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ABSTRACT Human factors (HF) affecting maintenance performance are common in practice, but have
never been considered in delay-timemodelling (DTM). The objective of this study is to integrate HF affecting
maintenance performance in DTM to obtain an accurate and realistic optimal inspection interval. First, a list
of HF that affects maintenance performance is identified through a literature review. Then, a conceptual
framework is proposed to illustrate the integration of HF in the maintenance system. Three significant HF
are selected, based on experts’ opinion to be incorporated into the DTM, namely operator experience level,
operator fatigue level, and task seriousness. Fuzzy modeling is used to estimate a time allowance for human
factors, which can be added to the inspection duration of the DTM. Two inspection models are developed
based on the modified DTM with the objectives of minimizing expected downtime and total cost per unit of
time. Both models are validated against a realistic case study. Sensitivity analysis is performed to study the
effect of HF on determining the optimal inspection interval. The results show that failing to account for HF
results in increasing the frequency of (unnecessary) inspections; hence interruptions of production by up to
45.5% based on expected downtime and 49% based on expected total cost. This also results in the allocation
of 25% to 92% less inspection time, which may significantly affect operator performance and work quality.
The developed models provide a mechanism for decision makers to set an accurate inspection duration
that accounts for HF and hence determines a realistic optimal inspection interval. In addition, the proposed
conceptual framework can help manufacturing firms in designing maintenance systems with superior long-
term performance.

INDEX TERMS Human factors, inspection maintenance, delay-time model, fuzzy logic.

I. INTRODUCTION
Maintenance has been a major area of interest for researchers
and practitioners as it contributes to a significant part of
overall costs (up to 70% in manufacturing industries) [64].
Maintenance offers a potential source of cost savings and
competitive advantage due to its role in maintaining and
improving product quality, availability, performance effi-
ciency, on-time delivery, safety and overall plant productivity
[1], [50]. Making cost-effective maintenance decisions is
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necessary to achieve a company’s strategic goals for higher
profitability and better competitiveness [2].

Maintenance can be defined as those activities required to
keep plant assets in a functioning state. It involves activities
like inspection, repair, replacement, and modification of a
component or a group of components of a system. Preventive
maintenance (PM) is one of the most important maintenance
policies where all actions are performed at a planned, periodic
and specific schedule to prevent potential plant failures from
occurring. Inspection is one of the key functions in PM,which
is widely used in industry to identify the condition of the
plant and make maintenance decisions [64], [67]. Mainte-
nance problems of real systems, such as production plants, is
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complicated and requires sophisticated solution meth-
ods [38]. Therefore, the conventional reliability analysis of
time-to-first failure or time-between failures becomes insuf-
ficient to capture the relationship between the performance
of the equipment and maintenance intervention [20]. This
relationship can be captured using the delay-time concept.

The delay-time concept divides the asset failure process
into two stages: normal operating time (from new to the
point of defect identification) and failure delay time (from
the point of defect identification to failure occurrence). Fail-
ure delay time allows PM to be performed to identify and
remove/rectify defects before failures [48]. Wang et al. [59]
give an example of fine cracks that appear in the welding joint
of a vessel. Cracks will grow over time and eventually lead to
leakage, if not repaired.

Delay-time modelling (DTM) has been efficiently used to
model a wide class of actual industrial maintenance prob-
lems in general and inspection problems in particular [61].
DTM provides a framework that can be readily applied to
modelling the consequences of alternative maintenance and
inspection practices until the best one is identified. DTMwas
initiated by Christer [18] in building maintenance and was
first applied to an industrial maintenance problem in Christer
and Waller [24]. Since then, research work has been carried
out on the theory of DTM [6], [20], [21], [22], [43], [48], [52],
[63] and applications of DTM along with other PM models
[26], [32], [33], [47], [49]. Most PM policies aim at slowing
down system (i.e., machine) degradation while it operates
to increase its availability. The performance of maintenance
policies depends on several factors, such as operator experi-
ence, availability of parts, type of industry, repair time and
task complexity. In order to have a good model of the system,
it is essential to take into account not only the industrial
constraints but also the human issues. Human factors (HF)
is a discipline devoted to optimizing the design variables that
affect the human-machine interaction to improve both work
performance and operator wellbeing [41].

The literature review revealed that none of the previous
studies considered HF in DTM when applied to the opti-
mization of inspection and maintenance. Given the high
human involvement in various maintenance activities, the
incorporation of HF into maintenance problems is essential to
obtain more accurate and realistic results (e.g., cost-effective
inspection policy) [34]. In addition, HF consideration can
help to reduce human errors and accidents [54], maintenance
time [27] and improve maintenance quality [34]. However,
due to the difficulty of identifying and incorporating HF
in mathematical modelling, the majority of inspection and
maintenance models ignore them. Therefore, in this study,
we integrate HF in basic DTM by using the fuzzy set the-
ory [70]. This theory is one of the most competent artifi-
cial intelligence techniques that have shown effectiveness in
handling uncertainties andmodelling complex and ill-defined
problems [53]. The contribution of this study lies in the devel-
opment of realistic inspection models (based on modified
DTM) that account for HF related to an operator’s experience

and fatigue level and seriousness of task. The concept of
fuzzy logic is used to integrate HF into the basic inspection
models. The inspection policy obtained by the developed
inspection models are expected to be more accurate, realistic
and attainable by maintenance operators. In addition, this
study attempts to bridge the gap, in research and practice,
between the fields of HF and maintenance system design
that has not been previously discussed in the maintenance
literature; this is achieved by presenting a conceptual frame-
work that explains the relationship between both fields. This
knowledge gap may be limiting manufacturing firms’ ability
to profit from application of HF principles in their mainte-
nance system designs.

The primary objective of this study is to develop two
delay-time based inspection models that incorporate HF
(i.e., significant human-based risk factors of maintenance
performance) into the existing basic inspection models. The
two developedmodels determine the optimal inspection inter-
vals that minimize the expected downtime and total cost per
unit of time, respectively. To achieved this, we first identify a
list of HF that affect maintenance performance through a lit-
erature review. Experts’ opinion is used to determine the most
significant HF affecting maintenance performance. Then,
a fuzzy model is developed to estimate a time allowance for
human factors, called human factors allowance (HFA), from
the significant HF. In this case, inspection duration will be a
function of HFA instead of being constant (as in the existing
models).

The secondary objective is to propose a conceptual frame-
work that addresses and explains the integration of HF in the
maintenance system. A case study is used to illustrate the util-
ity of the developedmodels. The rest of the paper is organized
as follows: a literature review is provided in Section II, the
problem statement is provided in Section III and the models
developed for the problem are provided in Section IV. The
utility of the developed models is demonstrated in a realistic
case study in Section V.

A comparison between original inspection models and
modified ones, as well as sensitivity analysis, is presented in
Section VI. Section VII includes the conclusion and future
research directions.

II. LITERATURE REVIEW
The research work on DTM has progressed considerably
in two main streams. The first research stream focuses on
DTM for single-unit systems (i.e., composed of a repairable
component). The second research stream focuses on DTM
for multi-unit (complex) systems, which comprise of many
independent components that each of which can cause system
breakdown. The method described in this paper is based
on a single repairable component, which can be considered
as a building block for the main cases of practical multi-
unit systems. Therefore, this section reviews the literature on
DTM for single-unit systems. More details about DTM for
multi-unit systems can be found in [64].
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The literature on DTM for single-unit systems can be
divided into twomain parts, those studies concerning systems
with a two-stage failure process (under single or multiple fail-
ure modes) and those concerning systems with a three-stage
failure process. Most studies related to a two-stage fail-
ure process assume a single dominant failure mode.
Christer [19] developed the basic delay-time model of single-
unit systems reliability subject to one type of inspectable
defect and assuming perfect inspection. The basic model
has been extended by many authors in different directions.
Cerone [14] proposed a simplified approximation model for
Christer’s [19] basic delay-time model and provided some
illustrative numerical examples. The author showed that a
linear approximation of average reliability over an inspection
period yields a relative error of the order of 10%. In 1993,
Cerone extended the basic delay-time model by addressing
what is called ‘‘the converse problem’’. This problem is con-
cerned with determining the optimal inspection interval, for a
given number of inspections, that will result in the maximum
reliability at some point in the future. Attia [4] simplified
the basic delay-time model by assuming exponential density
functions for delay time and time to failure while using the
other assumptions in Cerone [15]. The author provided a
numerical example to illustrate the implementation of the
simplified approximation model.

Jia and Christer [35] extended the basic delay-time model
by using the availability function as an optimization criterion
and by assuming periodic testing of a preparedness system.
The authors investigated three variants of the basic model,
including situations where a delay time period exists with
no technology to detect defects, the delay time is zero (only
failures are detected), and the system is regularly replaced
without testing. Wang [60] extended the basic model by con-
sidering DTM in the context of risk analysis of maintenance
problems. The author developed models for single-unit and
multi-unit cases. The developed models aim to minimize
the consequences and likelihood of risks associated with
maintenance activities and failures. The author presented a
prototype software that can help automate the DTM process.
Aven and Castro [5] extended the basic delay-time model by
assuming that failures are safety critical, therefore risk should
be controlled. The authors considered two types of safety
constraints: the probability of having at least one failure in
a given time interval that should not exceed a fixed proba-
bility level and the fraction of time where the system is in
a defective state that should not exceed a fixed limit. The
developed model determines optimal inspection intervals that
minimize expected discounted costs. Cavalcante et al. [13]
considered the preparedness system maintenance optimiza-
tion problem. They extended Jia and Christer’s [35] model
by implementing a two-phase inspection policy with frequent
inspections in early component life and less frequent inspec-
tions in later component life. The authors developed cost and
reliability models for finite- and infinite-horizon conditions.
Wang et al. [59] improved the Jia and Christer [35] model

by considering the impact of imperfect maintenance on
the two-stage failure processes. The authors developed a
long-term availability model for improved DTM and ana-
lyzed it using simulation. The results showed that imperfect
maintenance decreases the expected values of cycle length
and long-term availability. The study also discussed the use
of the maximum likelihood estimation (MLE) method to
estimate the parameters of improved DTM. Another approx-
imation model is presented in Jiang [36] along with a
simulation-based method to determine the timelines-based
optimal inspection interval.

Zhang et al. [71] extended the basic delay-time model
by assuming that the inspection span time and the fail-
ure renewal time are not negligible. The authors proposed
a block-based inspection model to determine the optimal
inspection interval. In addition, the authors studied the effect
of possible overlap of inspection span with failure down-
time on the optimal inspection interval. The proposed model
was compared with the age-based inspection model and a
numerical example was used to demonstrate its implemen-
tation. Jodejko-Pietruczuk et al. [37] developed a delay-time
maintenance model for a single-unit system assuming that
the working element is not defected at the point of inspec-
tion maintenance time. The authors determined the opti-
mal time between inspections using two approaches. First,
they used the basic delay-time model to define a constant
time between inspections. Second, they defined the opti-
mal time period based on the results obtained from the
following performance of the inspection actions. In this
case, the optimal time between inspections will not be con-
stant, but rather will depend on the technical object achieve-
ment. This work was extended in Jodejko-Pietruczuk and
Werbinska-Wojciechowska [39] by developing an analytical
model for the expected system availability, instead of the cost
model.

Most previous studies assume instant replacement of
defects when detected during inspection. This assumption
was relaxed in Van Oosterom et al. [56] to allow replacement
to be postponed for an additional time period. The authors
modeled the preventive replacement cost as a non-increasing
function of the postponement interval. They derived the
optimal policy under the modified assumption for a system
with exponentially distributed defect arrival times. A case
study was used to demonstrate the advantage of the modified
model over the basic model. Yang et al. [66] extended the
model in Van Oosterom et al. [56] by considering a single
component system that successively executes missions with
random durations. The authors assumed that inspections were
performed periodically and immediately after the completion
of each mission. They derived the expected long-term cost
per unit of time and then investigated the optimal periodic
inspection interval and postponement threshold. A numerical
example was used to demonstrate the implementation of the
maintenance policy developed. Berrade et al. [7] investigated
further the postponed replacement problem. They focused on
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imperfect inspection performance and opportunity replace-
ments that appear after a positive inspection.

All previous studies assume a single and specific type
of inspection (failure mode). Few studies consider multiple
failure modes [44], [45], [61]. Zhao et al. [73] presented a
delay-timemaintenancemodel for a component withmultiple
defects. The model assumes that defects undergo minimal
repair after a perfect/imperfect inspection as they arrive in
a nonhomogeneous Poisson process. Wang [61] developed a
delay-time inspection model for a component with multiple
failure modes (minor defect and major defect). The model
assumes that the minor defect is handled by minor inspection
and repair, whereas the major defect is handled by major
inspection and repair. A numerical example was used to
demonstrate the implementation of the model. Li et al. [44]
analyzed the problem of imperfect inspection of single-unit
systems with multiple failure modes. The authors proposed
a new imperfect maintenance model using DTM and the
accumulative age concept. The proposed model assumes
that failure modes are independent of each other and all
kinds of defects will be handled in each maintenance task.
Ma et al. [45] considered the case of an imperfect mainte-
nance model with two failure modes: the traditional 0-1 logic
failure and another failure mode described by a two-stage
failure process. They developed a delay-time maintenance
model that optimizes the expected long-term cost per unit
time.

Another extension in DTM for single-unit systems
accounts for the implementation of a three-stage failure pro-
cess [58], [62], [67], [68], [72]. In a latest study, Wang
et al. [58] developed a two-phase inspection model for a
single component system with three-stage degradation (nor-
mal, low-grade defective and critical defective). The authors
assumed that if an item is identified as in a low-grade defec-
tive stage, preventive replacement can be delayed if the time
to the age-based replacement does not exceed a threshold
level. However, if it exceeds the threshold level, the item will
be replaced immediately. Additionally, if the item is identified
as in the critical defective stage, it will be replaced immedi-
ately. The authors developed a hybrid bee colony algorithm
to determine the optimal solution for the proposed model.

The literature review reveals that no work has been done
on incorporating the human factors affecting maintenance
performance inDTMand studying their effect on determining
the optimal inspection interval.

III. PROBLEM DEFINITION
Consider a repairable single-component equipment that pro-
cesses a set of jobs. The equipment is subject to random
failures due to factors, such as deterioration, initial design,
maintenance activities and external factors. The equipment
failure process can be described in two stages: the first stage
where a defect becomes detectable and the second stage
where this detectable defect ultimately leads to equipment
failure. The period h between the time when the defect is
detectable first and the time of equipment failure is called the

delay time (see Figure 1). A repair is undertaken at any time
during this period. The delay time of a defect is governed by
a probability density function f (h), which enables the mod-
elling of the relationship between the inspection interval (T )
and the expected downtime or the expected operating cost per
unit of time.

FIGURE 1. The delay time for a defect.

Assume that defects are fixed after inspection (as inspec-
tion repairs) or at failure (as breakdown repairs). Minimal
repair is performed in the event of failure (assuming a mild
shift in the production process). The equipment is inspected
for early defect detection. A defect is characterized by the
appearance of symptomatic malfunction of the equipment
(e.g., excessive vibration, uncommon noise, extreme heat,
surface staining, smell, reduced output or bad quality). At this
instant of time, equipment failure is suspected and its delay
time represents a window of opportunity to prevent the
failure.

The delay time analysis is used to model the consequences
of inspection policies on the inspection interval T , where
the production downtime D(T ) and the total operating cost
C(T ) can be expressed as functions of T . The probability
of defects becoming failures (equipment breakdown) is P(T )
and increases as the inspection interval increases. As soon as
a defect is detected, the equipment is inspected and minimal
repairs are performed to ensure continuous operation (assum-
ing a mild shift in the production process) until the PM action
is performed and repair or replacement of defective parts are
carried out. The inspection is performed every T units of
time and requires a duration of d units of time, called the
‘‘inspection duration’’ or ‘‘inspection downtime’’. The classic
problem is to determine the optimal inspection interval (T ∗)
such that the expected system downtime (or the expected total
cost) is minimized.

The basic DTM assumes that the time required to perform
inspection (d) is fixed. In reality, most inspection activities
are performed by maintenance operators, therefore the cur-
rent study assumes that inspection duration is not fixed, but
depends on factors affecting the performance of the operator
(i.e., HF). The problem addressed in this study is to deter-
mine a realistic optimal inspection interval that takes HF into
consideration, so that the expected system downtime (or the
expected total cost) is minimized.

IV. METHODS
The proposed methodology for developing inspection models
that account for HF affecting maintenance quality consists
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of the following steps. First, human-related risk factors that
impact the effectiveness of maintenance performance, called
risk factors for maintenance performance (RFMP), were
identified and classified based on literature review. A con-
ceptual framework is proposed to illustrate the integration
of HF in the maintenance system. The significant RFMP
(i.e., significantly impacting inspection maintenance) were
determined based on literature review and expert opinion.
A fuzzy model was then constructed to estimate HFA from
the significant RFMP. HFA will be used as an allowance
to be added to inspection duration (d) of the delay-time
model. Two inspection models were developed based on the
modified delay-time model with the objective of minimizing
the expected system downtime and the expected total cost.

A. RISK FACTORS FOR MAINTENANCE PERFORMANCE
The risk factors for maintenance performance (RFMP) are all
the elements that could negatively affect the maintenance per-
formance of a system causing errors, poor work quality, and
accidents. Identifying the RFMP can help in understanding
the HF that affect the system, determining the human relia-
bility, and predicting human error. Reviewing the literature
on HF that impact maintenance performance reveals three
classification schemes [9], [28], [41], [54]. The first scheme
classifies RFMP into direct and indirect factors. Direct factors
are the factors that can bemeasured directly while performing
a task (e.g., completion time of a task). On the other hand,
indirect RFMP are the factors that can be measured through
other means (e.g., using the level of worker fatigue to deter-
mine work fitness).

The second classification scheme, commonly used in
industry, classifies RFMP into internal and external fac-
tors [9]. The internal factors are those inherent aspects that
a person brings to the system (e.g., stress, mood, fitness,
and morale). On the other hand, external factors are those
related to the environment that influence the person’s job
or task, such as noise, temperature and illumination. The
identified internal and external RFMPs were further grouped
on the basis of similarity. The internal RFMPs were grouped
into two categories (person and knowledge) and the exter-
nal RFMPs were grouped into two categories (environ-
ment and system). The ‘‘knowledge’’ category is related
to the internal influencing factors that affect the informa-
tion needed to perform the maintenance action. It includes
the non-physical resources of the personnel performing the
maintenance actions, such as level of experience, skills and
training. The ‘‘person’’ category is related to the internal
influencing factors that affect the person performing the
maintenance action. It includes the characteristics describ-
ing the physical and mental state, such as fatigue, stress
and morale. The ‘‘system’’ category is related to the exter-
nal influencing factors that affect the performance and the
comfortability of performing the maintenance action. These
factors are usually related to management, such as standards,
procedures and facility layout. The ‘‘environment’’ category

is related to the external influencing factors that affect the
performance under certain conditions ofmaintenance actions.
These factors include: noise, temperature and illumination at
the workplace where maintenance activities are performed.

The third classification scheme which is adopted in this
study, is based on a recent review of the literature by
Kolus et al. [41]. The authors systematically examined avail-
able empirical evidence of the relationship between HF and
the quality of work in the production system. The study iden-
tified 204 human-related risk factors for work quality. The
risk factors were grouped based on similarity, into four cat-
egories: product, process, workstation and individual related
risk factors. The authors developed a conceptual framework
that illustrates the integration of HF into the production sys-
tem. The product design category includes risk factors related
to the design of the product, such as complexity, weight
and posture. The process design category includes the risk
factors related to the processes, methods and policies required
to make the product, such as procedures, training programs
and management support. The workstation design category
includes the risk factors related to the work environment
where the product is made, such as lighting, layout and tools.

In this study, the 204 risk factors in Kolus et al. [41] were
reviewed. Then, the risk factors related to maintenance activ-
ities in manufacturing were identified. The identified factors
were also compared to previous literature reviews [28], [29],
[42], [54]. As a result, a total of 30 human-related risk factors
for maintenance performance (RFMP) were identified. These
risk factors were classified (according to the maintenance
system perspective) into four categories: factors related to
task design, factors related to process design, factors related
to workplace design and factors related to maintenance per-
sonnel characteristics. Table 1 describes the list of identified
human-related risk factors for maintenance performance.

A maintenance system can be considered part of a pro-
duction system in an enterprise [3]. Taking this into account,
we modified the conceptual framework [41] to illustrate
the relationship between HF and the quality of work from a
maintenance perspective. The proposed framework shown in
Figure 2 illustrates how the consideration of HF in the design
of maintenance operations affects human and system.

Task/component design - the design of the task/component
will affect the type, duration, and frequency of maintenance
activities performed. For example, the complexity of design
configuration [51], [57], physical shape, weight, and required
posture are key factors impacting human performance in
maintenance [61]. Improper design of task/component may
negatively impact human wellbeing (e.g. injuries) and system
performance (e.g., human errors).

Process design – maintenance tasks (e.g., inspection,
restoration and lubrication) varies in the amount of physical
and cognitive demands required for their successful com-
pletion. Inadequate task design occurs when task demands
exceed personnel capability, which can negatively impact
human well-being and system performance. For example,
factors such as task duration/frequency [41] and work/rest
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FIGURE 2. A conceptual framework illustrating the integration of HF into maintenance system [RFMP:
human-related risk factors for maintenance performance].

TABLE 1. Descriptions of identified risk factors for maintenance performance (rfmp).

time [17] can influence human performance and maintenance
quality.

Workplace design – maintenance tasks are performed in
a physical environment that has an impact on human per-
formance. Workplace design is essential in defining pos-
tures and loads on maintenance personnel, which influence
human performance and eventually maintenance quality.

For example, poor lighting conditions may cause visual
discomfort and headache and degrade inspection
performance [11].

Maintenance personnel – the characteristics of mainte-
nance personnel include personal (e.g., age, gender and health
condition) and professional characteristics (e.g., experience,
skills and adaptability). Studies showed that individual

58958 VOLUME 11, 2023



A. Kolus: Incorporating HF in Delay Time Modeling of Inspection Maintenance Using Fuzzy Logic

characteristics of maintenance personnel may cause exces-
sive workload [16], errors [10] and poor quality of work [25].

Based on the literature review and the opinion of experts in
the field of maintenance, RFMP with most significant effect
on maintenance performance were selected as input to the
proposed fuzzy model in the next section (see RFMP high-
lighted in bold in Table 1). These inputs are: experience level
of the maintenance personnel (related to personal character-
istics), fatigue level of the maintenance personnel resulting
from having prolonged working hours and insufficient rest
time (related to process design) and seriousness of the task
(related to task/component design).

B. FUZZY MODEL DEVELOPMENT
The fuzzy model development can be divided into four steps,
as shown in Figure 3. The first step is ‘‘fuzzification’’, which
involves converting crisp (numeric) values into fuzzy values
by determining the degree towhich they belong to appropriate
fuzzy sets usingmembership functions. The second step is the
‘‘knowledge base’’ development, which consists of two parts:
data base and rule base. The third step is to select a ‘‘fuzzy
inference system’’ that aggregates the fuzzy rules in order to
obtain the output. The last step is ‘‘defuzzification’’ which
involves converting fuzzy values to crisp values. These steps
are discussed in detail in the following subsections.

FIGURE 3. Fuzzy model (expert system) development.

1) FUZZIFICATION OF INPUT AND OUTPUT VARIABLES
Based on the literature review and the opinion of experts,
three human-related RFMP were selected as input variables
to the fuzzy model, namely experience level (EL), fatigue
level (FL) and task severity level (SL). Each one of these
input (linguistic) variables were divided into an appropriate
number of fuzzy sets (linguistic values) that were character-
ized by appropriate membership functions (e.g., triangular,
trapezoidal, rectangular and gamma). Triangular membership
functions were found appropriate to be used in this study
due simplicity, understandability and frequent use in the
literature [55], [65].

In this study, the first input variable (experience level) was
divided into three fuzzy sets: Low, Medium and High, as in
Ung et al. [55]. These sets represent the number of years

of experience of maintenance personnel. Triangular member-
ship functions were selected to determine the association of
the input to the fuzzy sets with a range from 0 to 5 years
according to a previous study by Hennequin et al. [34]. The
range and the values of the membership function parameters
were determined based on the opinions of experts who have
worked in the maintenance field in manufacturing, and from
research done at different job hunting sites.

The second input variable (fatigue level) was divided into
three fuzzy sets: Very Weak, Moderate and Very Heavy.
These sets represent the level of fatigue in maintenance per-
sonnel just before performing the job. Fatigue level can be
subjectively assessed using the Borg CR10 scale [8]. Trian-
gular membership functions were incorporated to determine
the association of input with fuzzy sets with a range of 0 to
10. The range and the values of the membership function
parameters were determined based on the 0-10 score rubric
of the Borg CR10 scale [8].

The third input variable (seriousness level of the task)
represents the severity of loss or injury that might result from
errors or accidents that occur during inspection. In this study,
the level of seriousness of a task was divided into four fuzzy
sets (Class 1, Class 2, Class 3 and Class 4), according to
Goetsch [30]. These classes can be described as follows:

• Class 1 (least serious) is associated with accidents that
are treated locally using a first aid kit. These accidents
usually result in less than 8 hours of work loss or less
than $100 in property damage.

• Class 2 is associated with minor injuries that do not
require the intervention of a physician and usually result
inmore than $100 of property damage or 8 hours ormore
of work time.

• Class 3 is related to injuries that require the interference
and treatment of a physician outside of the workplace.

• Class 4 (most serious) is related to accidents that include
lost workdays, permanent partial disabilities and tempo-
rary total disabilities.

Triangular membership functions were incorporated to
determine the association of the input to the fuzzy sets in a
range of 1 to 4. The range and the values of the membership
function parameters were determined based on the severity
of the consequences of maintenance errors and equipment
failure, as described in Goetsch [30] and experts’ opinion.

The output variable of the fuzzy model is the linguis-
tic variable (HFA) which represents the adjustment made
(fraction added) to the duration of the inspection (downtime
inspection) to incorporate the effect of human factors on the
time required to perform the inspection. The output variable
has a range of 0 to 1 and will be used as an input to the
delay time model presented in the next section. HFA was
divided into five fuzzy sets: Very Low, Low, Medium, High
and Very High. Triangular membership functions were con-
sidered appropriate to determine the association of the output
with the fuzzy sets. The values of the membership func-
tion parameters were determined based on experts’ opinion.
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TABLE 2. Fuzzy sets and associated triangular membership functions of input and output variables.

FIGURE 4. Triangular membership functions associated with: (a) Experience level, (b) Fatigue level,
(c) Seriousness level and (d) Human factors allowance (HFA).

The triangular membership functions of the fuzzy sets asso-
ciated with input and output variables are described by the
following equation [65]:

µA (x) = max
[
min

[
x − a
b− a

,
c− x
c− b

]
, 0

]
where µA (x) is a membership function of a fuzzy set and it
represents the grade ofmembership of element x in a fuzzy set
A. a, b, c and d are constant parameters. The parameters of the
triangular membership functions associated with input and

output variables are summarized in Table 2. Figure 4 shows
the triangular membership functions associated with the input
and output variables.

2) FUZZY RULE BASE, INFERENCE SYSTEM AND
DEFUZZIFICATION
The knowledge base consists of two parts. The first part is the
‘‘data base’’ to determine the membership functions of inputs
and output (based on historical data or expert opinion). The
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second part is the ‘‘rule base’’, in which fuzzy propositions
are used to construct fuzzy conditional rules that describe the
relationship between inputs and output. A fuzzy conditional
rule is composed of a premise and a consequent in the form of:
‘‘IF premise, THEN consequent’’, for example ‘‘IF a is low,
THEN b is high’’. The terms low and high can be represented
by fuzzy sets or, more precisely, by membership functions.

A total of 36 fuzzy if-then rules were constructed based
on the knowledge and reasoning of experts, see Figure 9 (in
Appendix A). All fuzzy rules had equal weights. The IF-
part (premise) describes the input variables (experience level,
fatigue level and seriousness level of task) using linguistic
values, whereas the THEN-part (consequent) uses linguistic
values to describe the output (human factors allowance). For
example, if operator’s experience is high, operator’s fatigue
level is low and the seriousness of the task belongs to Class1
then the human factors allowance (HFA) is expected to be
very low (Rule#25, Figure 9 in Appendix A). In order
to aggregate all fuzzy rules, the Mamdani fuzzy inference
system was used in this study [46]. In the Mamdani inference
method, output membership functions are presented in the
form of fuzzy sets that need to be defuzzified (i.e., converted
to crisp numeric values). Among the various defuzzification
methods, the centroid of areamethodwas implemented in this
study [31]. Accordingly, the crisp value can be obtained using
the following equation:

z∗COA =
∫z µA (z) zdz
∫z µA (z) dz

where z∗COA is the crisp value for ‘‘z’’ output and µA (z) is the
aggregated output membership function. Finally, the results
of the FIS, i.e. estimated human factors allowance (HFA),
were validated against actual field data (i.e., actual inspection
duration) as well as expert opinions.

C. EXPECTED DOWNTIME MODEL DEVELOPMENT
In the previous section, a list of 30 risk factors for mainte-
nance performance or(RFMP), that can affect maintenance
activities is identified through the literature review. Among
the identified list, three common human factors with signifi-
cant impact on inspection are selected based on experts’ opin-
ion, namely operator’s experience level, operator’s fatigue
level and seriousness of task. A fuzzy model was devel-
oped to estimate the human factors allowance (HFA) – time
allowance to be added to inspection duration – from the
three commonly identified human factors. The assumption
that inspection duration (d) is constant (as in basic inspection
models) is now relaxed and replaced by the more realistic
assumption that inspection duration depends on HF.

In this section, a modified delay time model is devel-
oped by incorporating the crisp output (HFA) of the fuzzy
system obtained from the previous section. HFA is added
to the inspection duration (d) in the delay-time model to
account for HF. The modified delay-time model considers
the impact of HF in determining the optimal inspection

interval T that minimizes the expected downtime over an
infinite time horizon.

In this case, the inspection duration can be expressed as
a function of HF, i.e. (1+HFA)d instead of a constant d .
The inspection duration can be defined as the minimum time
required to perform the inspection (under ideal conditions:
high experience level, low fatigue level and Class 1 task
seriousness). The notations used in the expected downtime
model development are presented below:

The following assumptions are made to develop the
expected downtime model:

1. An inspection takes place every T time units and
requires (1+HFA)d time units, where d≪T andHFA is
between 0-1.

2. Inspections are perfect in that all defects are identified
in the inspection.

3. Defects are identified and repaired within the inspec-
tion period.

4. Defects arrivals follow a homogeneous Poisson process
and they arise at a rate of k per unit time.

5. The delay time h is independent from the defect arrival
time and its density function f (h) is known.

6. A failure is repaired immediately at average downtime
of db.

7. Failures and defects arise only while the plant is
operating.

According to Assumption 1, inspection duration is not
fixed as in a classical delay-time model, but depends on
human factors, namely the experience of the operator,
the fatigue level of the operator and the seriousness level of
the task. HFA represents the allowance for HF that is added
to the minimum time required to perform inspection (d).
This assumption makes the delay-time model more realistic
since inspection activities are carried out by human operators.
Assumption 3 requires that all inspection repairs can be com-
pleted within (1+HFA)d time units regardless of the number
of repairs. This assumption is reasonable when sufficient
maintenance personnel is available to work in parallel.

According to Assumption 4, the expected number of
defects that arise in the inspection interval T is equal to kT.
In this case, the downtime due to breakdowns is not taken
into account since no defects would arise when the machine
is idle. If the downtime of the breakdown is small compared
to T , the error will also be small. Consider Figure 1 where
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inspection occurs every T time units. An arising defect in
the interval (0, T) has a delay time in the interval (h, h+dh)
with a probability of f (h)dh. The defect is repaired as a
breakdown repair if it occurs in the interval (0, T-h) and as
an inspection repair if it occurs in the interval (T − h, T). The
probability that a defect arises before (T − h) is (T − h)/T .
The probability that the defect is repaired as a breakdown and
has delay time in the interval (h, h+dh) is given by:

(
T − h
T

)
f (h) dh (1)

Considering the probability for all values of h yields the
probability of a defect arising as a breakdown [12]:

P (T ) =

T∫
h=0

(
T − h
T

)
f (h) dh (2)

The expected downtime for breakdowns and inspection is
given as:

kTdbP (T ) + (1 + HFA) d (3)

Then the expected downtime per unit of time to be incurred
in period T is given by:

D (T ) =
kTdbP (T ) + (1 + HFA) d

T + (1 + HFA) d
(4)

Equation (4) represents the modified expected downtime
model that accounts for HF. The objective is to determine
the optimal inspection interval T that minimizes the expected
downtime per unit of time.

D. EXPECTED TOTAL COST MODEL DEVELOPMENT
In this section, a modified delay-time model (that incorpo-
rates HF) is developed to determine the optimal inspection
interval T with the objective of minimizing the expected total
cost over an infinite time horizon. The expected cost consists
of the expected costs of: breakdown repair, preventive main-
tenance and inspection. In the classical delay-time model, the
inspection cost is defined as the cost needed to perform the
inspection assuming that the inspection is carried out under
ideal conditions (experienced operator with no fatigue and
low level of seriousness of work) at duration d . However,
in the modifiedmodel, it is assumed that the inspection cost is
proportional to the inspection duration. That is, a percentage
increase in inspection duration d (due HF) results in an equal
percentage increase in inspection cost Ci. The notations used
to develop the expected total cost model are presented below:

The assumptions used to develop the expected cost model
are similar to those presented in the previous section.
An additional assumption was made that the cost of break-
down is higher than the cost of preventive maintenance. The
expected total cost can be written as [61]:

Expected total cost

= Expected costs of breakdown repair

+ Expected cost of preventive maintenance

+ Inspection cost

The expected cost of breakdown repair, Cf (T ), can be
calculated by multiplying the breakdown repair cost by the
expected number of breakdowns in the inspection interval T ,
that is:

Cf (T ) = Cf kTP (T ) (5)

Similarly, the expected cost of preventive maintenance,
Cpm(T ), can be calculated by multiplying the cost of PM
repair by the expected number of PM repairs, that is:

Cpm(T ) = CpmkT [1 − P (T )] (6)

The last element of the total cost is the inspection cost (Ci),
which is assumed to be proportional to the inspection duration
(d). A percentage increase in inspection duration results in
an equal percentage increase in inspection cost. Summing up
all cost components yields the following expected total cost
model:

C (T ) =
Cf kTP (T ) + CpmkT [1 − P (T )] + (1 + HFA)C i

T + (1 + HFA) d
(7)

Equation (7) represents the modified expected total cost
model that accounts for HF. The objective is to determine
the optimal inspection interval T that minimizes the expected
total cost per unit time.
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V. CASE STUDY
In this section, a realistic case study is presented to illustrate
the use of the modified delay-time model in determining
the optimal inspection interval and to compare its perfor-
mance with the classical delay-time model. This case study is
adapted from [12] and can be described as follows: consider
a manufacturing system with a single machine that is subject
to breakdowns. The downtime due to machine breakdown
and inspection is estimated to be 30 minutes and 21 minutes,
respectively. The probability density function of the delay
time is defined as negative exponential with a failure rate
of 0.05 and an average delay time of 20 hours, given as:

f (h) = λe−λh

The average arrival rate of defects during production is
taken as one defect every 10 hours. The costs of repair and
preventive maintenance for the breakdown are estimated at
$5,000 and $2,000, respectively. The maximum cost required
to perform the inspection is $2,500. The maintenance oper-
ator performing maintenance activities has 3 years of work
experience. Management classifies the task seriousness of
this machine as Class 3. Given that the operator reported
the pre-inspection score as 2 on the Borg CR10 scale, the
manufacturing company was interested in determining the
optimal inspection interval that would minimize the expected
total downtime and cost.

The first step is to determine the human factor allowance
HFA using the fuzzy model developed in Section IV-B2. The
inputs to the fuzzy model are: experience level (EL=3 years),
fatigue level (FL=2) and task seriousness (TS=Class3). Run-
ning the fuzzy model using Fuzzy Logic Toolbox in MAT-
LAB R2018a, yields an HFA of 0.569.

The next step is to substitute the obtained value of HFA in
the developed expected downtime model (Equation 4).

D (T ) =
0.05 × T × P (T ) + 0.5492

T + 0.5492
The probability of a defect arising as a breakdown can be

calculated using (Equation 2).

P (T ) =

T∫
h=0

(
T − h
T

)
0.05e−0.05hdh

Table 4 (in Appendix B) shows the calculated values of
P(T ) and D(T ) for different values of the inspection interval
T . Figure 5 shows the expected downtime of the system with
respect to different values of the inspection interval T . The
results of the numerical analysis show that the minimum
expected downtime of the system (D(T ) = 0.04143 hours)
can be obtained when the inspection is performed every
35 hours (T ∗

= 35).
With respect to the expected total cost function, the optimal

inspection interval can be determined using (Equation 7).

C(T )

=
500 × T × P (T ) + 200 × T × (1 − P (T )) + 3922.5

T + 0.5492

FIGURE 5. Expected downtime D(T ) versus inspection interval T .

FIGURE 6. Expected total cost per unit time C(T ) against inspection
interval T .

Table 5 (in Appendix B) shows the calculated values of
P(T ) and C(T ) for different values of the inspection inter-
val T . Figure 6 shows the expected total cost with respect to
different values of the inspection interval T . The results of the
numerical analysis show that theminimum expected total cost
(C(T ) = 461.9809 $/hour) is obtained when the inspection is
carried out every 41 hours (T ∗

= 41).

VI. VALIDATION AND SENSITIVITY ANALYSIS
In this section, the developed modified models are validated
against the classical delay-time models (original models).
This is done by solving the case study by both models (mod-
ified model vs. original model) and comparing their results.
Furthermore, a sensitivity analysis is conducted to validate
themodifiedmodels and understand how changes in variables
influence the behavior of the models.

A. COMPARISON BETWEEN MODIFIED AND ORIGINAL
INSPECTION MODELS
The case study was solved by Carr and Christer [12] using the
original delay-time models (i.e., expected downtime and total
cost models). In their study, the expected downtime values
D (T) were calculated for different values of the inspection
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intervals T . These values are drawn against the corresponding
values obtained from the modified expected downtime model
(based on the modified delay-time model) in Section V.
Figure 7 shows a comparison between the results obtained
by the modified and original expected downtime models.

FIGURE 7. A comparison between modified and original expected
downtime models.

In general, the results obtained by the modified expected
downtime model are comparable to those obtained by the
original expected downtime model. The original model
yielded an optimal inspection interval of (T ∗

= 24) with
a corresponding expected downtime of 0.035. On the other
hand, as shown in Section V, the modified model yielded an
optimal inspection interval of (T ∗

= 35) with corresponding
expected downtime of 0.0414. The consideration of HF in
the modified model resulted in an increase (about 18%) in
expected downtime. This result is expected since, in order to
account for HF, HFA was added to the inspection duration,
which as a result led to an increase in the expected downtime
of the system. The results also show that the modified model
yields less frequent inspections (every 35 hours) than the
original model (every 24 hours), which means about 46% less
interruptions of production. These results are also comparable
to those obtained in Carr and Christer [12], where human
error was incorporated in DTM in the form of fault injec-
tion with associated probability. In their study, the expected
downtime was underestimated by a range of 17.6–20% when
human error was not considered in DTM.

Similarly, the results obtained by the modified expected
total cost model are comparable to those obtained by the
original model. The original model produced an optimal
inspection interval of (T ∗

= 27) with a corresponding
expected total cost of 422.5024 $/hour. The modified model,
on the other hand, produced an optimal inspection interval
of (T ∗

= 41) with a corresponding expected total cost of
461.9809 $/hour. The modified model yielded a less frequent
inspection interval (every 41 hours) than the original model
(every 27 hours). In addition, the solution obtained by the
modified model results in a higher expected total cost (9.3%)
than in the case of the original model. This result is expected
since considering HF (by adding HFA) will increase the time

FIGURE 8. A comparison between modified and original expected total
cost models.

required to perform the inspection, and hence the cost of
the inspection. Figure 8 shows a comparison between the
modified and original expected total models.

B. THE EFFECT OF HUMAN FACTORS ON EXPECTED
DOWNTIME AND TOTAL COST
In this section, numerical experiments are conducted to inves-
tigate the effect of individual as well as combination of
RFMP (human factors) on optimal inspection policy from the
perspectives of both system downtime and total cost. For this
reason, the analysis of four scenarios were considered. The
first scenario assumes a low-experience operator with very
weak fatigue level and Class 1 task seriousness. The second
scenario assumes a high-experience operator with a very high
fatigue level and a Class 1 task seriousness. The third scenario
assumes a high-experience operator with very weak fatigue
level and Class 4 task seriousness. The fourth case assumes
worst case scenario where maintenance operator has low
experience with very high fatigue level and task seriousness
belonging to Class 4. All scenarios were also compared with
the original model assuming perfect conditions. A summary
of the results obtained are shown in Table 3.

The results showed that the inspection duration d should
increase by 25% to account for the lack of experience in
maintenance activities. This increase will result in a reduction
in the optimal inspection frequency by 20.8% from the down-
time perspective (T ∗

= 29 instead of 24) and by 22.2% from
the total cost perspective (T ∗

= 33 instead of 27). However,
the increase in inspection duration due to the addition of
HFA increases the expected downtime (by 8.9%) and the
expected total cost (by 4.6%). Failing to account for the low
level of operator experience leads to 25% less time allocated
for inspection (i.e., inappropriate task duration) – a common
risk factor of human wellbeing and system performance [41].
Allocating inappropriate inspection duration may result in
an increase in the standard work pace causing operator
fatigue, human errors and poor work quality, as reported
in Kolus et al. [41].
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TABLE 3. The individual and combination effect of human factors on optimal inspection interval.

In addition, the results showed that the inspection duration
should increase by 50% in order to account for the very high
fatigue level of maintenance operators. This increase in d
results in a reduction of the optimal inspection frequency
by 41.7% based on the system downtime (T ∗

= 34 instead
of 24) and 51.9% based on total cost (T ∗

= 41 instead of 27).
The increase in inspection duration due to the addition of
HFA increases expected downtime by 16.6% and expected
total cost by 9.1%. Failing to consider very heavy fatigue
level of the operator results in 50% less time allocated for
inspection, which can negatively impact operator’s wellbeing
and inspection quality. Similar results were obtained when
the seriousness of task is at the highest level (belonging to
Class 4).

Results associated with the worst case scenario (low expe-
rience, very heavy fatigue and Class 4 task seriousness) indi-
cated the need to increase inspection duration by 92%. This
leads to a reduction in optimal inspection frequency by 83.3%
according to system downtime (T ∗

= 44 instead of 24) and
by 96.3% according to total cost (T ∗

= 53 instead of 27). As a
result, the expected downtime and expected total cost values
increase by 26.9% and 13.4%, respectively. Failing to account
for the combined effect of human factors (low experience,
very heavy fatigue and Class 4 task seriousness) leads to 92%
less time allocated for inspection, which can jeopardize the
operator’s wellbeing and inspection quality.

VII. CONCLUSION
The majority of maintenance activities are human inten-
sive; therefore, HF must be considered when optimizing
maintenance decisions. This study aims to modify the basic
delay-time model to account for HF that can affect inspec-
tion performance. First, a list of HF that can affect the per-
formance of various maintenance activities were identified
through literature review. Then, a conceptual framework was

proposed to illustrate the integration of HF into the main-
tenance system. In this study, two inspection models were
developed based on the modified delay-time concept. Both
models use fuzzy logic to estimate human factors allowance
(HFA) that accounts for HF, namely, experience level of oper-
ator, fatigue level of operator, and seriousness level of task.
The objective of the first model is to minimize expected pro-
duction downtime, while the objective of the second model is
to minimize the expected total production cost.

A case study was used to illustrate the implementation of
the modified models. In addition, it was used to compare the
modified models with the original ones that depend on the
basic delay-time concept. Sensitivity analysis was performed
to investigate the individual and combined effects of the three
human factors considered in the modified models. The results
show that the failure to account for HF results in an inaccurate
determination of the optimal inspection interval. In particular,
this will result in increasing the frequency of (unnecessary)
inspections; hence interruptions to production by up to 45.5%
based on expected downtime and 49% based on expected
total cost. In addition, between 25% to 92% less time will
be allocated for inspection, which can significantly impact
operator performance and quality of work.

The generalizability of the results is often a drawback in
case study-based research (i.e., research that uses the results
to develop a theory). This is not an issue in this paper since
we modify existing inspection models by incorporating a
component that accounts for HF and then we use the case
study as an example to illustrate the use of the developed
model. Moreover, the modified inspection models incorpo-
rate three human-related risk factors, namely operator’s expe-
rience level, operator’s fatigue level and seriousness level of
task. These three factors were selected from a list of 30 human
factors that affect maintenance performance. The case study
that was used to illustrate themodifiedmodels was taken from
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FIGURE 9. The rule base of the fuzzy model consisting of 36 fuzzy if-then rules.

manufacturing industry, however since these 30 factors are
related to maintenance performance in general, the modified
models can be implemented in other industries as well, such
as construction and healthcare.

One of the limitations of this study is its reliance on
experts’ subjective opinion in the development and validation
of the fuzzy model. The experts however, have extensive
practical experience in the fields of maintenance and human
factors. Engineer Mutaz Izmirly is a General Manager at
Al Yamamah Steel Industries Co. with more than 20 years
of practical experience in maintenance and quality control.
Engineer Osman Gokhan Sahin is a Senior Manager at Proc-
ter & Gamble with more than 14 years of knowledge in main-
tenance and repair operations. Dr. Kolus has about 10 years
of research experience with background in human factors and
production quality. Further research could extend this paper
to include the opinion of a broader audience. However, this
extra precision is unlikely to change the general findings of
this paper: integrating human factors in inspection models
can help to determine realistic optimal inspection intervals
that improves operator’s wellbeing and system performance.
Another limitation is related to the fact that different HF
(other than the three selected in this study) may show signif-
icant association with maintenance performance in different
industries (e.g. construction, mining and healthcare). These

factors and their impacts on maintenance performance need
to be further investigated. Additional limitation is related to
the fuzzy model development where different types of mem-
bership functions and associated parameters can be further
explored.

Although the developed inspection models include one
new single component, (i.e., human factors allowance),
this single component represents the integration of three
commonly identified human factors in maintenance, namely
operator’s experience level, operator’s fatigue level and task
seriousness. The estimation of HFA using conventional math-
ematical modelling may not be possible due to the ambiguity
and uncertainty associated with HF. Therefore, fuzzy mod-
elling is used in this study since it has the ability to deal with
HF as linguistic variables, which can be described using lin-
guistic values. The proposed inspection models are original,
based on a simple idea and open the door for further research
on integrating HF in maintenance and inspection models.
In practice, the developed models provide a mechanism for
managers and decision makers to set a realistic inspection
duration that accounts for HF and hence determine the opti-
mal inspection interval that improves operator’s wellbeing
and performance. Future work can go in several important
directions; one direction can be to extend our developed mod-
els to a multi-component system where it is impractical to
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TABLE 4. Calculated P(T ) and D(T ) for different values of inspection
interval (T ).

TABLE 5. Calculated P(T ) and C(T ) for different values of inspection
interval (T ).
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model each component individually. Another direction can be
to assume imperfect maintenance at inspection where some
defects will be repaired imperfectly or cannot be repaired due
to limitations of labor force, time or material. In addition,
more human-related risk factors can be involved to estimate
HFA, such as adequate training, job satisfaction, facility
layout and availability of tools. The proposed conceptual
framework can help managers and researchers understand the
ongoing influence ofHF inmaintenance system performance.
Further research into maintenance system design alternatives
should involve human factors aspects as well as both system
and human effects. Stronger research collaboration between
HF and maintenance researchers can help to bridge the gap
between HF and maintenance system design.

APPENDIX A
FUZZY MODEL DEVELOPMENT
See Figure 9.

APPENDIX B
SOLUTION OF THE CASE STUDY
See Tables 4 and 5.
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