
Received 8 April 2023, accepted 15 May 2023, date of publication 23 May 2023, date of current version 1 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3279021

Improving LZW Compression of Unicode Arabic
Text Using Multi-Level Encoding and a
Variable-Length Phrase Code
ENAS ABU JRAI 1, SHOROQ ALSHARARI 2, LAIALI ALMAZAYDEH 2,
KHALED ELLEITHY 3, (Senior Member, IEEE), AND OSAMA ABU HAMDAN4
1Department of Basic Sciences, Ma’an University College, Al-Balqa Applied University, Salt 19117, Jordan
2Department of Software Engineering, Faculty of Information Technology, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
3Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA
4Department of Computer Science and Engineering, University of Nevada, Reno, NV 89557, USA

Corresponding author: Laiali Almazaydeh (laiali.almazaydeh@ahu.edu.jo)

ABSTRACT This paper introduces a novel approach to enhance the efficiency of compressing Arabic
Unicode text using the Lempel-Ziv-Welch (LZW) technique. This method includes two stages: transfor-
mation and compression. During the first phase, a multi-level scheme that works according to the level
of words, syllables, and characters replaces multi-byte symbols with single-byte symbols, resulting in a
binary output of 51%-75% smaller than the actual size and effective for compression. In the second phase:
the outputs of the previous phase are received as inputs to the adaptive LZW technique, attached to a
value representing the length of the initial phrase (minimum code length). This value is automatically
determined according to the size of the data source to enhance the performance of LZW. The original data
size is included in the compressed file to be used during the decompression process to detect the length
of the initial phrase. The compression ratio achieved by the proposed method was compared to that of the
traditional LZW technology that uses multi-byte encoded characters and a fixed initial length phrase, as well
as two recent technologies, DEFLATE and Gzip. Experimental results indicate that our method achieves an
average compression rate of about 71% and outperforms other methods for all forms of Arabic texts, with
improved LZW able to compress an additional 7% or more or less of the files it compresses. Variable-length
dictionary LZW continuously displays a significant difference in compression ratios for small files compared
to modern methods, whether it uses a variable-width- encoding scheme only or with multi-level encoding
as a precompression step. Multi-level schema can be used as a preprocess to other compression techniques,
especially those that work efficiently with binary data. Also, the original data volume can be used as a private
key within data security and encryption applications.

INDEX TERMS Adaptive initial dictionary, Lempel-Ziv-Welch (LZW), multi-dictionaries, multi-level
mapping, private key, unicode Arabic text, variable-length phrase code.

I. INTRODUCTION
The volume of digital data in the current era is massive,
and has grown rapidly. According to a study by International
Data Corporation (IDC), the amount of digital data created,
captured, and iterated is expected to reach 175 zettabytes
by 2025 [1]. This represents a compound annual growth

The associate editor coordinating the review of this manuscript and
approving it for publication was Yilun Shang.

rate (CAGR) of 61%. This rapid growth in digital data has
significant implications for storage space and transmission
time, highlighting the urgent need to develop and improve
data compression techniques.

Data compression is performed by representing the orig-
inal symbols in the source data with the fewest possible
bits [2]. Conversely, Data decompression is the process of
restoring compressed data to its original state. Data compres-
sion techniques aim to reduce the amount of storage space

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 51915

https://orcid.org/0000-0003-4202-8645
https://orcid.org/0009-0004-6364-2243
https://orcid.org/0000-0003-4266-1758
https://orcid.org/0000-0001-9239-5035

E. A. Jrai et al.: Improving LZW Compression of Unicode Arabic Text Using Multi-Level Encoding

required, the time needed for transmission over the network,
and errors that may occur during data transmission over
communication channels. In addition to reducing costs and
saving energy when using smart devices [2], [3], it enables
recent technologies such as big data analytics and machine
learning to become more workable and effective.

Data compression techniques are classified into lossy and
Lossless [3], [4]. Lossy: The data are not recovered precisely,
and this category is suitable for compressing audio and video
files. Lossless: The original data are retrieved precisely from
the compressed data; they are suitable for compressing criti-
cal data such as X-ray images and text files [5], [6].

Text compression is a sub-field of lossless data com-
pression, and its techniques are categorized into two
groups [2], [7]: statistical and dictionary techniques. Sta-
tistical techniques analyze the statistical properties of data
to compress them [8], whereas dictionary techniques use
a dictionary of strings and their corresponding symbols to
compress data [9], [10].

The dictionary can be static, semi-static, or dynamic. (1)
Static: An independent dictionary that does not need to be
combined with the compressed data. It is pre-built and holds
a fixed set of symbols and corresponding strings. Symbols
are mapped to strings based on the order in which they
appear in input data. Pictogram notation is one of the most
common forms of static dictionary [11], [12]. (2) Semi-
static: This analyzes the data source and builds a dictio-
nary suitable for encoding data. The dictionary is merged
with compressed data before transmission for decompres-
sion [13], [14]. 3) Dynamic or adaptive: The dictionary is
constantly built and updated during the compression and
decompression processes; it is built dynamically during both
processes [15], [16]. An example, is LZW.

All text compression techniques despite their
different methods have the same principle for data com-
pression, which is to remove repetition [7], [17]. Rep-
etition appears in texts at several levels, either at the
level of bits [18], letters [19], [20], syllables [21], [22],
or words [15], [23], [24], [25], [26], [27], [28], [29]. The rep-
etition rate for each level varies from language to language.

The performance of text compression techniques depends
on the compatibility of the compression technique method
with text properties [26], [29]. For example, statistical tech-
niques (e.g., Huffman) are more efficient for high-frequency
text compression at the letter level [8] and dictionary tech-
niques (e.g., Lempel-Ziv-Welch ‘‘LZW’’) are more efficient
for high-frequency text compression at syllable and word lev-
els [10]. The characteristics of text depending on the language
to be compressed [27]. Each language has a grammar, mor-
phological structure, coding system, and other characteristics
that differ from other languages. For example, English as a
European language is characterized by its high frequency at
the word and syllable levels, since its letters do not include
diacritics. The letter has two cases, uppercase and lowercase,
and using a single-byte encoding system called ASCII. As for
the Arabic language as a Semitic language [28], its text is

characterized by a high frequency at the level of letters and
bits because it is a derivation language, and its letters have
one form, and consist of diacritics, in addition to its use of a
multi-byte coding system called Unicode [30].

Unicode, specifically UTF-8, is used by 97.8% of all web-
sites [38], which indicates the need to develop and improve
compression techniques for natural languages in general, and
Unicode UTF-8 scripts in particular.

Arabic is one of the most spoken Semitic languages rank-
ing fifth in the world [28], [38], and Arabic Unicode UTF-
8 scripts are used by 98.9% of all websites according to
available usage statistics [39].
LZW is one of the simplest and most effective text com-

pression techniques; however, it is inefficient in compressing
the Arabic language [40], and its versatility and popularity as
a standard technology make it a popular choice for improving
Arabic language compression performance.

Several modifications and improvements have been made
to LZW natural language compression technology to achieve
the highest possible compression ratio. Some studies have
modified this technique’s working principle and ignored the
language’s characteristics so that it can be applied to texts in
different languages [31], [41] (as shown in Table 1). In con-
trast, other studies take advantage of the inherent features
of a particular language to compress text, by modifying or
processing the text to fit the underlying principles of the tech-
nique [22], [25], [42], [43], [44], [45], [46], [47], [48], [49]
(as demonstrated in Table 2 for a specific language).
This study combines the two methods to reach the maxi-

mum possible compression ratio, as it is based on denaturing
the data and reducing its actual size before compression,
to make it more compressible. Additionally, to setting the
minimum initial dictionary size depending on the file size
may enhance the performance of LZW when dealing with
different sizes.

The proposed approach includes two phases: (transforma-
tion and compression). The first phase aims to convert the text
into binary data of less size, regular repetition, and high com-
pressibility, by exploiting several linguistic characteristics of
the Arabic language, including the phenomenon of repetition
at the level (word, syllable, and letter) to build several static
dictionaries of different optimal sizes. The unique case of the
Arabic character is to be encoded using unused ASCII code
instead of Unicode.

The objective of the second stage, is compressing binary
data using Dynamic LZW and enhancing its performance by
determining the size of the initial dictionary based on the size
of the data source and using the length of a variable length
phrase.

The major contributions of the work are listed below, dis-
tinguishing it from the few works available in the literature.

1) The proposed multi-level data coding scheme has the
capability to work not only with LZW, but also work
as a pre-compression step in conjunction with other
general compression techniques, particularly those that
efficiently compress binary data.

51916 VOLUME 11, 2023

E. A. Jrai et al.: Improving LZW Compression of Unicode Arabic Text Using Multi-Level Encoding

TABLE 1. List of previous surveys on improvements made to LZW technology.

TABLE 2. List of previous surveys on improvements to LZW technology to compress specific natural language.

VOLUME 11, 2023 51917

E. A. Jrai et al.: Improving LZW Compression of Unicode Arabic Text Using Multi-Level Encoding

2) provide an up-to-date survey of the improved LZW
technique to compress the natural languages.

3) Use repetition at multiple levels (words, phrases, let-
ters, and bits) to increase the rate of regular repetition.

4) It uses two types of dictionaries that are the optimal
size.

a) static dictionaries

i) Its contents do not exceed about 255 words
and 255 Tri-grams, 30 letters.

ii) It does not need to be indexed. since it uses
the equivalent value storage location as a ref-
erence.

iii) Unused ASCII character location is exploited.

b) A dynamic dictionary deals with phrases of vari-
able length, whose initial values depend on the
size of the data source.

The optimal size of dictionaries is essential in reducing
overhead costs, and the size of dictionaries positively affect
compression and transmission time.

The following is the organization of this paper:
Section I.(A) presents the main Arabic language features
used in the proposed approach. Section I.(B) explains the
working principle of the LZW technique and highlights the
factors that impact its performance. In Section II, we pro-
vide a detailed review of existing survey papers related to
implementing LZW specifically on Arabic text. Building on
this foundation, Section III describes the proposed approach,
including the multi-level dictionary construction. Section IV
presents experiments and results. Finally, Section V presents
the conclusion with some future directions.

A. ARABIC LANGUAGE CHARACTERISTICS
Arabic is among the most widely spoken languages, spoken
by more than 467 million people [50], [51]. There are three
types of Arabic texts [50]: Classical Arabic (CA), such as
the language of the Qur’an; Modern Standard Arabic (MSA),
such as the language of the media, education, and intellec-
tuals, in addition to the Arabic Dialect, which is formed
according to the geography of each region or country. Most
compression techniques support only one of these types; for
example, techniques for compressing Arabic text according
to morphological analysis depend on specific patterns and
roots, so they do not achieve a high compression ratio when
dealing with slang texts, because they are not subject to mor-
phological rules. Also, techniques of General compression
will fail due to the letter appearance in different patterns
(i.e., with and without diacritics), so does not achieve a
satisfactory compression ratio compared to the rest of the
languages [40]. The proposed approach is characterized by
its ability to handle all types of Arabic languages.

Arabic words are classified into functional and content
words. Functional words provide grammatical information
rather than content. Functional words play a key role in the
overall meaning of a sentence (e.g., prepositions, separate
pronouns, and auxiliary verbs). The most important thing

distinguishing them is that although their number is small,
their repetition is high [52]{Citation}. Functional words con-
sist of a small number of letters between two and five,
especially in the absence of diacritics, as shown in Table 3
[47]. Therefore, the possibility of being part of another
word is large; for example, (‘‘kan- ’’ is part of the word
‘‘makan- ’’). Therefore, it is common for the function
word to be repeated as an independent word or as a part of a
word. Content words: any word that is not functional, includ-
ing (nouns, verbs, and adjectives). The proposed approach
replaces a word with a shorter binary value; the function
words are encoded at the word level, and the content words
are encoded at the word level if they appear as part of another
word, at the syllable level, and at the letter level.

TABLE 3. Frequency of some function words.

The Arabic words consist of a series of alphabetic letters
and diacritics [53]. The number of Arabic letters is 28. The
most important characteristic of Arabic letters is that each
letter has only one case, unlike English letters, that have two
cases: capital or small letters. In addition, the number of
Arabic letters is small and their frequency varies, as shown
in Fig. 1 [54].

The 8 diacritics are connected to the letter so that,
found above or below the letter () [55]. The diacritics
are optional. If they appear with the letters of the words
(e.g., -kataba), the text is termed (full vowels). In this case,
the frequency of the diacritics is high, but if an appearance on
some letters of the words (e.g., -writer), the text is termed
(partial vowels), and if the letters of the words are stripped
from any diacritics (e.g., -written) the text is termed
(Un-vowels). The proposed approach deals with all forms of
Arabic text and takes advantage of the letter case to encode it
using unused ASCII code.

Arabic relies on affixing to generate and develop verbal
wealth, through syllabic appendages that stick to their orig-
inal material in the form of affixes (prefixes, infixes, and
suffixes) [50], which consist of two letters (bigrams) or three
letters (trigrams). Examples of these affixes are:
as shown in Table 4 Statistical studies have shown that the fre-
quency of adhesions is high and their number is limited [56].
The proposed approach takes advantage of this feature to

generate an optimally sized static dictionary that encodes the
data source at the segment level.

Arabic characters and their diacritics are encoded accord-
ing to the universal Unicode principle [57]. Unicode has

51918 VOLUME 11, 2023

E. A. Jrai et al.: Improving LZW Compression of Unicode Arabic Text Using Multi-Level Encoding

FIGURE 1. Arabic letter frequency distribution, sorted according to
frequency of letters.

two main encodings, UTF-8 and UTF-16, both of which are
designed for specific purposes. In the proposed approach, the
test texts are stored according to the UTF-8 encoding system,
which is currently the most widely used system globally and
is a source for more than 92% of web pages. An un-vowel
character is encoded as two bytes and a vowel character
as four bytes, resulting in inefficient use of storage space.
According to earlier studies, replacing ASCII code with Uni-
code code reduces the file size and improves compression
by 50% [45], [58], [59], [60]. The proposed method uses a
similar method for n-gram encoding [61], with the difference
that the value of n represents a character, affixing, or a word.

TABLE 4. Example form of affixes.

The proposed approach exploits several linguistic char-
acteristics of the Arabic language to make the text more
compressible, characterized by its ability to handle all types
and forms of Arabic language. It is based on the phenomenon
of redundancy at the word level, then at the n-gram level, and
then at the character level, taking advantage of the unique case
to encode it with a non-ASCII code user instead of Unicode.

B. LZW TECHNIQUE
LZW is a universal lossless compression technique, and it is
one of the most powerful compression techniques. Efficient
for files with repetitive data [5], [12]. Simple, and does not
require a priori knowledge of the file structure, data types,
or usage statistics.

LZW Has a dynamic dictionary that includes strings and
codes. Replaces strings of characters with single codes.
The following steps show the pseudo-code for the LZW
algorithm [37]:

1) Initialize the dictionary with all possible characters.
2) Read the first character from the input data and assign

it to C.

3) Read the next character and save it in E, then collect
C,E into string ‘‘S’’.

4) Check the dictionary for the string ‘‘S’’.
a) If found,

i) repeat steps 3.
b) If not found,

i) output code for ‘‘C’’,
ii) save ‘‘S which is now called phrase’’ to the

dictionary
iii) reset ‘‘C’’ to ‘‘E’’.

5) Repeat steps 3-5 until the end of the sequence.
The size of the initial dictionary is 2^ the length phrase

(which is the code for the new entries). The dictionary adapts
to the data being compressed, as the algorithm updates it
dynamically during processing.

Several factors affect the performance of the LZWmethod
when used for text compression:
(a) Structure of text [21], [29], [62]: LZW depends on text

structure, target language characteristics, and pattern
repetition rate.

(b) Text length [42], [45]: LZW is not ideal for compress-
ing short texts because it limits repetition.

(c) Dictionary size [36], [63], [64]: The dictionary size
affects LZW’s performance by balancing the compres-
sion ratio and processing time. A larger dictionary
leads to better compression but also uses more memory
and processing power. A smaller dictionary reduces
memory and processing requirements but may result
in lower compression. The optimal dictionary size is
determined by testing and balancing the different sizes.
Commonly, a dictionary size of 4096 or 8192 entries
provides good results. Their sizes can be adjusted
according to specific needs.

(d) Phrase length [45], [63], [65]: If its length is short
compared to the size of the data source, it creates a
chain of new entries that are not used and takes up space
in the dictionary. Conversely, if it is long, it produces a
new code string with a larger number of equivalent bits.

(e) Text character set [49], [66]: LZW was initially
designed to compress text encoded in the ASCII char-
acter set. Therefore, this technique is unsuitable for text
containing characters from multiple bytes, such as Utf-
8 used by 97.8% of character-encoded websites [67].

LZW works more efficiently for binary files with all
their contents either 1 or 0 because it replaces sets of bits
(instead of strings of characters in text files) with single
codes [45], [40].

The LZW algorithm doesn’t always provides an ideal
compression result, especially when dealing with Arabic
Text [40]. Therefore, many studies have been published to
improve the performance of LZW compression in natural
languages [45], [46], [47].

In this study, we aim to increase the compression ratio
of Arabic texts of all types by compressing the data source
that has been processed as binary data, setting the initial

VOLUME 11, 2023 51919

E. A. Jrai et al.: Improving LZW Compression of Unicode Arabic Text Using Multi-Level Encoding

dictionary size and code word length based on the size of the
data source, and making its variable-width

II. RELATED WORK
In recent years, the LZW technique for compressing natu-
ral language texts has been widely discussed in the litera-
ture, resulting in various improvements being introduced and
implemented. However, the focus on the Arabic language in
these studies has been limited, with some based on word
level [47], and others based on character [45] or segment
level [46].
Our previous study [46] introduced a new hybrid technol-

ogy for compressing Arabic texts, which effectively utilizes
the morphological and grammatical features of Arabic to
enhance the performance of compression ratio for LZW and
BWT methods. The proposed method involves two stages:
morphological analysis and compression.

During the morphological analysis stage, a multi-layered
model is used to categorize the text into functional words,
derivative words, and other words, along with a fourth layer
to link words to their original positions in the input text.
The root pattern dictionaries technique is then utilized to
replace derived words with index values based on a dictio-
nary of 4096 roots and 2048 patterns, while function words
are encoded using a single byte based on a dictionary of
128 words. These dictionaries do not need to be transferred
with compressed files, reducing transmission time. However,
the morphological analysis stage requires more time and
effective storage space.

In the compression stage, general compressors are used
to compress the four layers separately. The LZW and BWT
methods are applied, and the results are compared. The com-
parison showed an improvement in the performance of both
techniques by 0.25 and 0.23, respectively.

In [45] a comparison of four techniques, namely Eilias,
Golomb, Huffman, and LZW, was presented. These tech-
niques were applied to Arabic text as a binary formula. LZW
showed the best compression ratio and decoding time for
large file sizes (above 300 KB), with a compression ratio of
24%. However, LZW was ineffective in compressing small
files due to the fixed length of the code word (15), which
prompted the researchers to recommend a variable codeword
length based on the file size.

Moreover, the researchers introduced the Arabic character
mapping technique to enhance the compression ratio of the
three statistical techniques (Golomb, Elias, and Hofmann).
Results indicated that implementing the Arabic character
mapping technique improved the compression ratio of these
techniques compared to the binary approach. Nonetheless,
Huffman with character mapping outperformed other tech-
niques on average sizes, including LZW, but only for small
binary data. The authors proposed using an Arabic Character
Mapping approach with LZW to increase the compression
ratio for all file sizes.

In [46] introduced a new technique for compressing Arabic
text files based on encoding text at the segment level. Its

effectiveness is in using n-grams and window size to create
a dynamic dictionary, which is then used to encode text with
the smallest number of bits. It can be used to reduce the sizes
of different text files, in English or Arabic in all their forms.
The achieved compression ratio was 43.87%.

Authors in [43] changed the LZW (Lempel Ziv Welch)
technique to compress the Unicode Arabic text to reduce the
number of dictionary entries by using an initial blank dictio-
nary and an additional dictionary that is later included with
the zip file. The proposed modification was not only tested on
Arabic texts and applied to other texts such as Bengali, Tamil,
and Malayalam with varied sizes. The tests showed that the
results of applying the proposed modification were supe-
rior to the traditional byte-based LZW compressors. Table 5
presents a comparison of a surveyed and reviewed research
work on arabic text compression using LZW.

III. PROPOSED METHOD
This study proposes an approach to improve the LZW com-
pression ratio for Arabic texts by transforming text files into
binary files to make them more compressible using Adaptive
LZW with a variable length phrase and setting its initial
value based on the size of the data source to reinforce the
compression ratio of texts.

The proposed approach works in two stages: transforma-
tion and compression, as shown in Fig. 2, in which the text
is set with predefined shorter codes to reduce the actual
size of the original file. It uses several static and separate
dictionaries. In the second stage, the output of the first stage
is compressed using the Dynamic LZW technique, because
it works efficiently with binary data. It begins with reading a
string of bits, whose initial length depends on the size of the
data source, and changes based on the size of the dictionary.

FIGURE 2. General description of the proposed approach.

To accurately decode from the three dictionaries, we imple-
mented a flag code during the transforming phase to identify
the reference dictionary for the original data. Fig. 3 shows an
example of transforming the word ‘‘Alhamdulillah- ’’.

A. GENERATE DICTIONARIES
Repetition is a linguistic phenomenon known as Arabic in
the oldest texts. It appears in different forms at three levels.
At the letter level, 16% of the letters in Arabic text were

51920 VOLUME 11, 2023

E. A. Jrai et al.: Improving LZW Compression of Unicode Arabic Text Using Multi-Level Encoding

TABLE 5. Comparison of related work on Arabic text compression using LZW.

FIGURE 3. Example of transforming the word ‘‘Alhamdulillah- ’’.

spaces. At the word level, earlier studies have indicated that
40% of the words in Arabic texts are function words [52].
At the syllable level, it has several forms, including suffixes,
distinguished by their limited numbers.

According to the three recurrence levels, the transforma-
tion phase was based on three independent dictionaries.

1) DICTIONARY OF WORDS
It is used for coding the function word by 10 bits. It has
the 128 most common and often-used function words.
We selected them from the OSAC corpus [56], [68] and
arranged them in the dictionary descending according to their
frequency.

Then we used a formal tool called ‘‘Shakili’’ [69] to form
the same words complete formation and added them to the
same dictionary and in the same order.

El-Khair [70] proved that if function words are replaced
by fixed-length codes whose length is less than their average
size, the size of the input text is reduced. Accordingly, we sug-
gested that the functional word be represented by 1 byte,
as shown in Fig. 4.

The un-vowel Functional words mainly consist of two or
three letters. Accordingly, to that a functional word may
appear as part of another word. Therefore, the designation is
based on whether the match is full or partial. For example, the
word to (God-) is part of the word (praise-).

VOLUME 11, 2023 51921

E. A. Jrai et al.: Improving LZW Compression of Unicode Arabic Text Using Multi-Level Encoding

FIGURE 4. Functional word dictionary output structure.

Words without diacritics are 2-5 characters long and need
4-10 bytes of storage space. The proposed method replaces
the function word with 10 bits, which saves storage space
by 75%-90%.

2) DICTIONARY OF AFFIXES AND FORMED LETTERS
It replaces vowel characters (i.e. chars with a diacritic) or
affixes by a ten of a bit. This dictionary contains two groups:
The first group includes the most common and frequent
suffixes, determined based on Arabic grammar books and
arranged randomly. The second group includes Arabic let-
ters in all their forms, for example If we symbolize the
Arabic letter (−) It may appear in one of the following
forms).
Usually, the character is encoded according to UTF-8 with

four bytes (two bytes for characters and two bytes for move-
ment); The proposed method replaces vowel characters or
affixes with 10 bits Fig. 5, which reduces the character size
by at least 69%.

FIGURE 5. Affixes and formed letters dictionary output structure.

3) DICTIONARY OF SINGLE LETTERS
Unused ASCII character locations from 64 to 127 have
been exploited to designate Arabic characters, single vow-
els, numbers, punctuation marks, and symbols. Therefore,
the Arabic character is represented by 8 bits instead of
16 bits (as shown in Fig. 6) to obtain an effective stor-
age space and reduce the data size by at least 50%,
as many studies have proven the efficiency of this approach
in improving the compression ratio [45], [58], [59], [60].
We arranged the Arabic letters in descending order of
frequency.

We made sure to arrange the content of the dictionaries
according to the most frequent ones to preserve redundancy
in the data source because it is the main factor in raising the
compression ratio in the next stage.

FIGURE 6. Single letters dictionary output structure.

B. TRANSFORMATION STAGE
Fig. 7 illustrates the flowchart of the first stage. The first
step begins by reading one word at a time to search for its
equivalent value starting in the dictionary of words (D1); if
a perfect match is found, the binary value of the location of
this word is returned, ‘‘11’’ was added at the beginning as
a reference to the dictionary used when decoding and then
moving to read the next word.

If no perfect match was found, it searched for the partial
match with the largest number of partial character similarities
and replaced the matching part with the binary value of its
location, adding (11) at the beginning as a reference to the
dictionary. It then returns to the first step to complete the
search for the remainder of the non-matching part.

Suppose nomatch was found in the word dictionary. In that
case, the segment dictionary (D2) is searched to replace the
affixes or characters attached to the diacritics with the binary
value of the matching location, adding ten at the beginning
as a reference. Otherwise, the replacement is performed at
the character level using the third dictionary (D3) to return
the binary value of the location of the character it matches,
noting that it is equivalent to one of the unused ASCII val-
ues consisting of seven bits preceded by 0 as a reference;
otherwise, it returns the binary value of the ASCII value of
the entered data. Spaces are not ignored because they are the
boundaries between compound and simple words. Symbols,
numbers, and punctuation were replaced with a 7-bit ASCII
code, followed by 0 for reference.

C. COMPRESS STAGE
The LZW technique receives the output of the earlier step as
a binary input for compression.

Typically, traditional LZW uses a fixed length code of
12 bits to output the code; therefore, the dictionary size
is 4096, and when the dictionary is full, LZW becomes static.
This approach may increase the encoded message length of
small messages compared with the original text, especially
UTF-8 encoding has variable length characters from 1 to
4 bytes, which leads to deterioration of the compression ratio,
so our proposed approach uses dynamic phrase length, which
changes every time the dictionary limit is reached.

The initial input values of the dictionary are based on
the size of the initial phrase, which is determined according
to the size of the data to be compressed and then included
with the compressed data to be used in the decompression
stage.

51922 VOLUME 11, 2023

E. A. Jrai et al.: Improving LZW Compression of Unicode Arabic Text Using Multi-Level Encoding

FIGURE 7. Flowchart for the first stage of the proposed approach.

It should be noted that traditional LZW compression
replaces strings of characters with a single symbol. In contrast
the proposed method implements LZW to replace strings
of Bits with single symbols because; in the precompression
stage, the nature of the data is changed to obtain a better
compression ratio.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
To evaluate the performance of the proposed approach,
we prepared three dictionaries according to the method
described in the previous section, and shared them for both
the encoder and decoder modules. We then performed three
sets of experiments on Arabic text files, which were obtained
from the OSAC Corpus [56], [68] removed the HTML tags
from the text and stored them in UTF-8 encoding.

We used the ‘‘Shakali’’ tool [69] to form the same texts
partially and completely; that is, we tested the same text in

three shapes, as well as text files from the Internet. We con-
ducted a second set of experiments to determine the length of
the initial phrase code for which the compression stage relies
on the generation of the first dictionary entries.

We used Python to implement the design and tested it on a
2.4GHz CPU, 4.00GB RAM, a 64-bit operating system, and
Windows 10.

The compression ratio serves as a metric to gauge the effi-
ciency of a compressionmethod, with higher ratios indicating
better quality. the compression ratio can be calculated by (1):

Compression ratio (CR)

=

(
1 −

(
number of compressed bits

numbers of uncompressed bits

))
× 100% (1)

Table 6 compares the performance of the proposed tech-
nique (TLZW) with that of the traditional LZW (SLZW)

VOLUME 11, 2023 51923

E. A. Jrai et al.: Improving LZW Compression of Unicode Arabic Text Using Multi-Level Encoding

TABLE 6. (TLZW) VS (SLZW) in terms of bit compression ratio (CR).

technique in terms of bit compression ratio. It should be
noted that a variable dictionary width was used for both, the
difference is the initial dictionary values and the length of the
initial phrase code).

The proposed method showed better results than the tra-
ditional method for all types of Arabic text, as it did not
depend on the structure of words or any grammatical or
morphological rules andwas better for all forms of text. These
results could be attributed to several factors the nature of
the data is changed from textual to binary using multi-level
encoding to obtain the most regular frequency. However, the
size of the original file was reduced prior to the compression.

The results also showed that the file reduction rate before
compression ranged between 51% and 57%, depending on the
text type and level of mapping used. This indicates that the
proposed method can effectively reduce the size of Arabic
text before compression, resulting in a higher overall com-
pression ratio than the traditional method.

Fig. 8 shows the results of compressing Arabic texts with
all three forms of the same size. The vowel-text compres-
sion results were better than those of the partial-vowel and
un-vowel texts, respectively. Since diacritics are based on

movements whose number is limited to seven [53], the
probability that each movement appears with 29 characters
increases the repetition at the syllable level, which is a major
factor in increasing the compression ratio. This indicates that
the proposed method depends on the content; therefore, it is
the most effective when applied to text with vowels.

The results in Fig. 9 show an inverse relationship between
the original file size and the optimization ratio (i.e., the
compression ratio of the traditional method is subtracted from
the compression ratio in our approach). It is also noted that the
proposed approach achieves the best results for small texts
compared to larger texts. This may be owing to the mapping
of many unused bits in the dictionary, and the extension of
the dictionary size. In the first set of pretests, the phrase was
dynamic and had an initial length of 8 bits.

Table 7 shows the results of the second set of tests, which
aimed to study the relationship between the initial phrase
length (i.e., the minimum in the dictionary) and compression
ratio. Experiments were conducted on several Arabic texts in
three forms, with sizes ranging from (1) to (200) kilobytes.
The same file was tested several times, in which the encoder
length was manually specified and passed along with the

51924 VOLUME 11, 2023

E. A. Jrai et al.: Improving LZW Compression of Unicode Arabic Text Using Multi-Level Encoding

TABLE 7. Relation between the initial phrase length and the original data size on compression ratio.

FIGURE 8. Compressing Arabic texts with three forms of the same size.

encrypted data to the compression stage, where LZW created
an initial dictionary of size (2^ phrase length) and began
reading a string of bits from the data source of size equal to
the phrase length.

The results indicate that the length of the initial phrase
affects the compression ratio, and the appropriate length
when compressing files ranging in size from 1 to 11 Kilobyte
is six. For files with sizes of 12 to 100, it is 8, and for files with
sizes of 100 to 200, the length of the most efficient phrase is
9. Based on these results, the programming of the proposed
method was changed to automatically pass a phrase length
to the LZW technique, depending on the data size. Create
an initial dictionary with a size equal to 2^ ‘‘phrase length’’
before compression and decompression.

Fig. 10 comparison the static and dynamic modes of the
initial phrase length and their impact on TLZW performance.
The results indicate that limiting the initial phrase length
according to the file size increases the compression ratio,
which is considered an enhancement of our approach when
dealing with large sizes. We recommend testing the proposed

FIGURE 9. Relationship between the original file size and the
optimization ratio.

approach by using large files to determine the optimal phrase
length.

In our final set of experiments, we sought to compare our
method’s compression ratio with that of two other modern
compressionmethods: Deflate, which employs a combination
of Huffman coding and LZ77 sliding window compression,
and Gzip, which utilizes Deflate in combination with a file
format containing additional metadata. Gzip is currently the
most widely used and effective compression format on the
web that can reduce the size of text files by up to 90%.

Table 8 presents a detailed comparison of our proposed
method with traditional and modern compression techniques,
while Fig.11 provides a summary of the results.

Our results show that our proposed method outperforms
other methods for all forms of Arabic texts, which may be
attributed to its dependence on two main principles:

First, the method takes advantage of the unique features of
theArabic language by proposing amulti-level coding system
as a precompression step.

VOLUME 11, 2023 51925

E. A. Jrai et al.: Improving LZW Compression of Unicode Arabic Text Using Multi-Level Encoding

TABLE 8. Comparison of our proposed method with traditional and modern compression techniques.

FIGURE 10. Comparison of the static and Adaptive modes of initial phrase length and their impact on TLZW performance.

This system modifies and aligns text with the basic princi-
ples of LZW technology, which include:

1) Converting text data into binary data, so that the per-
formance of the technology is not affected by the
structure of words or grammatical and morphological
rules.

2) Reducing the size of the data before compression,
by 51% - 57%, which reduces the deterioration of the
size of the technical dictionary as much as possible.

3) Obtaining high-frequency and regular data through the
use of fixed dictionaries that are optimal in size, con-
taining no more than 255 words and 255 trigrams
(30 letters), and do not require indexing since they
use equivalent value storage locations as references.
Additionally, unused ASCII character locations are
exploited.

Second, adapt LZW’s working principle to accommodate
input data by setting initial values for the word length of
the initial phrase, the initial dictionary data, and the use of
variable dictionary size according to the size of the data
source.

FIGURE 11. Compression ratio comparison between our method,
Standard LZW, Deflate and GZIP.

Thus, our findings indicate that the multifactorial approach
is effective in enhancing compression ratios. These results

51926 VOLUME 11, 2023

E. A. Jrai et al.: Improving LZW Compression of Unicode Arabic Text Using Multi-Level Encoding

have important implications for data compression in the stor-
age, transmission and retrieval of Arabic language texts.

It should be noted that the performance of the proposed
technique is better for texts with vowel characters than for
non-vowel texts, and for small files compared to large files.
Small files refer to texts that are small in size and complexity
as they limit the key factor of compression technologies
which is redundancy, and can be found in IoT devices, mobile
applications andweb applications. So small data compression
is important to save storage and bandwidth, improve process-
ing efficiency, and ensure data security.

V. CONCLUSION
In this paper, a new approach for compressing Arabic text
using LZW is presented, which includes two stages: conver-
sion and compression, the results of its implementation are
discussed.

In the transition phase, the proposed approach effectively
exploits the phenomenon of repetition that distinguished the
Arabic language at various levels (words, syllables, and let-
ters) to reduce the actual file size by 51%-75%. The text file
is converted to binary as an initial step before compression
using adaptive LZW technology.

An evaluation of the proposed approach in terms of the
amount of compression demonstrated that its performance
was better than that of the traditional adaptive LZW technique
applied directly to the text. The results also indicate the
importance of determining the first phrase’s length based on
the data source’s size and using a variable-length dictionary
to improve the compression ratio.

Although the proposed approach uses Adaptive LZW tech-
nology in the compression stage, the outputs of the first
stage can be embedded with any other general compression
technique, particularly the one that works efficiently with
binary data.

The main advantage of the proposed approach is that there
is no need for statistical or morphological analysis of the
text coding. There is no need to send dictionaries to com-
pressed files. The dictionaries used in the first stage were
fixed and independent of the file. The dictionary used in the
compression stage was adaptive and constructed during the
compression and decompression processes. In addition, the
size of fixed dictionaries is ideal as it does not exceed 640,
and it uses the location of the equivalent value to represent the
input as a binary value. In addition, it exploits the location of
unused ASCII characteristics. The LZW deals with phrases
of variable length, whose initial values depend on the size
of the data source. The optimal size for dictionaries reduces
public expenditure costs and may positively affect the time of
compression and transmission. We propose this perspective
as a direction for future research.

In conclusion, our research aimed to improve the perfor-
mance of LZW compression in Arabic texts. Through a series
of experiments on Arabic texts of various shapes and sizes,
we found that the performance of the compression technique
depends on the characteristics of the language, which must

achieve a balance between the characteristics of the language
and the style of the technique to be represented by the smallest
possible size. Concerning LZW, the length of the initial string
code, which varies depending on the size of the data, plays
vital role in increasing the performance of LZWcompression.
The results of this study have important implications for data
compression and pave the way for further research in this
field.

VI. FUTURE WORK
In future research, we recommend combining a multi-level
data encoding scheme with other compression techniques
to improve the overall compression ratio. This improve-
ment will contribute to enhancing the performance of mobile
devices, saving energy, reducing network consumption, and
improving communication efficiency during data transmis-
sion and reception in Internet applications and cloud appli-
cations.

In addition, it will be interesting to explore the optimal
length of initial and variable phrase encryption when com-
pressing large text files using LZW technology and using it
as a private key in data security and cryptography applications
to improve security and data protection.

REFERENCES
[1] D. Reinsel, J. Gantz, and J. Rydning, The Digitization of the World From

Edge to Core, vol. 16. Framingham, MA, USA: International Data Corpo-
ration, 2018.

[2] D. A. Lelewer and D. S. Hirschberg, ‘‘Data compression,’’ ACM Comput.
Surveys, vol. 19, no. 3, pp. 261–296, Sep. 1987, doi: 10.1145/45072.45074.

[3] U. Jayasankar, V. Thirumal, and D. Ponnurangam, ‘‘A survey on data
compression techniques: From the perspective of data quality, coding
schemes, data type and applications,’’ J. King Saud Univ. Comput. Inf. Sci.,
vol. 33, no. 2, pp. 119–140, Feb. 2021, doi: 10.1016/j.jksuci.2018.05.006.

[4] D. Salomon, ‘‘Basic techniques,’’ in Data Compression: The Complete
Reference, London, U.K.: Springer, 2007, pp. 17–46, doi: 10.1007/978-1-
84628-603-2_2.

[5] A. Quddus and M. M. Fahmy, ‘‘A new compression technique for binary
text images,’’ in Proc. 2nd IEEE Symp. Comput. Commun., Jul. 1997,
pp. 194–198, doi: 10.1109/ISCC.1997.615995.

[6] K. Sharma and K. Gupta, ‘‘Lossless data compression techniques
and their performance,’’ in Proc. Int. Conf. Comput., Commun.
Autom. (ICCCA), Greater Noida, May 2017, pp. 256–261, doi:
10.1109/CCAA.2017.8229810.

[7] S. Shanmugasundaram and L. Robert, ‘‘Text compression algorithms—
A comparative study,’’ ICTACT J. Commun. Technol., vol. 2, no. 4,
pp. 444–451, Dec. 2011, doi: 10.21917/ijct.2011.0062.

[8] D. Salomon, ‘‘Statistical methods,’’ in Data Compression: The Complete
Reference. London, U.K.: Springer, 2007, pp. 47–169, doi: 10.1007/978-
1-84628-603-2_3.

[9] K. Sayood, ‘‘Dictionary techniques,’’ in Introduction to Data Compression
(The Morgan Kaufmann Series in Multimedia Information and Systems),
4th ed., K. Sayood, Ed. Boston, MA, USA: Morgan Kaufmann, 2012,
pp. 135–161, doi: 10.1016/B978-0-12-415796-5.00005-3.

[10] D. Salomon, ‘‘Dictionary methods,’’ in Data Compression: The Complete
Reference. London, U.K.: Springer, 2007, pp. 171–261, doi: 10.1007/978-
1-84628-603-2_4.

[11] A. Carus and A. Mesut, ‘‘Fast text compression using multiple static
dictionaries,’’ Inf. Technol. J., vol. 9, no. 5, pp. 1013–1021, Jun. 2010, doi:
10.3923/itj.2010.1013.1021.

[12] B. Vijayalakshmi, ‘‘Lossless text compression technique based on static
dictionary for unicode Tamil document,’’ Int. J. Pure Appl. Math., vol. 118,
pp. 85–91, Jan. 2018.

[13] J. Adiego, M. A. Martinez-Prieto, and P. de la Fuente, ‘‘High performance
word-codeword mapping algorithm on PPM,’’ in Proc. Data Compress.
Conf., Mar. 2009, pp. 23–32, doi: 10.1109/DCC.2009.40.

VOLUME 11, 2023 51927

http://dx.doi.org/10.1145/45072.45074
http://dx.doi.org/10.1016/j.jksuci.2018.05.006
http://dx.doi.org/10.1007/978-1-84628-603-2_2
http://dx.doi.org/10.1007/978-1-84628-603-2_2
http://dx.doi.org/10.1109/ISCC.1997.615995
http://dx.doi.org/10.1109/CCAA.2017.8229810
http://dx.doi.org/10.21917/ijct.2011.0062
http://dx.doi.org/10.1007/978-1-84628-603-2_3
http://dx.doi.org/10.1007/978-1-84628-603-2_3
http://dx.doi.org/10.1016/B978-0-12-415796-5.00005-3
http://dx.doi.org/10.1007/978-1-84628-603-2_4
http://dx.doi.org/10.1007/978-1-84628-603-2_4
http://dx.doi.org/10.3923/itj.2010.1013.1021
http://dx.doi.org/10.1109/DCC.2009.40

E. A. Jrai et al.: Improving LZW Compression of Unicode Arabic Text Using Multi-Level Encoding

[14] A. Fariña, G. Navarro, and J. R. Paramá, ‘‘Boosting text compression with
word-based statistical encoding,’’ Comput. J., vol. 55, no. 1, pp. 111–131,
Jan. 2012, doi: 10.1093/comjnl/bxr096.

[15] U. S. Bhadade and A. I. Trivedi, ‘‘Lossless text compression using dictio-
naries,’’ Int. J. Comput. Appl., vol. 13, no. 8, pp. 27–34, Jan. 2011, doi:
10.5120/1799-1767.

[16] C.-E. Wang, ‘‘Dynamic LZW for compressing large files,’’ in Proc.
Int. Conf. Found. Comput. Sci. (FCS), Las Vegas, NV, USA, Jul. 2011,
pp. 57–60.

[17] A. K. Bhattacharjee, T. Bej, and S. Agarwal, ‘‘Comparison study of lossless
data compression algorithms for text data,’’ IOSR J. Comput. Eng., vol. 11,
no. 6, pp. 15–19, 2013, doi: 10.9790/0661-1161519.

[18] H. Al-Bahadili and A. Rababa’a, ‘‘An adaptive bit-level text compression
scheme based on the HCDC algorithm,’’ Int. J. Comput. Appl., vol. 32,
no. 3, pp. 355–361, 2010, doi: 10.2316/Journal.202.2010.3.202-2914.

[19] H. Al-Bahadili and S. M. Hussain, ‘‘An adaptive character wordlength
algorithm for data compression,’’ Comput. Math. Appl., vol. 55, no. 6,
pp. 1250–1256, Mar. 2008, doi: 10.1016/j.camwa.2007.05.014.

[20] P. M. Long, A. I. Natsev, and J. S. Vitter, ‘‘Text compression via alphabet
re-representation,’’ in Proc. Data Compress. Conf., 1997, pp. 161–170,
doi: 10.1109/DCC.1997.582003.

[21] J. Lansky and M. Zemlicka, ‘‘Compression of small text files using sylla-
bles,’’ in Proc. Data Compress. Conf. (DCC), Snowbird, UT, USA, 2006,
p. 458, doi: 10.1109/DCC.2006.16.

[22] W. Abliz, H. Wu, M. Maimaiti, J. Wushouer, K. Abiderexiti, T. Yibu-
layin, and A. Wumaier, ‘‘A syllable-based technique for Uyghur text
compression,’’ Information, vol. 11, no. 3, p. 172, Mar. 2020, doi:
10.3390/info11030172.

[23] R. S. J, L. College, R. L, and T. Lobo. F, ‘‘Dictionary based text filter for
lossless text compression,’’ Int. J. Comput. Trends Technol., vol. 49, no. 3,
pp. 143–149, Jul. 2017, doi: 10.14445/22312803/IJCTT-V49P122.

[24] J. Dvorsky, J. Pokorny, and V. Snasel, ‘‘Word-based compression methods
for large text documents,’’ in Proc. DCCData Compress. Conf., Snowbird,
Utah, 1999, p. 523, doi: 10.1109/DCC.1999.785680.

[25] A. Sinaga, Adiwijaya, and H. Nugroho, ‘‘Development of word-based text
compression algorithm for Indonesian language document,’’ in Proc. 3rd
Int. Conf. Inf. Commun. Technol. (ICoICT), May 2015, pp. 450–454, doi:
10.1109/ICoICT.2015.7231466.

[26] B. Stecuła, K. Stecuła, andA.Kapczyłski, ‘‘Compression of text in selected
languages—Efficiency, volume, and time comparison,’’ Sensors, vol. 22,
no. 17, p. 6393, Aug. 2022, doi: 10.3390/s22176393.

[27] B. O. Bush, ‘‘Language identification of tweets using LZW compression,’’
in Proc. 3rd Pacific Northwest Regional NLP Workshop, NW-NLP, 2014.

[28] I. Zitouni, ‘‘Natural language processing of semitic languages,’’ in The-
ory and Applications of Natural Language Processing. Berlin, Germany:
Springer, 2014, doi: 10.1007/978-3-642-45358-8.

[29] M. A. Zayyat and M. S. Modabbes, ‘‘Study on im-pact of changing the
nature of data on the overall file compression ratio,’’ Assoc. Arab Univ. J.
Eng. Sci., vol. 29, no. 1, pp. 56–63, Apr. 2022, Art. no. 1.

[30] D. Ewell. (2004). A Survey of Unicode Compression. [Online]. Available:
http://www.unicode.org/notes/tn14/

[31] N. S. Rao, M. P. Kumar T, and M. Naidu Y, ‘‘Two phase text data
compression using new LZW approach with dynamic bit reduction,’’ Int.
J. Mod. Trends Sci. Technol., vol. 8, no. S08, pp. 43–46, 2022.

[32] X. Cheng, B. Li, J. Wu, W. Li, C. Luo, and J. Su, ‘‘A novel
dictionary management scheme of LZW compression algorithm
based on insignificant dictionary area,’’ in Proc. IEEE 6th Int.
Conf. Signal Image Process. (ICSIP), Oct. 2021, pp. 975–979, doi:
10.1109/ICSIP52628.2021.9688595.

[33] Y. Tsai and J. Ding, ‘‘An improved LZW algorithm for large data
size and low bitwidth per code,’’ in Proc. TENCON - IEEE Region
10 Conf. (TENCON), Dec. 2021, pp. 203–208, doi: 10.1109/TEN-
CON54134.2021.9707201.

[34] H. A. Basha, D. S. Arivalagan, and D. P. Sudhakar, ‘‘An enhanced low
complexity and fast lossless compression technique for textual data,’’ Int.
J. Sci. Technol. Res., vol. 9, no. 1, pp. 4013–4017, 2020.

[35] A. Deepa, Nitasha, and N. Chopra, ‘‘Intensification of Lempel-Ziv-
Welch algorithm,’’ Int. J. Innov. Technol. Exploring Eng., vol. 8, no. 9S,
pp. 587–591, Aug. 2019, doi: 10.35940/ijitee.I1092.0789S19.

[36] M. Safieh and J. Freudenberger, ‘‘Address space partitioning for the par-
allel dictionary LZW data compression algorithm,’’ in Proc. 16th Can.
Workshop Inf. Theory (CWIT), Hamilton, ON, Canada, 2019, pp. 1–6, doi:
10.1109/CWIT.2019.8929928.

[37] U. Nandi and J. K. Mandal, ‘‘A compression technique based on optimality
of LZW code (OLZW),’’ in Proc. 3rd Int. Conf. Comput. Commun. Tech-
nol., Nov. 2012, pp. 166–170, doi: 10.1109/ICCCT.2012.40.

[38] Usage Report of UTF-8 Broken Down by Content Lan-
guages. Accessed: Feb. 13, 2023. [Online]. Available:
https://w3techs.com/technologies/breakdown/en-utf8/content_language

[39] Omer, ‘‘Arabic short text compression,’’ J. Comput. Sci., vol. 6, no. 1,
pp. 24–28, Jan. 2010, doi: 10.3844/jcssp.2010.24.28.

[40] Z. M. Alasmer, B. M. Zahran, B. A. Ayyoub, M. A. Kanan, A. I. Ham-
mouri, and J. Ababneh, ‘‘A comparison between English and Arabic
text compression,’’ Contemp. Eng. Sci., vol. 6, pp. 111–119, 2013, doi:
10.12988/ces.2013.13010.

[41] D. Barman and M. B. Ahamed, ‘‘Improved LZW compression technique
using difference method,’’ Int. J. Innov. Technol. Exploring Eng., vol. 9,
no. 5, pp. 87–92, Mar. 2020, doi: 10.35940/ijitee.E2216.039520.

[42] R. Ta and R. Ramachandran, ‘‘Preprocessed text compression method for
Malayalam text files,’’ Int. J. Recent Technol. Eng., vol. 8, no. 2, pp. 1–5,
Apr. 2021, doi: 10.35940/ijrte.B1806.078219.

[43] R. T. Anto and R. Ramachandran, ‘‘A compression system for unicode files
using an enhanced lzw method,’’ Pertanika J. Sci. Technol., vol. 28, no. 4,
Oct. 2020, doi: 10.47836/pjst.28.4.16.

[44] A. Musa, A. A. Dmour, O. A. Khaleel, and M. Irshid, ‘‘An efficient
compression technique using Lempel-ziv algorithm based on dynamic
source encoding scheme,’’ Int. J. Inf. Commun. Technol., vol. 2, no. 3,
p. 210, 2010.

[45] H. G. Alshammar and D. Alghurair, ‘‘Improving compression methods for
Arabic Text using dedicated character mapping,’’ Int. J. Sci. Res., vol. 5,
no. 11, pp. 1379–1387, 2016.

[46] F. Thaher, ‘‘Dynamic with dictionary technique for Arabic text compres-
sion,’’ Int. J. Comput. Appl., vol. 135, no. 9, pp. 4–9, Feb. 2016, doi:
10.5120/ijca2016908299.

[47] A. Awajan and E. Abujari, ‘‘Hybrid technique for Arabic text compres-
sion,’’ Global J. Comput. Sci. Technol., vol. 15, pp. 1–6, Jan. 2015.

[48] C. Wei, X. Dewu, and F. Minfeng, ‘‘Chinese text compression algorithm
based on LZW,’’ in Proc. Int. Conf. Comput. Appl. Syst. Model. (ICCASM),
Oct. 2010, pp. 54–57, doi: 10.1109/ICCASM.2010.5620082.

[49] L. Barua, P. K. Dhar, L. Alam, and I. Echizen, ‘‘Bangla text compression
based on modified Lempel-Ziv-Welch algorithm,’’ in Proc. Int. Conf.
Electr., Comput. Commun. Eng. (ECCE), Feb. 2017, pp. 855–859, doi:
10.1109/ECACE.2017.7913022.

[50] I. Guellil, H. Saâdane, F. Azouaou, B. Gueni, and D. Nouvel, ‘‘Ara-
bic natural language processing: An overview,’’ J. King Saud Univ.
Comput. Inf. Sci., vol. 33, no. 5, pp. 497–507, Jun. 2021, doi:
10.1016/j.jksuci.2019.02.006.

[51] K. Shaalan and A. Farghaly, ‘‘Introduction to the special issue on Arabic
natural language processing,’’ACMTrans. Asian Lang. Inf. Process., vol. 8,
no. 4, p. 13, Dec. 2009, doi: 10.1145/1644879.1644880.

[52] M. S. S. Sawalha and E. S. Atwell, ‘‘Constructing and using broad-
coverage lexical resource for enhancing morphological analysis of Ara-
bic,’’ in Proc. 7th Conf. Int. Lang. Resour. Eval. (LREC), Valleta,
Malta: European Language Resources Association (ELRA), May 2010,
pp. 282–287.

[53] A. A. Neme and S. Paumier, ‘‘Restoring Arabic vowels through
omission-tolerant dictionary lookup: Formation of words through com-
puter resources,’’ Lang. Resour. Eval., vol. 54, no. 2, pp. 487–551,
Jun. 2020, doi: 10.1007/s10579-019-09464-6.

[54] A Study of Arabic Letter Frequency Analysis. Accessed: Feb. 11, 2023.
[Online]. Available: http://www.intellaren.com/articles/en/a-study-of-
arabic-letter-frequency-analysis

[55] M. Jarrar, F. Zaraket, R. Asia, and H. Amayreh, ‘‘Diacritic-based matching
of Arabic words,’’ ACM Trans. Asian Low-Resource Lang. Inf. Process.,
vol. 18, no. 2, pp. 1–21, Jun. 2019, doi: 10.1145/3242177.

[56] M. K. Saad, ‘‘OSAC: Open source Arabic corpora,’’ in Proc. 6th Int.
Conf. Electr. Comput. Syst. (EECS), Lefke, North Cyprus, Nov. 2010,
pp. 118–123.

[57] A. Farghaly and K. Shaalan, ‘‘Arabic natural language processing: Chal-
lenges and solutions,’’ ACM Trans. Asian Lang. Inf. Process., vol. 8, no. 4,
p. 14, Dec. 2009, doi: 10.1145/1644879.1644881.

[58] T. Abu Hilal, H. Abu Hilal, and A. Abu Hilal, ‘‘Multistage Arabic and
Turkish text compression via characters encoding and 7-Zip,’’ J. Ubiq-
uitous Syst. Pervasive Netw., vol. 15, no. 1, pp. 11–15, Mar. 2021, doi:
10.5383/JUSPN.15.01.002.

51928 VOLUME 11, 2023

http://dx.doi.org/10.1093/comjnl/bxr096
http://dx.doi.org/10.5120/1799-1767
http://dx.doi.org/10.9790/0661-1161519
http://dx.doi.org/10.2316/Journal.202.2010.3.202-2914
http://dx.doi.org/10.1016/j.camwa.2007.05.014
http://dx.doi.org/10.1109/DCC.1997.582003
http://dx.doi.org/10.1109/DCC.2006.16
http://dx.doi.org/10.3390/info11030172
http://dx.doi.org/10.14445/22312803/IJCTT-V49P122
http://dx.doi.org/10.1109/DCC.1999.785680
http://dx.doi.org/10.1109/ICoICT.2015.7231466
http://dx.doi.org/10.3390/s22176393
http://dx.doi.org/10.1007/978-3-642-45358-8
http://dx.doi.org/10.1109/ICSIP52628.2021.9688595
http://dx.doi.org/10.1109/TENCON54134.2021.9707201
http://dx.doi.org/10.1109/TENCON54134.2021.9707201
http://dx.doi.org/10.35940/ijitee.I1092.0789S19
http://dx.doi.org/10.1109/CWIT.2019.8929928
http://dx.doi.org/10.1109/ICCCT.2012.40
http://dx.doi.org/10.3844/jcssp.2010.24.28
http://dx.doi.org/10.12988/ces.2013.13010
http://dx.doi.org/10.35940/ijitee.E2216.039520
http://dx.doi.org/10.35940/ijrte.B1806.078219
http://dx.doi.org/10.47836/pjst.28.4.16
http://dx.doi.org/10.5120/ijca2016908299
http://dx.doi.org/10.1109/ICCASM.2010.5620082
http://dx.doi.org/10.1109/ECACE.2017.7913022
http://dx.doi.org/10.1016/j.jksuci.2019.02.006
http://dx.doi.org/10.1145/1644879.1644880
http://dx.doi.org/10.1007/s10579-019-09464-6
http://dx.doi.org/10.1145/3242177
http://dx.doi.org/10.1145/1644879.1644881
http://dx.doi.org/10.5383/JUSPN.15.01.002

E. A. Jrai et al.: Improving LZW Compression of Unicode Arabic Text Using Multi-Level Encoding

[59] B. Vijayalakshmi and D. N. Sasirekha, ‘‘Lossless Tamil compression using
ASCII substitution and modified Huffman encoding technique,’’ Int. J.
Recent Technol. Eng. (IJRTE), vol. 8, no. 6, pp. 2900–2906, Mar. 2020,
doi: 10.35940/ijrte.F8177.038620.

[60] T. A. Hilal and H. A. Hilal, ‘‘Arabic text lossless compression by char-
acters encoding,’’ Proc. Comput. Sci., vol. 155, pp. 618–623, 2019, doi:
10.1016/j.procs.2019.08.087.

[61] V. H. Nguyen, H. T. Nguyen, H. N. Duong, and V. Snasel, ‘‘n-gram-
based text compression,’’ Comput. Intell. Neurosci., vol. 2016, Nov. 2016,
Art. no. e9483646, doi: 10.1155/2016/9483646.

[62] P. M. Nishad and R. M. Chezian, ‘‘Behavioral study of data structures on
Lempel Ziv Welch (LZW) data compression algorithm and ITS computa-
tional complexity,’’ in Proc. Int. Conf. Intell. Comput. Appl., Mar. 2014,
pp. 268–274, doi: 10.1109/ICICA.2014.64.

[63] S. R. Namburi, P. A. V. Krishna Rao, P. K. Muvva, and V. N. Kumar, ‘‘An
efficient method to reduce LZW algorithm OUPUT code length,’’ Int. J.
Eng. Appl. Sci. Technol., vol. 04, no. 11, pp. 302–304, Apr. 2020, doi:
10.33564/IJEAST.2020.v04i11.054.

[64] U. Nandi and J. K. Mandal, ‘‘Modified compression techniques based on
optimality of LZWcode (MOLZW),’’Proc. Technol., vol. 10, pp. 949–956,
2013, doi: 10.1016/j.protcy.2013.12.442.

[65] Z. Chai and W. Chen, ‘‘An adaptive LZW compres-sion algorithm
using changeable maximum-code-length,’’ in Proc. 4th Int. Conf.
Comput. Inf. Technol., Wuhan, China, 2004, pp. 1175-1180, doi:
10.1109/CIT.2004.10002.

[66] J. V. S. R. S. H. Bolem, ‘‘Design and implementation of effi-
cient LZW compression and decompression technique,’’ Int. J. Res.
Appl. Sci. Eng. Technol., vol. 8, no. 1, pp. 342–351, Jan. 2020, doi:
10.22214/ijraset.2020.1063.

[67] Usage Statistics and Market Share of Character Encodings
for Websites. Accessed: Feb. 13, 2023. [Online]. Available:
https://w3techs.com/technologies/overview/character_encoding

[68] M. K. Saad. (2010). Open Source Arabic Language and Text Min-
ing Tools. [Online]. Available: https://sourceforge.net/projects/ar-text-
mining/files/Arabic-Corpora/

[69] M. A. Sakhar. Shakkalli. Accessed: Feb. 13, 2023. [Online]. Available:
https://Tashkeel.alsharekh.org

[70] I. A. El-Khair, ‘‘Effects of stop words elimination for Arabic information
retrieval: A comparative study,’’ Inf. Sci., vol. 4, no. 3, pp. 119–133, 2006.

ENAS ABU JRAI received the bachelor’s degree
in software engineering from Al-Hussein Bin
Talal University, Jordan, in 2008, and the mas-
ter’s degree in computer science fromMiddle East
University, Jordan, in 2013. She is currently a
Faculty Member with Al-Balqa Applied Univer-
sity, Jordan. Her research interest includes text
compression.

SHOROQ ALSHARARI received the master’s
degree in computer science fromMiddle East Uni-
versity, Jordan, in 2013. She is currently a Lecturer
in software engineering with Al-Hussein Bin Talal
University (AHU), Jordan. Her current research
interests include image processing and software
design and implementation.

LAIALI ALMAZAYDEH received the Ph.D.
degree in computer science and engineering from
the University of Bridgeport, USA, in 2013, spe-
cializing in human–computer interaction. She is
currently a Professor and the Dean of the Faculty
of Information Technology, Al-Hussein Bin Talal
University, Jordan. She has published more than
60 research papers in various international jour-
nals and conferences proceedings. Her research
interests include human–computer interaction and

pattern recognition. She received best paper awards in three conferences,
ASEE 2012, ASEE 2013, and ICUMT 2016. Recently, she has been
awarded two postdoctoral scholarships from European Union Commission
and Jordanian–American Fulbright Commission.

KHALED ELLEITHY (Senior Member, IEEE) is
currently the Dean of the College of Engineer-
ing, Business, and Education, the Associate Vice
President of Graduate Studies and Research, and a
Distinguished Professor in computer science and
engineering with the University of Bridgeport.
He has published more than 450 research papers
in national/international journals and conferences
in his areas of expertise. He is an editor or a co-
editor for 12 books published by Springer. His

research interests include wireless sensor networks, mobile communications,
network security, quantum computing, and formal approaches for design and
verification.

OSAMA ABU HAMDAN received the B.S.
degree in computer engineering from the Univer-
sity of Jordan, in 2020. He is currently pursuing the
Ph.D. degree in computer science and engineering
with the University of Nevada, Reno. His research
interests include software defined networking and
programmable networks.

VOLUME 11, 2023 51929

http://dx.doi.org/10.35940/ijrte.F8177.038620
http://dx.doi.org/10.1016/j.procs.2019.08.087
http://dx.doi.org/10.1155/2016/9483646
http://dx.doi.org/10.1109/ICICA.2014.64
http://dx.doi.org/10.33564/IJEAST.2020.v04i11.054
http://dx.doi.org/10.1016/j.protcy.2013.12.442
http://dx.doi.org/10.1109/CIT.2004.10002
http://dx.doi.org/10.22214/ijraset.2020.1063

