F).
Figure 4 reports the mean macro F1 computed for both
LDA and QSVM in the reduced sEMG channels conditions.
A reduction in the aforementioned metric was observed
comparing FA with FA1 and FA2 (Fig. 4(a)) and the same
holds also for the WR. Moreover, as shown in Fig. 4, the FA
setup provided superior performances if compared with WR,
whereas all the reduced configurations did not guaranteed
acceptable performances (macro F1 ≤ 70%).

IV. DISCUSSION
A. CLASS SEPARABILITY PROPERTIES
The first analyzed aspect regarded the class separability
properties of TD and FD features. This step plays a funda-
mental role when aggregated feature sets are constructed [33].
In the TD, three features appeared to be particularly able
in highlighting differences among the ten classes (Table 2).
Moreover, as observed in [24], DAMV is calculated exactly
as WL, but averaging the latter by the number of window
samples, and the same consideration can be pointed out
for DASDV and RMS. Hence, although WL and RMS
showed good separability properties, the use DAMV and
WL (or DASDV and RMS) together in the same feature
set is not recommended, since it would increase redundancy
without supplying additional information. On the contrary,
using either DAMV and DASDV within an aggregated
feature set could be a valuable choice since their combined
effect provides energy (DASDV) and complexity (DAMV)
information contemporaneously [23], [24]. Hence, in this
work, based on the above considerations and taking into
account the indexes reported in Table 2, the three features
selected in TD for defining the aggregated feature set were
MAV, DAMV and DASDV. In passing, the inclusion of MAV
within the aggregated feature set (Table 2) is not completely
surprising since it showed reliable performances in several
published studies [12], [14], [38], also when considered
alone [24].

Moreover, it deserves to be discussed how the multidimen-
sional features such as HIST, AR and CC behave. The former
presents clusters with low aggregation properties, as indicated
by the relatively highMSA and DB. This is in agreement with
what reported in [23], although some studies highlighted that
HIST is a robust feature with respect to electrodes location
stability, providing good results when used for myoelectric
PRA [30], [33]. A similar behavior holds also for CC and
AR, since the inclusion of these two features in an aggregated
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TABLE 5. Table shows WSA averaged among the 11 subjects for the seven sEMG channels configurations and for both LDA and QSVM, and for the
proposed feature set. Symbols † and ⋆ indicates a significant difference (p<0.05) respectively for LDA and QSVM in relation to the first set of comparisons
(section II-F). Similarly, symbols ‡ and ∗ indicates a significant difference (p<0.05) respectively for LDA and QSVM for the second set of comparisons.

FIGURE 4. Mean Macro F1 for LDA and QSVM are reported respectively with blue and red bars. Panel 4(a) shows the scores obtained for FA
and its relative minimal configurations, i.e. FA1 and FA2. Panel (b) shows the scores obtained for WR and its relative minimal
configurations, i.e. WR1 and WR2.

feature set adds meaningful information, generally increasing
the overall recognition accuracy [23], [24]. Nevertheless,
being CC and AR multidimensional features, they tend
to increase the dimensionality of feature space, eventually
enhancing the complexity of the PRA and the computational
burden in real-time applications.

As observed in Table 3, among the 10 FD features, the
first three spectral moments showed the best class separability
properties. This confirms that such features have a good
capability of mapping EMG signal epochs in well defined
patterns [23], [39]. Hence, despite less investigated and
used in aggregated datasets, such features were included
in the aggregated feature set employed in the present
study. Regarding the other FD features, although MNF and
MDF were commonly employed in upper limb myoelectric
control [40], they showed low class separability properties.
This can be due to the small window size adopted for their
estimation, since it was reported that the variance of both
MNF andMDF grows with a reduction of length of the epoch
used for the estimation [41]. This is confirmed by the high
MSA values, which indicate relatively less compact clusters,
thus characterized by a larger variance.

B. PATTERN RECOGNITION EXPERIMENTS
1) AGGREGATED FEATURE SET AND PRAs
The problem of handwriting recognition through sEMG
data is not completely new. Previous studies faced such

problem making use of convolutional neural networks or
template matching approaches, showing good classification
performances [20], [22]. However, such architectures require
large data frames to be opportunely trained and validated and
this can be a limit in a practical context. Indeed, subjects
affected by pathologies cannot undergo to prolonged data
acquisition sessions, and this implies the availability of small
data sets for the design of PRA [4]. Hence, in this study the
problem of handwriting recognition from sEMG data was
pursued through LDA and QSVM, which are particularly
suitable for the development of myoelectric HMI [2], [30],
[36], not requiring large data frames.

The first aim of the PRA experiments in this study regarded
the possibility to extend the sEMG-based hand gesture
recognition methodologies toward a set of hand movements
with a high cognitive demand, such as the handwriting.
Results (Section III-B) confirmed that hand written digits
recognition can be efficiently performed through myoelectric
PRA. In fact, in the ALL channels configuration, mean WSA
reached vales of 97.17% and 97.24% for LDA and QSVM
respectively, given the proposed feature space. The WSA
increases, but not significantly, when FFS set or all the
features were used together (Table 4). However, it should be
noticed that the input dimension consistently increases in the
last two cases since FFS selected a feature space of dimension
160, whereas, combining all the feature together, feature
space gets a dimension of 360. This confirms the goodness
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of the selection criterion employed, since it allowed to reduce
the complexity of the PRA by using those features that
showed a priori good clustering properties [33]. Moreover,
for the same setup condition no significant differences were
observed between the WSA provided by LDA and QSVM,
supporting the use of such models for myoelectric PRA
applications [30], [36].

To further support the goodness of the proposed set,
two state-of-the-art feature set, i.e. Phinyomark 2 and Duan
sets [24], [42] were compared to the aggregated one in the
ALL condition. Duan set showed mean WSA of 93.88%
and 94.96% for LDA and QSVM respectively, which were
significantly lower (p<0.05) than those reported for the
proposed feature set employed in this study. The Phyniomark
2 set showed greater mean WSA with respect to those
reported in Table 5, i.e. 97.70% and 97.87% for LDA and
QSVM respectively. However, no significant difference has
been found between Phinyomark 2 and the aggregated feature
set here employed. This indicates that even if Phinyomark
2 employed 7 features per channel, i.e. 4 CC coefficients,
PermEn, RMS and WL, it did not significantly boosted the
performances of the two PRA if compared to the 6 feature
per channel used in the ALL case. Hence, no significant
advantages were obtained making use of more complex
feature extraction methods, involving nonlinear descriptors
or wavelet decomposition [24], [42]. Furthermore, it should
be noticed that using FFS [2], [28], or approaching the
problem through the clustering metrics [33], have guaranteed
a selection of features that were less biased by individual
characteristics, and more general for the population. Thus,
even if this represents a secondary aspect of the study,
it should be noticed that the selected features could be applied
to new users, potentially avoiding the search repetition for
each new subject.

2) EFFECTS OF REDUCING sEMG CHANNELS IN PR
A further contribution of this study regards the assessment of
the sEMG setup in terms of electrodes reduction. This aspect
is of great interest in the literature [2], indeed the number
of electrodes and their location need to be deeply evaluated
in order to realize unobtrusive HMI. In [2], the role of the
wrist with respect to the forearm was taken into account by
considering up to 16 hand gestures, and the PRA employed
showed comparable or superior performances when using
wrist sEMG data [2]. However, for a more complex set of
motor tasks, like the hand writing, this study shows that the
same cannot be stated: as observed in Section 5, FA and
WL showed significantly lower performances with respect
to the ALL case, whereas FA performed better than WR
for both PRA. This indicated that for complex hand motor
tasks, an adequate spatial covering is required if one would
obtain robust classifiers. Thus, the change of sEMG recording
position from forearm to wrist should be evaluated depending
on the type of the movements to be recognized. This is
confirmed also by the results observed for FA1, FA2, WR1,

and WR2. In fact, although the mean WSA slightly lowered
passing from FA to FA1 and FA2 and from WR to WR1
and WR2, such drop resulted to be statistically significant
(Table 5).
The PRA performance reduction is better highlighted

through the macro F1 metric, reported in Fig. 4, where FA1
and FA2 showed consistent lower values with respect to the
FA condition (Fig. 4(a)). The same holds for WR if compared
to WR1 and WR2 (Fig. 4(b)). As a matter of fact, FA and
WR obtained F1 scores greater than 70%, indicating low
bias effects in inter-class misclassification [37]. On the other
hand, the two-channels configuration showed low F1 values.
For instance, the WR2 case presents mean F1 that does not
overcome 40% for both LDA and QSVM, suggesting that
the trained PRA were able to recognize quite well the given
sample, but if the latter is misclassified, it is confused within
a subset of other classes, i.e. high accuracy with low F1.

Therefore, the reduction in the PRA performances can
be associated to a non optimal muscles covering, mirroring
the impossibility to extract enough information from only
two sEMG channels, in order to discriminate between the
10 different handwritten digits. This poses the attention on the
sensing technology used for extracting muscle information.
In fact, as demonstrated in [17], high-density sEMG setups
permit to reach high classification performances by recording
few muscles but with a high spatial resolution. On the other
hand, with sparse sEMG setups, like the one employed in
this study, performances can be boosted only by including the
information extracted from different muscles [17]. Moreover,
despite the WSA is one of the most common metric used
for evaluating PRA myoelectric control, relying only on this
metric could shadow additional important aspects regarding
the robustness of the models [2], [4], [24], [42]. Indeed,
although the accuracy slightly reduces when the number of
electrodes decreases, the use of a metric that take into account
inter-class classification properties such as the macro F1
score can help in preventing undesired PR responses in a real
scenario, due to the use of a non-robust implementation.

V. CONCLUSION
In this study, EMG-based PRA were developed to solve
the handwriting recognition problem of the ten digits,
investigating also the role of sparse sEMG set-up on the
forearm and wrist. The results support the possibility to
transfer methodologies of the EMG-based hand gesture
recognition in the field of handwriting recognition, which
represents a key aspect in the development of new HMI for
rehabilitation tasks. Further, from the study emerges that a
motor task that involves high cognitive demands like the
handwriting one requires the use of sEMG electrodes placed
both on the forearm and wrist, in order to obtain PRA with
WSA greater than 95% and macro F1 greater than 80%. This
indicates that a large amount of information is needed when
one have to decode fine hand movements, hence suggesting
the opportunity to shift from sparse to dense sEMG setup
paradigms for the recognition of complex hand motor tasks.
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