
Received 4 April 2023, accepted 17 May 2023, date of publication 23 May 2023, date of current version 1 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3279276

Pixel Difference Unmixing Feature Networks
for Edge Detection
SHI-SHUI BAO 1, YOU-RUI HUANG 1,2, JIA-CHANG XU1, AND GUANG-YU XU1
1School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
2School of Electrical and Opto Electronic Engineering, West Anhui University, Lu’an 237012, China

Corresponding author: You-Rui Huang (hyr628@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61772033.

ABSTRACT The edge detection model based on deep learning significantly improves performance, but
its generally high model complexity requires a large pretrained Convolutional Neural Networks (CNNs)
backbone, and hence large memory and computing power. To solve this problem, we carefully choose proper
components for edge detection, introduce a Multiscale Aware Fusion Module based on self-attention and
a feature-unmixing loss function, and propose a lightweight network model, Pixel Difference Unmixing
Feature Networks (PDUF). The backbone network of proposed model is designed to adopt skip long-short
residual connection and does not use pre-trained weights, and requires straightforward hyper-parameter
settings. Extensive experiments on the BSDS, NYUD, and Multi-cue datasets, we found that the proposed
model has higher F-scores than current state-of-the-art lightweight models (those with fewer than 1 million
parameters) on BSDS500 (ODS F-score of 0.818), NYUDv2 depth datasets (ODS F-score of 0.767) and
Multi-Cue dataset (ODS F-score 0.871(0.002)), with similar performance compared with some large models
(with about 35 million parameters).

INDEX TERMS Deep learning, edge detection, unmixing feature, lightweight.

I. INTRODUCTION
Edge detection is the basic work of image processing and
machine vision. Edge information plays an important role
in object recognition [13], [14], image segmentation [15],
[16], and medical image processing [5]. The goal of semantic
edge detection is to identify pixels belonging to predefined
categories. Early edge detection algorithms interpreted the
problem as one of low-level feature classification using local
image information [1], [2], [3] and manually designed fea-
tures [7], [8]. With the rapid development of machine learn-
ing, some deep learning models have surpassed the recorded
results of human perception in terms of image edge detection
performance [4], [5], [6]. Although significant progress has
been made in edge detection performance, most such work
aims to increase detection accuracy (based on metrics such as
ODS, OIS, and AP) through a new network structure or loss
function. In this case, the network structure is generally very

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudhakar Radhakrishnan .

deep, and the number of model parameters is huge, which
brings large memory and computing overhead.

However, we believe that overly complex network struc-
tures are unnecessary for edge detection. These large models
cannot be used in real-time on low memory or computing
power devices. Furthermore, edge detection is relatively sim-
ple compared to semantic segmentation and object recog-
nition. While feature extractors are required to recognize
many different object patterns in semantic segmentation, edge
detection only needs to recognize edge or non-edge pixels.

Therefore, we propose a novel architecture called Pixel
Difference Unmixing Feature Networks that is both highly
accurate and lightweight. The proposed method consists of
a backbone network and a side structure, with the backbone
network adopting dense residual connection. The parameters
of the proposed model are only 4% of BDCN [41], while the
ODS scores are almost equal. Figure 2 shows the relationship
between detection accuracy and model complexity (size) of
some methods based on deep learning.

In summary, the contribution in this paper can be summa-
rized as follow:

52370

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-6912-1615
https://orcid.org/0000-0002-9774-5791
https://orcid.org/0000-0002-0982-5282


S.-S. Bao et al.: Pixel Difference Unmixing Feature Networks for Edge Detection

FIGURE 1. The overall flowchart of the proposed method.

FIGURE 2. Complexity and accuracy performance of various edge
detection models.

(1) A lightweight CNN architecture is proposed, which has
just 0.66M parameters compared to 16.3M in state-of-the-art
method BDCN [41].

(2) We propose a multiscale aware fusion module based
on self-attention that can capture receptive fields of different
sizes in feature maps.

(3) A novel feature unmixing loss function is designed,
which fully exploits their respective advantages of differ-
ent loss functions, according to the principle of the Nash
equilibrium.

The remainder of the paper is organized as follows.
Section II reviews the related work of edge detection. Then,
Section III details the proposed method; experimental results

are presented in Section IV. Finally, Section V provides a
summary of the paper.

II. RELATED WORK
Since B. Julez completed his work in 1959 [20], there has
much literature on edge detection, and object edge detection
has long been of interest. According to the different ways of
extracting edge features, these methods can be categorized
as edge differential operators, traditional machine learning
methods, or deep learning methods. Early edge differential
operators mainly used the gray value gradient information
between the target object edge and background pixel, such
as the Canny [2], Sobel [13], or Laplace [30] operators,
which use the first- and second-order information of the
image to achieve edge detection. Canny [2] introduced non-
maximum suppression methods to edge detection, and these
have become representative of such methods. Kumawat et al.
proposed a feature-based image registration (FBIR) method
that combines fuzzy logic improved Canny algorithm to
achieve accurate detection of image edges [46]. However,
because this kind of method relies on the manual design of
detection operators, the accuracy on a test set is low.

Traditional machine learning methods usually use the fea-
tures of manual design for supervised learning [3], [17],
[18], [19], [22], [23]. P.Dollár et al. proposed a fast ran-
dom structure forest method [23], making full use of local
edge templates for prediction. Martin et al. [22] proposed the
Pb algorithm, using the low-level image brightness (BG),
texture (CG), and color (TG) channel features, and a logi-
cal regression algorithm. Arbeláez et al. proposed the gPb
algorithm [3], which gives each pixel a global probability
by calculating global features on the basis of multiscale Pb.
However, even if complex feature representation is designed,
the edge information extracted from these methods is still
relatively limited.

Deep learning is the popular method of edge detection,
especially the convolutional neural network, because the
neural network model has the ability of hierarchical fea-
ture learning. Early deep learning-based methods, such as
N4-ield [24], DeepContour [25], and DeepEdge [26], used
block-by-block or pixel-by-pixel strategies, which usually
weakened the effectiveness of prediction. Xie et al. proposed
the first end-to-end edge detection algorithm, HED [27],
which includes encoding and decoding networks and uses
backpropagation for end-to-end training. Liu et al. proposed
the RCF model [28] on the basis of an HED network [27],
which performs feature compression for each convolution
layer with the same resolution, greatly improving the abil-
ity to express image features. Wang et al. proposed the
CED [29] network model, added a residual enhancement
module on the basis of the HED [27] network structure,
and gradually restored the image resolution using sub-pixel
convolution, which improved edge performance. LPCB [4]
improved the loss function, and BDCN [41] trained the neural
network using bidirectional multiscale features to improve

VOLUME 11, 2023 52371



S.-S. Bao et al.: Pixel Difference Unmixing Feature Networks for Edge Detection

edge detection accuracy. A new boundary tracking and tex-
ture suppression loss function was proposed in CATS [11],
which effectively solved the problem of mixed pixels and
texture regions near edges. In addition to the above methods,
ContourGan [39], which is based on a GAN network, as well
as the Transformer based EDTER [40] and Dexined [5], [18]
models, have been recently proposed.

The abovementioned models either have low feature
extraction efficiency or require a pretrained backbone net-
work due to their large size, which cannot meet the real-
time application of devices with low computing power. These
shortcomings have promoted the development of lightweight
models (usually with fewer than 1M parameters), which
have achieved satisfactory results. Literature [10] proposed
pixel difference convolution, whose normal version has only
710K parameters, but the F-measures of OIS and ODS reach
0.823 and 0.807, respectively. The FINED [33] and LDC [38]
lightweight network models show improved edge detection
performance.

III. PROPOSED METHOD
We describe the architecture of the proposed network model
and the structure of the multiscale aware fusion module,
as shown in Figures 3 and 4, respectively. The model consists
of a feature extraction backbone network and four side output
subnetworks. In addition, we introduce a feature unmixing
loss function training network model.

A. BACKBONE NETWORK
The backbone network is designed to maintain the thinnest
possible structure, to effectively extract target object features.
Therefore, we divide it into four stages, each composed of
four 3 × 3-pixel difference convolutions (the first layer of
the first stage uses the initial convolutional layer). The last
layer of 2 to 3 stages is the maximum pool layer (Maxpool
2 × 2). Each convolution layer is followed by batch nor-
malization and a corrected linear unit ReLU function. With
the increase in stage number, the dimension of the output
feature map decreases, and the number of channels increases.
We set the number of channels in stages 1 to 4 to reasonable
sizes of 16, 32, 64 and 96, respectively, to effectively avoid
large model sizes. To eliminate gradient disappearance of the
backbone network with increasing numbers of convolution
layers, we use a dense residual connection [31], [32], which
can improve model training efficiency without increasing
the number of parameters. Dense residuals use skip long-
short residual connection methods. The skip short residual
connection is based on the standard ResNet [31] residual
connection, and no new parameters are added.We divide each
of stages 1 to 4 into two blocks, each composed of two 3 ×

3-pixel difference convolution layers, and each block (except
the first block of stage 1) adopts a skip short residual connec-
tion, in which the output feature map of each block and the
features transmitted from the skip short residual are averaged.
A skip long residual connection is used between the input
features of the second and third stages and the output features

of the Max pooling layer. Since pixel-wise summation is
adopted at the skip long residual connection, the two fea-
ture map dimensions must be consistent. Therefore, we add
a 3 × 3-pixel difference convolution layer with stride 2 in
the skip long residual connection path. The skip long-short
residual connection effectively enhances the transmission of
feature information and the use of hierarchical features in the
training process.

B. SIDE STRUCTURE
We adopt the side output structure to learn and enrich multi-
level features [27]. The model has four side output paths,
corresponding to the stages of the backbone network. The
input of a side path is from the average feature map of
each stage, and the output generates an edge map and real
edge labels for deep supervision training through the side
loss function. To capture receptive fields of different sizes in
feature maps, we propose a multiscale aware fusion module
based on self-attention, which is embedded in each stage.
Then sub-pixel convolution is used to restore the feature map
to the original image size, and a 1 × 1 convolution layer
reduces the feature map to a single channel and obtains the
edge map through a sigmoid function. The final edge map for
testing is obtained by fusing the four single-channel feature
maps with concatenation, and then through 1× 1 convolution
and sigmoid functions.

Multiscale Aware Fusion Module: Figure 4 shows
the structure of the MSAF module. First, we use the
1 × 1 conv + ReLU layer to receive and process the feature
map of the backbone network output. To make full use of
low-level edge map details and high-level edge global context
information with robust texture suppression, we use four par-
allel arranged dilation convolutions to set the division sizes
to 5, 7, 9, and 11. In PiDiNet [10] and FINED [33], the same
fixed weight operation was used to fuse the feature map from
different size dilation convolutions. Although effective, this
averaging operation will cause side mixing problems because
all pixels in the side image share the same fixed weight
and are equally important in the fusion process. To avoid
feature mixing and make full use of multi-level features
of the dilation convolution output, inspired by CAT [11],
the self-attention mechanism is used in the feature fusion
process to give each output feature different weights. The
number of MSAF receiving channels is the output channel
corresponding to each stage. The number of output channels
generated is uniformly set to 32 filters, which can reduce the
computational complexity.

Let L = [L1, L2, · · · , Ls] ∈ RH×W×S, Ls ∈ RH×W×C ,
where L represents edge heatmaps of dilation convolution
output. The self-attention module adopts two 3 × 3conv
+ ReLU and one 1 × 1conv + softmax, to derive a
score map M ∈

[
mijs

]
RH×W×S. The weight map W =

[w1,w2, · · · ,ws] ∈ RH×W×S is calculated by the score map,
where [

wijs
]

= emijs
/ ∑S

k=1
emijk (1)

52372 VOLUME 11, 2023



S.-S. Bao et al.: Pixel Difference Unmixing Feature Networks for Edge Detection

FIGURE 3. Overall architecture of PDUF network model.

With the weight map, W ∈ RH×W×S, pfinal can be calcu-
lated as

pfinal = sigmoid
(∑S

s=1
W ⊗ Ls

)
(2)

where ⊗ denotes the Hadamard product.

C. PIXEL DIFFERENCE CONVOLUTION
In the task of edge detection, to easily extract rich gradient
information, reduce the processing of irrelevant image fea-
tures, and ensure that the deep CNN can learn meaningful

semantic expressions, PiDiNet [10] proposes using the pixel
difference convolution (PDC)method. In this paper, we adopt
the pixel difference convolution. It is similar to vanilla con-
volution, replacing vanilla convolution kernels with pixel
difference convolutions when convolving the original pixels
on local image features. Vanilla convolution and PDC can be
formulated as

y = F (x, θ) =

∑k×k

i=1
ωi ∗ xi (vanilla convolution) (3)

y = F (∇x, θ) =

∑
(xi,x′

i)∈p
ωi ∗ (xi − x′

i) (PDC) (4)

VOLUME 11, 2023 52373



S.-S. Bao et al.: Pixel Difference Unmixing Feature Networks for Edge Detection

FIGURE 4. Structure of multiscale aware fusion model.

where xi and x′

i are the input pixels, ωi is the weight in

the k ∗ k convolution kernel p =

{ (
x1, x′

1

)
,
(
x2, x′

2

)
, · · · ,(

xm, x′
m
) }

is the set of pixel pairs picked from the current

local patch, and m ≤ k× k.

D. FEATURE UNMIXING LOSS FUNCTION
The loss function is an important part of an end-to-end
CNN training model, as it directly affects the final prediction
results. Therefore, when designing the loss function, we must
pay attention to suppression of confusing pixels and texture
regions near real edges, serious imbalance between edge and
non-edge pixels, accuracy of detection results, and fusion
of multiple loss functions. Based on these considerations,
inspired by BMRN [7], CAT [11], HED [27], and LPCB [4],
we propose a feature unmixing loss function that combines
cross-entropy loss, Dice efficiency loss, the boundary tracing
function, and the texture suppression function through adap-
tiveweights, and improves the performance of edge detection.

To effectively solve the serious imbalance between edge
pixels and non-edges in the input image, HED [27] uses a
weight cross-entropy loss function,

Lc (W ,w) = −γ
∑

j∈Y+

logPr(yj = 1|X;W ,w)

− (1 − γ )
∑

j∈Y−

logPr(yj = 0|X;W ,w)

(5)

where Y+ and Y− represent edge and non-edge pixels,
respectively; γ = |Y−| / |Y | and 1 − γ = |Y+| / |Y |; X
represents the input image, and Pr(yj |X;W ,w) is the classi-
fication probability obtained after pixel yj passes the Softmax
function.

Deng et al. [4] found through experiments that the edge
of cross-entropy loss function detection was relatively thick,
so they proposed a Dice coefficient loss function,

Ld (P,G) = Dist (P,G) =

∑N
i p

2
i +

∑N
i g

2
i

2
∑N

i pi gi
(6)

where pi and gi are the values of the i-th pixel of the pre-
dicted P and G real label graphs, respectively. Since the Dice
coefficient loss function can be used to measure the approxi-
mation of two datasets, the loss function is used to calculate
the approximation of P and G and minimize their distance
through training data. The Dice coefficient loss function does
not need to consider the imbalance between edge and non-
edge pixels and can obtain crisp edges through training.
It is considered to be a picture-level similarity measurement
function.

Boundary tracing and texture suppression functions have
been proposed to solve the problem of confusing pixels and
texture regions near edges CAT [11]. The boundary tracking
function weakens the interaction between the edge and con-
fused neighbors by expanding the response difference of crisp
edge description. It is expressed as

Lb

(
Ŷ ,Y

)
= −

∑
p∈E

log
(∑

i∈Lp
ŷi

/ (∑
i∈Rep\Lp

ŷi

+

∑
i∈Lp

ŷi

))
(7)

where E is the set of all edge points of edge label Y, Rep
is a small image patch containing edge fragments (e.g., a
5 × 5 rectangle patch), and the small image block is centered
on the edge point p. The set of edge points in image Rep is
represented by Lp.

The boundary tracking function solves the problem of the
mixing of edge and confusion pixels. The texture suppression
function effectively suppresses the remaining texture regions
to make them smoother,

Lt

(
Ŷ ,Y

)
= −

∑
p∈Y\Ê

log
(
1 −

∑
i∈Rtp

ŷi/
∣∣∣Rtp∣∣∣) (8)

where Rtp represents an image patch that centered on non-
edge p (e.g., a 3 × 3 rectangle), and Ê represents a small
image patch that contains all edges and confusion pixels in the
edge tracking function. Based on the analysis of the above-
mentioned loss functions, to fully exploit their respective

52374 VOLUME 11, 2023



S.-S. Bao et al.: Pixel Difference Unmixing Feature Networks for Edge Detection

FIGURE 5. Comparison with other methods in terms of network complexity, running efficiency, and
detection performance on the BSDS500 dataset. Running speeds of FINED [33] are cited from the original
paper; the rest are evaluated by our implementations.

FIGURE 6. P–R curves of different algorithms on BSDS500; our method achieves state-of-the-art results
(ODS F = 0.818).

advantages, according to the principle of the Nash equilib-
rium, αLc + βLd + λλλLb + θLt is taken as one side of a
game, and the term log

(
1 +

1
α+β+λλλ+θ

)
, opposite the orig-

inal cost function, is constructed as the other side. Through
end-to-end training of the network model, we obtain the
weight coefficients α, β,λλλ , and the θ values reach Nash equi-
librium. Then we construct an adaptive weight loss feature
unmixing loss function,

L (P,Y) = αLc + βLd + λλλLb + θLt

+ log
(
1 +

1
α + β + λλλ + θ

)
(9)

where Lc, Ld , Lb, and Lt correspond to the loss functions
defined in equations (5)–(8), respectively. In the training
process, larger values of α, β, λ , and θ increase the con-
tribution of αLc + βLd + λλλLb + θLt . The last term,
log

(
1 +

1
α+β+λλλ+θ

)
, is the regularization term of parameters

α, β, λ , and θ .

IV. EXPERIMENT
We introduce the datasets and hyperparameter settings.
We used ablation experiments to verify the effectiveness and
versatility of the proposedmethod, so as to show the influence
of each sub-module and loss function on overall network
performance. Through further experimental comparison with

VOLUME 11, 2023 52375



S.-S. Bao et al.: Pixel Difference Unmixing Feature Networks for Edge Detection

FIGURE 7. Qualitative comparison of different detection algorithms on BSDS500. Left to right: original image, ground
truth, HED detection result, CED detection result, our method’s detection result.

FIGURE 8. Our method achieves best results (F = 0.782) on the NYUDv2
dataset for P–R curves of different algorithms.

state-of-the-art algorithms, the proposed method was verified
to better extract crisp edges of objects.

A. DATASETS
We used the popular Berkeley segmented dataset BSDS500
[3], deep dataset NYUDv2 [24], and Multi-cue dataset [18]
to train and evaluate our model.

BSDS500 contains 500 image labels, which we divided
into training, verification, and test sets, which, respectively,
contained 200, 100, and 200 image-label pairs. To avoid
insufficient training and poor robustness of the model due
to a lack of pictures in the training set, we augmented it to
realize more than 10,000 image-label pairs using the methods
proposed in HED [27] and RCF [28].

NYUDv2 includes 1449 RGB-D images, which were
divided into 381 image-tag pairs as training sets, 414 as

verification sets, and 654 as test sets. We augmented the
dataset by rotating each image at four different angles (0◦,
90◦, 180◦, and 270◦), and flipping it at each angle.
Multi-cue strictly distinguishes the definitions of boundary

and edge and is composed of the Multi-cue Boundary and
Multi-cue Edge sub-datasets. This dataset regards semanti-
cally meaningful pixels as object boundary points and treats
pixels with abrupt perceptional changes as low-level edge
points. The dataset contains 100 natural scenes, each with
two frame sequences, obtained from the left and right view,
and the last frame of the left view sequence is labeled as the
edge and boundary. According to the HED [27] and RCF [28]
methods, we randomly split 100 labeled scene images, using
80 for training and 20 for testing.

B. EXPERIMENT DETAILS
We adopted the popular open-source PyTorch 1.8.0 frame-
work for deep learning [36] to implement the proposed neural
network model. The parameters of the backbone network
were randomly initialized and trained using the Adam opti-
mizer. Other hyperparameters were set as follows: the min-
imum batch size was 10; the momentum was 0.9; the total
number of iterations on the training set was 20; and the global
learning rate was initially set to 0.005, and decayed in amulti-
step way (at epochs 5, 10, and 15, with decaying rate 0.1). The
initial values of trainable parameters α, β, λλλ , and θ were all
set to 1.0. All experiments were performed on an NVIDIA
2070 video card with 8 GB of RAM.

According to previous work, the final edge was obtained
by performing standard non-maximum suppression on the
predicted edge. To compare the performance of different
algorithms, we adopted the widely used evaluation criteria of
Average Precision (AP) and F-measure at both the Optimal
Dataset Scale (ODS) and Optimal Image Scale (OIS) [34],
[35]. To make the edge prediction value match the ground
truth, the maximum tolerance distance was set to 0.0075 on
BSDS500 and Multi-cue, and 0.011 [29] on NYUDv2.

52376 VOLUME 11, 2023



S.-S. Bao et al.: Pixel Difference Unmixing Feature Networks for Edge Detection

FIGURE 9. Comparison of our method with state-of-the-art PiDiNet on NYUDv2. Left to right: RGB image, HHA
features, ground truth, PiDiNet experimental results, PDUF experimental results.

TABLE 1. Performance comparison between pixel different convolutions
(PDC) and vanilla convolutions (VC) on BSDS500 test set.

TABLE 2. Quantitative study of impact of different dilation convolutions
on overall network performance. CDCM and DDR are dilation convolution
modules proposed in PiDiNet and FINED methods, respectively.

C. ABLATION EXPERIMENTS
We analyzed the effect of PDC and the proposed algorithm
sub-module and loss function on the performance of the over-
all network model through ablation experiments, using the
BSDS500 training and verification sets to train the network
model, and the test set to evaluate model performance. The
results are summarized in Table 1, which shows that the pixel
different convolution operations in the backbone network
can achieve better output results. Table 2 shows the impact
of different dilation convolution modules on the algorithm
performance in the proposed network model. It can be found
that the proposed multiscale Aware Fusion module performs
better in edge detection than the previous dilation convolution
module [10], [33]. In addition, for the different combinations
of the proposed feature unmixing loss function, a comparative
experiment was carried out on the proposed PDUF model,
with results as shown in Table 3, from which it can be seen
that the proposed feature unmixing loss function has better
output results. Other parameters were set the same during
ablation experiments.

TABLE 3. Effect of proposed loss function on performance of our
network models. Lc : Cross loss function; Ld : Dice coefficient loss
function; Lt + Lb: Tracking loss function.

D. COMPARISON WITH STATE-OF-THE-ART
We statistically compared the performance of the pro-
posed method and state-of-the-art algorithms on BSDS500,
NYUDv2, and Multi-cue.

1) PERFORMANCE COMPARISON ON BSDS500
We compared the proposed method with some previous non-
deep learning algorithms and recent deep learning-based edge
detection algorithms, including N4-field [24], DeepCon-
tour [25], DeepEdge [26], HED [27], RCF [28], BDCN [41],
CED [29], BMRN [7], FINED [33], PiDiNet [10], CATS [11],
and traditional edge detection algorithms Canny [2], gPb [3],
SE [23], and PMI [42]. Table 4 shows the experimental
results, with ODS, OIS, and AP as the evaluation crite-
ria. The proposed method achieves better results (ODS =

0.818, OIS = 0.836, AP = 0.862) than the state-of-the-art
lightweight PiDiNet [10] model and exceeds the human
standard on BSDS500 (ODS = 0.803). Figure 5 compares
the model complexity, operational efficiency, and detection
performance of the proposed method and state-of-the-art
methods, from which it can be found that the proposed
method has better comprehensive performance than meth-
ods using the same level parameter. Figure 6 shows the
precision–recall curve of the experimental results. From the
qualitative experimental results in Figure 7, it can be seen

VOLUME 11, 2023 52377



S.-S. Bao et al.: Pixel Difference Unmixing Feature Networks for Edge Detection

TABLE 4. Performance of ours and other methods on BSDS500. †
indicates cited GPU speeds; ‡ indicates speeds with our implementations
on NVIDIA RTX 2070 GPU.

that the proposed algorithm extracts finer and crisper contours
than PiDiNet [10] and CATS [11].

2) PERFORMANCE COMPARISON ON NYUDV2
NYUDv2 is composed of two sub-datasets, RGB and HHA,
on which all experiments were carried out. The final edge
map of RGB-HHA is obtained from the prediction results
of the average RGB and HHA training models. Compar-
ing the proposed method with several non-deep learning
models (e.g., gPb-UCM [3], gPb-NG [43], SE [23]) and
deep learning models (e.g., HED [27], RCF [28], AMH-
Net-ResNet [44], LPCB [4], BDCN [41], FINED [33],
PiDiNet [10], CATS [11]), all experiments were based on
single-scale input. The quantitative experimental results are
shown in Table 5, from which we can find that the pro-
posed model has higher F-scores than current state-of-the-
art lightweight models, with similar performance compared
with some large models. Figure 8 shows the precision–recall
curves of different algorithms. Figure 9 qualitatively shows
the experimental results of the proposed method and the
lightweight models FINED [33] and PiDiNet [10]. Our
prediction results show crisper edges than the lightweight
models.

3) PERFORMANCE COMPARISON ON MULTI-CUE
The Multi-cue dataset is composed of the Multi-cue Bound-
ary and Multi-cue Edge sub-datasets, on which the proposed

TABLE 5. Quantitative comparison between proposed method and other
methods on NYUDv2. † indicates cited GPU speeds; ‡ indicates speeds
with our implementations based on an NVIDIA RTX 2070 GPU.

method, HED [27], RCF [28], BDCN [41], FINED [33],
and PiDiNet [10] were independently tested. Table 6 com-
pares the experimental results. Our algorithm achieves higher
performance than the lightweight models FINED [33] and
PiDiNet [10]. In the task of edge detection, our method
performance is 2.96% and 1.87% higher than that of
FINED [33] and PiDiNet [10] in terms of F-measure ODS,
respectively.

52378 VOLUME 11, 2023



S.-S. Bao et al.: Pixel Difference Unmixing Feature Networks for Edge Detection

TABLE 6. Quantitative comparison between proposed and recent methods on Multi-Cue. ‡ indicates speeds with our implementations based on NVIDIA
RTX 2070 GPU.

V. CONCLUSION
We conducted experiments on the BSDS500, NYUD, and
Multi-cue datasets, analyzed edge detection models with dif-
ferent weight levels, and proposed a robust, straightforward,
and practical lightweight network model that is memory-
friendly and has a high inference speed. We introduced a
multiscale aware fusion module, which obtains rich multi-
scale edge information at different stages. To fully exploit
the advantages of different loss functions, we proposed a
feature unmixing loss function, which fuses multiple loss
functions to effectively solve the problem of prediction edge
blurring caused by feature pixel mixing and the imbalance
of edge and non-edge pixels. The proposed model has fewer
than 0.66 million parameters and can achieve state-of-the-
art results comparable to those of current lightweight edge
detection models.

REFERENCES

[1] J. M. Prewitt, ‘‘Object enhancement and extraction,’’ Picture Process.
Psychopictorics, vol. 10, no. 1, pp. 15–19,1970.

[2] J. Canny, ‘‘A computational approach to edge detection,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. PAMI-8, no. 6, pp. 679–698, Nov. 1986,
doi: 10.1109/TPAMI.1986.4767851.

[3] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, ‘‘Contour detection and
hierarchical image segmentation,’’ IEEE Trans. Pattern Anal.Mach. Intell.,
vol. 33, no. 5, pp. 898–916, May 2011, doi: 10.1109/TPAMI.2010.161.

[4] R. Deng, C. Shen, S. Liu, H. Wang, and X. Liu, ‘‘Learning to predict
crisp boundaries,’’ in Computer Vision ECCV 2018, vol. 11210, V. Ferrari,
M. Hebert, C. Sminchisescu, Y. Weiss, Eds. Cham, Switzerland: Springer,
2018, pp. 570–586, doi: 10.1007/978-3-030-01231-1_35.

[5] X. Soria, E. Riba, and A. Sappa, ‘‘Dense extreme inception network:
Towards a robust CNN model for edge detection,’’ in Proc. IEEE Win-
ter Conf. Appl. Comput. Vis. (WACV), Mar. 2020, pp. 1912–1921, doi:
10.1109/WACV45572.2020.9093290.

[6] X. Du, Y. Nie, F. Wang, T. Lei, S. Wang, and X. Zhang, ‘‘AL-Net: Asym-
metric lightweight network for medical image segmentation,’’ Frontiers
Signal Process., vol. 2, p. 25, May 2022, doi: 10.3389/frsip.2022.842925.

[7] S. Bao, Y. Huang, and G. Xu, ‘‘Bidirectional multiscale refinement net-
work for crisp edge detection,’’ IEEE Access, vol. 10, pp. 26282–26293,
2022, doi: 10.1109/ACCESS.2022.3146339.

[8] S. Hallman and C. C. Fowlkes, ‘‘Oriented edge forests for boundary
detection,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 1732–1740, doi: 10.1109/CVPR.2015.7298782.

[9] J. K. Wibisono and H.-M. Hang, ‘‘Traditional method inspired deep neural
network for edge detection,’’ in Proc. IEEE Int. Conf. Image Process.
(ICIP), Oct. 2020, pp. 678–682, doi: 10.1109/ICIP40778.2020.9190982.

[10] Z. Su, W. Liu, Z. Yu, D. Hu, Q. Liao, Q. Tian, M. Pietikäinen, and
L. Liu, ‘‘Pixel difference networks for efficient edge detection,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 5097–5107, doi:
10.1109/ICCV48922.2021.00507.

[11] L. Huan, N. Xue, X. Zheng, W. He, J. Gong, and G. Xia, ‘‘Unmixing
convolutional features for crisp edge detection,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 44, no. 10, pp. 6602–6609, Oct. 2022, doi:
10.1109/TPAMI.2021.3084197.

[12] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikäinen, ‘‘Deep learning for generic object detection: A survey,’’
Int. J. Comput. Vis., vol. 128, no. 2, pp. 261–318, Feb. 2020, doi:
10.1007/s11263-019-01247-4.

[13] J. Kittler, ‘‘On the accuracy of the Sobel edge detector,’’ Image Vis. Com-
put., vol. 1, no. 1, pp. 37–42, 1983, doi: 10.1016/0262-8856(83)90006-9.

[14] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, ‘‘Groups of adjacent contour
segments for object detection,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 30, no. 1, pp. 36–51, Jan. 2008, doi: 10.1109/TPAMI.2007.1144.

[15] G. Bertasius, J. Shi, and L. Torresani, ‘‘Semantic segmentation with bound-
ary neural fields,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 3602–3610, doi: 10.1109/CVPR.2016.392.

[16] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun,
and A. Yuille, ‘‘The role of context for object detection and semantic
segmentation in the wild,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2014, pp. 891–898, doi: 10.1109/CVPR.2014.119.

[17] P. Dollar, Z. Tu, and S. Belongie, ‘‘Supervised learning of edges
and object boundaries,’’ in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit. (CVPR), vol. 2, Jun. 2006, pp. 1964–1971, doi:
10.1109/CVPR.2006.298.

VOLUME 11, 2023 52379

http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/TPAMI.2010.161
http://dx.doi.org/10.1007/978-3-030-01231-1_35
http://dx.doi.org/10.1109/WACV45572.2020.9093290
http://dx.doi.org/10.3389/frsip.2022.842925
http://dx.doi.org/10.1109/ACCESS.2022.3146339
http://dx.doi.org/10.1109/CVPR.2015.7298782
http://dx.doi.org/10.1109/ICIP40778.2020.9190982
http://dx.doi.org/10.1109/ICCV48922.2021.00507
http://dx.doi.org/10.1109/TPAMI.2021.3084197
http://dx.doi.org/10.1007/s11263-019-01247-4
http://dx.doi.org/10.1016/0262-8856(83)90006-9
http://dx.doi.org/10.1109/TPAMI.2007.1144
http://dx.doi.org/10.1109/CVPR.2016.392
http://dx.doi.org/10.1109/CVPR.2014.119
http://dx.doi.org/10.1109/CVPR.2006.298


S.-S. Bao et al.: Pixel Difference Unmixing Feature Networks for Edge Detection

[18] X. Soria, A. Sappa, P. Humanante, and A. Akbarinia, ‘‘Dense extreme
inception network for edge detection,’’ 2021, arXiv:2112.02250.

[19] J. J. Lim, C. L. Zitnick, and P. Dollar, ‘‘Sketch tokens: A learned mid-
level representation for contour and object detection,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 3158–3165, doi:
10.1109/CVPR.2013.406.

[20] B. Julesz, ‘‘A method of coding television signals based on edge detec-
tion,’’ Bell Syst. Tech. J., vol. 38, no. 4, pp. 1001–1020, Jul. 1959, doi:
10.1002/j.1538-7305.1959.tb01586.x.

[21] G. S. Robinson, ‘‘Color edge detection,’’ Opt. Eng., vol. 16, no. 5,
Oct. 1977, Art. no. 165479, doi: 10.1117/12.7972120.

[22] D. R. Martin, C. C. Fowlkes, and J. Malik, ‘‘Learning to detect natural
image boundaries using local brightness, color, and texture cues,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 26, no. 5, pp. 530–549, May 2004,
doi: 10.1109/TPAMI.2004.1273918.

[23] P. Dollar and C. L. Zitnick, ‘‘Fast edge detection using structured forests,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 8, pp. 1558–1570,
Aug. 2015, doi: 10.1109/TPAMI.2014.2377715.

[24] Y. Ganin and V. Lempitsky, ‘‘N4-fields: Neural network nearest neighbor
fields for image transforms,’’ in Proc. Asian Conf. Comput. Vis., Cham,
Switzerland: Springer, 2014, pp. 536–551.

[25] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang, ‘‘DeepContour: A
deep convolutional feature learned by positive-sharing loss for contour
detection,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 3982–3991, doi: 10.1109/CVPR.2015.7299024.

[26] G. Bertasius, J. Shi, and L. Torresani, ‘‘DeepEdge: A multi-scale bifur-
cated deep network for top-down contour detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 4380–4389, doi:
10.1109/CVPR.2015.7299067.

[27] S. Xie and Z. Tu, ‘‘Holistically-nested edge detection,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1395–1403, doi:
10.1109/ICCV.2015.164.

[28] Y. Liu, M. Cheng, X. Hu, K. Wang, and X. Bai, ‘‘Richer convolutional fea-
tures for edge detection,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jul. 2017, pp. 5872–5881, doi: 10.1109/CVPR.2017.622.

[29] Y. Wang, X. Zhao, Y. Li, and K. Huang, ‘‘Deep crisp boundaries: From
boundaries to higher-level tasks,’’ IEEE Trans. Image Process., vol. 28,
no. 3, pp. 1285–1298, Mar. 2019, doi: 10.1109/TIP.2018.2874279.

[30] L. J. van Vliet, I. T. Young, and G. L. Beckers, ‘‘A nonlinear Laplace
operator as edge detector in noisy images,’’ Comput. Vis., Graph., Image
Process., vol. 45, no. 2, pp. 167–195, Feb. 1989.

[31] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778, doi: 10.1109/CVPR.2016.90.

[32] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, ‘‘Residual dense net-
work for image super-resolution,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 2472–2481.

[33] J. K. Wibisono and H. Hang, ‘‘Fined: Fast inference network for edge
detection,’’ in Proc. IEEE Int. Conf. Multimedia Expo. (ICME), Jul. 2021,
pp. 1–6, doi: 10.1109/ICME51207.2021.9428230.

[34] J. Pont-Tuset and F. Marques, ‘‘Supervised evaluation of image
segmentation and object proposal techniques,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 38, no. 7, pp. 1465–1478, Jul. 2016, doi:
10.1109/TPAMI.2015.2481406.

[35] J. Pont-Tuset and F. Marques, ‘‘Measures and meta-measures for
the supervised evaluation of image segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 2131–2138, doi:
10.1109/CVPR.2013.277.

[36] A. Paszke, ‘‘Pytorch: An imperative style, high-performance deep learning
library,’’ in Proc. NeurIPS, 2019, pp. 8024–8035.

[37] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convo-
lutions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1800–1807, doi: 10.1109/CVPR.2017.195.

[38] X. Soria, G. Pomboza-Junez, and A. D. Sappa, ‘‘LDC: Lightweight dense
CNN for edge detection,’’ IEEE Access, vol. 10, pp. 68281–68290, 2022,
doi: 10.1109/ACCESS.2022.3186344.

[39] H. Yang, Y. Li, X. Yan, and F. Cao, ‘‘ContourGAN: Image contour detec-
tion with generative adversarial network,’’ Knowl.-Based Syst., vol. 164,
pp. 21–28, Jan. 2019.

[40] M. Pu, Y. Huang, Y. Liu, Q. Guan, and H. Ling, ‘‘EDTER: Edge detec-
tion with transformer,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2022, pp. 1392–1402, doi: 10.1109/CVPR52688.
2022.00146.

[41] J. He, S. Zhang, M. Yang, Y. Shan, and T. Huang, ‘‘BDCN: Bi-
directional cascade network for perceptual edge detection,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 44, no. 1, pp. 100–113, Jan. 2022, doi:
10.1109/TPAMI.2020.3007074.

[42] P. Isola, D. Zoran, D. Krishnan, and E. H. Adelson, ‘‘Crisp boundary
detection using pointwise mutual information,’’ in Computer Vision ECCV
2014, vol. 8691, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds.
Cham, Switzerland: Springer, 2014, pp. 799–814, doi: 10.1007/978-3-319-
10578-9_52.

[43] S. Gupta, P. Arbelaez, and J. Malik, ‘‘Perceptual organization and
recognition of indoor scenes from RGB-D images,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 564–571, doi:
10.1109/CVPR.2013.79.

[44] D. Xu, W. Ouyang, X. Alameda-Pineda, E. Ricci, X. Wang, and N. Sebe,
‘‘Learning deep structured multi-scale features using attention-gated CRFs
for contour prediction,’’ in Proc. NIPS, 2017, pp. 3964–3973.

[45] K. Maninis, J. Pont-Tuset, P. Arbeláez, and L. Van Gool, ‘‘Convolutional
oriented boundaries: From image segmentation to high-level tasks,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 819–833, Apr. 2018,
doi: 10.1109/TPAMI.2017.2700300.

[46] A. Kumawat and S. Panda, ‘‘A robust edge detection algorithm based on
feature-based image registration (FBIR) using improved Canny with fuzzy
logic (ICWFL),’’ Vis. Comput., vol. 38, no. 11, pp. 3681–3702, Nov. 2022,
doi: 10.1007/s00371-021-02196-1.

SHI-SHUI BAO received themaster’s degree from
the Anhui University of Science and Technology,
where he is currently pursuing the Ph.D. degree.
His research interests include image processing,
computer vision, and machine learning.

YOU-RUI HUANG was born in 1971. He received
the Ph.D. degree. He is currently a Professor with
the Anhui University of Science and Technol-
ogy, Huainan, Anhui, China. His research interests
include intelligent information process and wire-
less sensor networks.

JIA-CHANG XU was born in 1979. He received
the master’s and Ph.D. degrees in computer sci-
ence from the Anhui University of Science and
Technology. His research interests include compu-
tational intelligence and optimal control.

GUANG-YU XU was born in 1975. He received the
master’s degree from the Anhui University of Sci-
ence and Technology, China, and the Ph.D. degree
in computer science from the Hefei University of
Technology. His research interests include digital
image processing and artificial intelligence.

52380 VOLUME 11, 2023

http://dx.doi.org/10.1109/CVPR.2013.406
http://dx.doi.org/10.1002/j.1538-7305.1959.tb01586.x
http://dx.doi.org/10.1117/12.7972120
http://dx.doi.org/10.1109/TPAMI.2004.1273918
http://dx.doi.org/10.1109/TPAMI.2014.2377715
http://dx.doi.org/10.1109/CVPR.2015.7299024
http://dx.doi.org/10.1109/CVPR.2015.7299067
http://dx.doi.org/10.1109/ICCV.2015.164
http://dx.doi.org/10.1109/CVPR.2017.622
http://dx.doi.org/10.1109/TIP.2018.2874279
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/ICME51207.2021.9428230
http://dx.doi.org/10.1109/TPAMI.2015.2481406
http://dx.doi.org/10.1109/CVPR.2013.277
http://dx.doi.org/10.1109/CVPR.2017.195
http://dx.doi.org/10.1109/ACCESS.2022.3186344
http://dx.doi.org/10.1109/CVPR52688.2022.00146
http://dx.doi.org/10.1109/CVPR52688.2022.00146
http://dx.doi.org/10.1109/TPAMI.2020.3007074
http://dx.doi.org/10.1007/978-3-319-10578-9_52
http://dx.doi.org/10.1007/978-3-319-10578-9_52
http://dx.doi.org/10.1109/CVPR.2013.79
http://dx.doi.org/10.1109/TPAMI.2017.2700300
http://dx.doi.org/10.1007/s00371-021-02196-1

