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ABSTRACT Producing deep neural network (DNN) models with calibrated confidence is essential for
applications in many fields, such as medical image analysis, natural language processing, and robotics.
Modern neural networks have been reported to be poorly calibrated compared with those from a decade
ago. The stochastic gradient Langevin dynamics (SGLD) algorithm offers a tractable approximate Bayesian
inference applicable to DNN, providing a principledmethod for learning the uncertainty. A recent benchmark
study showed that SGLD could produce a more robust model to covariate shifts than other competing
methods. However, vanilla SGLD is also known to be slow, and preconditioning can improve SGLD efficacy.
This paper proposes eigenvalue-corrected Kronecker factorization (EKFAC) preconditioned SGLD (EKS-
GLD), in which a novel second-order gradient approximation is employed as a preconditioner for the SGLD
algorithm. This approach is expected to bring together the advantages of both second-order optimization and
the approximate Bayesian method. Experiments were conducted to compare the performance of EKSGLD
with existing preconditioning methods and showed that it could achieve higher predictive accuracy and better
calibration on the validation set. EKSGLD improved the best accuracy by 3.06% on CIFAR-10 and 4.15%
on MNIST, improved the best negative log-likelihood by 16.2% on CIFAR-10 and 11.4% on MNIST, and
improved the best thresholded adaptive calibration error by 4.05% on CIFAR-10.

INDEX TERMS Natural gradient, second-order optimization, Bayesian deep learning, Langevin dynamics,
confidence calibration, predictive uncertainty.

I. INTRODUCTION
The advances in deep learning have been remarkable, show-
ing the ability to achieve high-performance accuracy in
a wide range of areas, such as natural language process-
ing [7], computer vision, and medical diagnosis [19]. Con-
sequently, DNNs are now entrusted to take an impor-
tant part in complex decision-making pipelines in those
fields.

Although many successes have been reported so far, effec-
tively training the DNNs is still challenging because the
objective function to be optimized has a pathological cur-
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vature and a highly nonconvex nature. Furthermore, the loss
surface is known to have highly imbalanced curvature [10].
These limit the efficiency of commonly used first-order
gradient-based optimization algorithms such as stochastic
gradient descent (SGD). Methods that apply second-order
information have the potential to accelerate first-order gra-
dient descent by correcting the imbalanced curvature. The
process involves a preconditioning matrix that captures the
local curvature or related information, such as the Hessian
matrix in Newton’s method or the Fisher information matrix
(FIM) in natural gradient [3]. Unfortunately, the size of
the preconditioning matrix becomes gigantic in most DNN
setups, making these methods impractical using their original
form.
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Various algorithms used for optimizing DNNs can be inter-
preted as approximating the diagonal of a large precondi-
tioning matrix. Despite being efficient, these algorithms are
considered crude approximations since they ignore correla-
tions between parameters. A refined algorithm must consider
some correlations between different parameters. Kronecker
factored approximate curvature (K-FAC) uses block-diagonal
approximation, where each block corresponds to a layer in the
DNNs [28]. K-FAC is derived by approximating each large
block as theKronecker product of twomuch smallermatrices.
Approximating and inverting the two smaller matrices are
much more efficient than doing so on the whole block matrix.
A further improved version of K-FAC is eigenvalue-corrected
Kronecker factorization (EKFAC), which tracks diagonal
variance in a Kronecker-factored eigenbasis instead of in
the parameter coordinates. EKFAC provides a better approx-
imation of the FIM than the K-FAC, which may produce
parameter updates closer to the exact natural gradient [14].

In real-world applications with high stakes, such as auto-
mated medical diagnosis and self-driving cars, calibrated
confidence is especially important besides prediction accu-
racy. For example, in automated medical diagnosis, human
doctors should make decisions when the confidence in a
disease diagnosis by DNNs is low. However, modern DNNs
with significantly deeper and wider layers tend to yield
overconfident predictions [12], [17]. One popular approach
to address this issue is the recalibration of probabilities
on a held-out validation set using histogram binning [45],
temperature scaling [17], [37], isotonic regression [46], and
other similar methods. As an alternative, Bayesian methods
for DNNs provide a natural mechanism to represent uncer-
tainty, potentially leading to improved generalization and cal-
ibrated predictive distributions [21], [35]. However, typical
Bayesian methods using classical Markov chain Monte Carlo
(MCMC) algorithms such as full-batch Hamiltonian Monte
Carlo (HMC) [31] require expensive computations over the
entire dataset, making their application to DNNs difficult.
Therefore, further research on practical Bayesian methods is
necessary.

SGLD offers a tractable approximate Bayesian inference
applicable to DNNs, which theoretically provides in-built
protection against overfitting [43]. A recent benchmark
shows that SGLD produces a predictive distribution as close
to the gold-standard HMC as the more popular method,
deep ensemble. SGLD, along with the deep ensemble, has
also been shown to be more robust to covariate shifts than
HMC [21]. These results suggest that SGLD is a strong can-
didate for addressing these challenges. Despite the preferable
properties mentioned, vanilla SGLD is also known to be
slow. Training with vanilla SGLD is normally done with a
very small learning rate over a large number of iterations.
Incorporating a preconditioning matrix similar to RMSProp
was proposed to improve the efficacy of SGLD in a method
named preconditioned SGLD (pSGLD) [27]. A recent pro-
posal uses K-FAC as a preconditioner for SGLD and shows
that this technique produces better sampling when compared

to pSGLD [29]. These prior works on SGLD with precon-
ditioning, or what we can interpret as approximate natu-
ral gradient Langevin Dynamics (NGLD), also lack perfor-
mance evaluation on uncertainty calibration and robustness
to dataset shift.

This work proposes an improved implementation of
SGLD using EKFAC preconditioning. This technique is
expected to bring advantages from second-order optimization
and approximate Bayesian methods. This novel method is
referred to as EKFAC preconditioned SGLD (EKSGLD).
This work empirically demonstrates that EKSGLD gives
better model accuracy when compared with other SGLD
preconditioning methods after the same number of iterations.

The scope and experimental design in this work were
inspired by the previous works that 1) benchmarked var-
ious approximate NGLD methods [36], and 2) evaluated
the predictive uncertainty produced by different probabilis-
tic deep learning methods, as well as their robustness to
dataset shift [35]. Besides proposing a new preconditioning
approach, this work presents an empirical evaluation of pre-
dictive confidence calibration of approximate NGLD meth-
ods and its robustness to dataset shift. The results fill in the
gap left by the original papers of the approximate NGLD
methods, which do not evaluate uncertainty calibration and
robustness to dataset shift, and the Bayesian deep learn-
ing benchmark papers that rarely include NGLD methods.
Experiments show that EKSGLD produces better-calibrated
confidence compared with its closest predecessor, KSGLD,
on i.i.d. and out-of-distribution (OOD) test datasets. The
terms confidence calibration and predictive uncertainty qual-
ity are used interchangeably throughout this paper.

A. CONTRIBUTION
Our study yields the following contributions:

• We demonstrate the effectiveness of EKFAC as a
preconditioner for the SGLD optimization algorithm.
We show that EKSGLD produces a model with better
classification performance than the existing SGLD pre-
conditioning methods after training with either the same
number of epochs or the same time duration.

• We provide a performance comparison of approxi-
mate NGLD methods on two different image datasets:
MNIST and CIFAR-10.

• We report the confidence calibration quality of models
trained using approximate NGLD methods on three dif-
ferent types of test datasets, namely, i.i.d., shifted, and
OOD test datasets.

B. RELATED WORK
In recent years, Bayesian deep learning (BDL) is gain-
ing more attention due to its promising potential to esti-
mate uncertainty based on solid theoretical principles. Many
papers propose the application of BDL in a wide range of
fields, frommedical image classification in healthcare to data
analysis from wearable devices and automatic assembly lines
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in manufacturing. Other papers have been published doing a
both theoretical and empirical examination of existing BDL
methods or proposing improvement or new practical BDL
methods [11], [18], [21], [23], [34], [44]. SGLD is one of
the methods that are often included in BDL evaluation or
benchmark experiments.

Since the introduction of SGLD [43], several modifications
have been proposed to improve the efficacy of vanilla SGLD.
One of the methods is based on a preconditioning matrix
that approximates FIM. Previously, in the area of second-
order optimization, the natural gradient method already used
the FIM preconditioner [3]. The first paper that proposes a
preconditioning method for SGLD uses a diagonal approxi-
mation of inverse FIM based on the RMSProp algorithm [27].
To give a better approximation of the inverse FIMwhile keep-
ing the computation and storage consumption efficient, the
K-FACwas proposed, which uses block-diagonal approxima-
tion [16], [28]. K-FACwas then adopted as a preconditioning
matrix in SGLD and demonstrated its effectiveness for regres-
sion tasks in a small-scale experiment [29]. Recently, another
adaptive preconditioner was proposed based on a diagonal
approximation of second-order moment of gradient updates.
This method is called adaptively preconditioned stochastic
gradient Langevin dynamics (ASGLD) [6].

To the best of our knowledge, most, if not all, BDL evalua-
tions published so far only include SGLD without precon-
ditioning or did not include SGLD at all in favor of more
popular BDL methods such as deep ensemble and variational
inference (VI). Table 1 summarizes some prior works related
to BDL benchmarks on image classification tasks. In this
work, we focus on the empirical examination of SGLD and
its variations that use different preconditioning methods to
approximate the inverse of FIM. Below, we will elaborate
more on these prior works related to the BDL benchmark,
especially on image classification tasks, and also overview
some of the most recent applications of BDL methods in
various fields.

1) BDL BENCHMARK ON IMAGE CLASSIFICATION TASK
Palacci andHess compared the performance of vanilla SGLD,
SGLD with RMSProp preconditioning, and SGLD with
K-FAC preconditioning on MNIST classification and OOD
sample detection tasks [36]. Izmailov et al. compared the
performance of vanilla SGLD with HMC, mean-field VI
(MFVI), and deep ensemble for training the ResNet model on
CIFAR-10 andCIFAR-100 datasets. They evaluated the result
on i.i.d. and shifted datasets and concluded that SGLD shows
competitive performance in terms of accuracy and calibration
compared with the other BDL methods on i.i.d. dataset, and
SGLD along with deep ensemble is especially more robust
compared to HMC on shifted dataset [21]. The most recent
BDL benchmark we found is that of Vadera et al.. The paper
presents a BDL benchmark framework to assess uncertainty,
robustness, scalability, and accuracy named URSABench.
The benchmark is done in three different scales: small (using

TABLE 1. Comparison with other BDL benchmarks on image
classification tasks.

MNIST dataset), medium (using CIFAR-10 and CIFAR-100
datasets), and large (using ImageNet dataset). Trainedmodels
are evaluated on i.i.d. and OOD test datasets. They concluded
that SGLD and stochastic gradient Hamiltonian Monte Carlo
(SGHMC) show the best performance overall [42].

The following works did not include SGLD in their BDL
benchmark reports. Filos et al. compared BDL methods on a
specificmedical task of detecting diabetic retinopathy disease
from fundus images which claimed to represent a real-world
task better. They compared MC-Dropout, deep ensemble,
MFVI, and ensemble MC-Dropout, and evaluated the result
on i.i.d. and shifted datasets. They used a completely disjoint
fundus image dataset collected with different medical equip-
ment on a different population to represent a shifted dataset.
They concluded that ensemble MC-Dropout performed con-
sistently better on both i.i.d. and shifted test datasets [11].

Osawa et al. compared Bayes-by-backprop, MC-Dropout,
and a natural gradient VI method called variational online
Gauss-Newton (VOGN) for training models on CIFAR-10
and ImageNet datasets. Besides evaluating on i.i.d. set, they
evaluated the result on the OOD dataset using SVHN and
LSUN for models that were trained on CIFAR-10. They
showed that VOGN performed best on 10 out of 15 metrics
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on the i.i.d. dataset [34]. Ovadia et al. comparedMC-Dropout,
deep ensemble, stochastic VI (SVI), last layer (LL) SVI, and
LL dropout for training models on MNIST, CIFAR-10, and
ImageNet datasets. They evaluated the result on the shifted
dataset and also on the OOD dataset using notMNIST and
SVHN. They concluded that the accuracy and the quality
of uncertainty consistently degrade with increasing dataset
shift for all of the methods, and better calibration on the i.i.d.
dataset is not usually followed by better calibration under
dataset shift. Overall, the deep ensemble performed the best
over most metrics and was more robust to dataset shift [35].

2) RECENT BDL APPLICATIONS
Healthcare is one of the areas where BDL methods have
been applied in a wide range of tasks and data modalities.
Gour et al. used MC-Dropout and EfficientNet neural archi-
tecture to build an uncertainty-aware model for the clas-
sification of coronavirus disease 2019 (COVID-19) based
on chest X-ray images. The proposed method outperforms
existing approaches in terms of classification performance.
The model also provides calibrated uncertainty that is useful
in the computer-aided diagnosis system for COVID-19 detec-
tion [15]. Song et al. used MC-Dropout in a VGG19-based
model for oral cancer detection based on intraoral images.
The accuracy of the model predictions increases by more
than 4% when predictions with uncertainty greater than 0.3,
or 10% of the predictions with the highest uncertainty scores,
are discarded (to be referred to a human expert for further
analysis) [40]. In the medical image segmentation tasks,
Largent et al. used MC-Dropout and U-Net architecture as
baseline models for automatic brain segmentation in preterm
infants. The proposed method shows the best segmentation
results across all testedmethods and produces accurate uncer-
tainty maps [25].

In the medical signal processing tasks, MC-Dropout and
VI were used in the detection and classification of heart
dysfunctions diseases based on electrocardiogram data [4],
[20]. Previously, Fruehwirt et al. demonstrated that HMC out-
performs MC-Dropout and non-Bayesian NN in Alzheimer’s
disease diagnosis based on electroencephalogram data [13].
In the electronic health record data analysis, Li et al. proposed
a combination of the Gaussian process and VI to predict the
first incidence of heart failure, diabetes, and depression. The
result shows a better uncertainty modeling that is less suscep-
tible to making overconfident predictions, even in the case of
a minority class in imbalanced datasets. For a comprehensive
review of the latest BDL applications in healthcare, we refer
the reader to [1].

Landeghem et al. proposed a combination of deep ensem-
ble and concrete dropout to model predictive uncertainty in
natural language processing, specifically in multiclass and
multilabel text classification tasks. The proposed method
shows superior performance in calibration on i.i.d data,
cross-domain classification, and novel class robustness [24].
Rodríguez-Puigvert et al. apply MC-Dropout in all layers

of the DCNN-based encoder to produce better uncertainty
quantification for robotic perception. The proposed method
performed similarly well as the deep ensemble but with a
smaller memory footprint [38].

Activities of daily living (ADLs) recognition systems play
an important role in many applications, such as physical
fitness monitoring, diet monitoring, and remote health moni-
toring. ADL recognition model trained on a certain user may
not generalize well to new users due to variations in how
people perform specific activities. Therefore, it is necessary
to personalize underlying machine learning models to new
users. Akbari and Jafari used MC-Dropout with variational
autoencoder for personalizing ADL recognition systems with
minimal solicitation of inputs or labels from users [2].

II. PRELIMINARIES
A. STOCHASTIC GRADIENT LANGEVIN DYNAMICS
Let θ denote a parameter vector, with p(θ ) a prior distribution
and p(x|θ ) the probability of data item x given our model
parameterized by θ . The posterior distribution of a set of N
data items X = {xi}Ni=1 is: p(θ |X ) ∝ p(θ)5N

i=1p(xi|θ ). In the
optimization literature, the prior regularizes the parameters,
whereas the likelihood terms constitute the cost function to
be optimized, and the task is to find the maximum a posteriori
parameters θ∗. The SGD operates as follows. At each itera-
tion t , a subset of n data items Xt = {xt1, . . . , xtn} is given,
and the parameters are updated as follows:

1θt =
ϵt

2

(
∇ log p(θt )+

N
n

n∑
i=1

∇ log p(xti|θt )

)
, (1)

where ϵt is the step size at iteration t . The general idea is
that the gradient calculated on the subset will be used to
approximate the true gradient over the entire dataset.

SGLD combines the idea of SGD and Langevin dynamics
by adding an amount of Gaussian noise balancedwith the step
size, allowing step sizes to go to 0:

1θt =
ϵt

2

(
∇ log p(θt )+

N
n

n∑
i=1

∇ log p(xti|θt )

)
+ ηt

ηt ∼ N (0, ϵt ), (2)

where the step sizes decrease toward 0. This enables aver-
aging out of the stochasticity in the gradients and decreases
Metropolis-Hastings (MH) rejection rates to zero asymptoti-
cally, so that one can simply ignore the MH acceptance steps,
which require the calculation of probabilities over the entire
dataset, altogether [43].

B. NATURAL GRADIENT LANGEVIN DYNAMICS
Given a dataset containing examples (x, y) and a DNN fθ (x)
with parameter vector θ of size nθ , the SGD performs the
first-order update rule: θ ← θ − η∇θ , where η is a positive
learning rate. The second-order methods first modify the
gradient ∇θ by a preconditioning matrix G−1 resulting in the
update rule of θ ← θ − ηG−1∇θ .
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The space formed by the parameters of a probability distri-
bution is a Riemannian manifold [3]. Its Riemannian metric
is the FIM. This means that the parameter space is curved
and that a local measure of curvature is the FIM. Natural
gradient [3] uses FIM as preconditioning matrix G, which
allows for adaptive gradient update and faster convergence in
less number of iterations. Unfortunately, FIM has the size of
nθ × nθ , which, in many practical deep learning scenarios,
is too big to compute and invert, hence requiring further
approximation to make it more practical.

NGLD applies the same principles of using FIM,
or approximation of FIM, as preconditioner in the SGLD
settings:

1θt =
ϵt

2
F−1

(
∇ log p(θt )+

N
n

n∑
i=1

∇ log p(xti|θt )

)
+F−1ηt

ηt ∼ N (0, ϵt ), (3)

where F is FIM or its approximation.

C. DIAGONAL APPROXIMATION
1) pSGLD
One of the first papers that propose the idea of using the
adaptive preconditioning from SGD methods and applying it
to improve SGLD efficacy was [27]. It follows the same algo-
rithm to form the preconditioner as in RMSProp, where the
preconditioner is updated sequentially using only the current
gradient information to give a diagonal matrix estimation.
This method is referred to as pSGLD.

The preconditioner matrix F is defined sequentially as
follows:

V (θ t+1) = αV (θ t )+ (1− α)ḡ(θ t ;Dt )⊙ ḡ(θ t ;Dt ) , (4)

F(θ t+1) = diag
(
1⊘

(
λ1+

√
V (θ t+1)

))
, (5)

where ḡ(θ t ;Dt ) is the sample mean of the gradient using
minibatch Dt , and α ∈ [0, 1]. Operators ⊙ and ⊘ represent
element-wise matrix product and division, respectively.

2) ASGLD
ASGLD uses a diagonal approximation matrix to precondi-
tion the noise term of SGLD [6]. The preconditioner is based
on a diagonal approximation of the second-order moment of
gradient updates, inspired by the method of adding momen-
tum to SGLD in SGHMC [9]. Different from other precon-
ditioning methods included in this paper, which apply pre-
conditioning to both the gradient and the noise term, ASGLD
only applies preconditioning to the noise term.

The preconditioner matrix F is defined sequentially as
follows:

µt = ρµt−1 + (1− ρ)ḡ(θ t ) , (6)

Ft = ρFt−1 + (1− ρ)(ḡ(θ t )− µt )(ḡ(θ t )− µt−1) , (7)

where ρ is an additional hyperparameter for momentum.
There is also hyperparameter ψ which controls the amount

of noise to be injected after preconditioning:

θ t+1 = θ t − ϵt (ḡ(θ t )+ ψηt ), ηt ∼ N (µt ,Ct ) (8)

D. BLOCK-DIAGONAL APPROXIMATION
1) K-FAC
The first approximation made for FIM consists of treating
each layer of the DNN separately while ignoring cross-layer
terms. This results in a first block-diagonal approximation of
F where each block F (l) only considers the parameters of a
single layer l. Typically, F (l) can still be very large. An alter-
native technique from [28] proposes to approximate F (l) as
a Kronecker product of two smaller matrices so that F (l)

≈

A ⊗ B. This is much cheaper to store, compute, and invert
because (A ⊗ B)−1 = A−1 ⊗ B−1. Specifically, for a layer
l that receives input of size din and computes output of size
dout , the Kronecker-factored approximation of corresponding
F (l) would be two matrices of size din × din and dout × dout ,
whereas the full F (l) would be of size dindout × dindout [14].

2) EKFAC
The K-FAC approximates F (l)

≈ A⊗B and yields the update
rule: θ ← θ − η(A ⊗ B)−1∇θ . The eigen decomposition of
the Kronecker product A⊗ B of two real symmetric positive
semi-definite matrices can be expressed using their own eigen
decomposition A = UASAUT

A and B = UBSBUT
B , yielding

A⊗B = (UASAUT
A )⊗(UBSBU

T
B ) = (UA⊗UB)(SA⊗SB)(UA⊗

UB)T . UA ⊗ UB gives the orthogonal eigen basis of the Kro-
necker product, and SA⊗SB is the diagonal matrix containing
the associated eigen values. This can be interpreted as K-FAC
uses UA ⊗ UB directions to approximate FIM eigen vectors
U and utilizes approximate scaling SA ⊗ SB.
EKFAC proposed to correct the scaling of K-FAC by

replacing UA ⊗ UB with diagonal matrix defined by S∗ii =
s∗i = E[((UA ⊗ UB)T∇θ )2i ], where s

∗ is a vector of second
moments of the gradient vector coordinates in the approxi-
mate basis UA ⊗ UB. Reference [14] proved that S∗ is the
optimal diagonal rescaling in that basis such that we will
always have ∥F−FEKFAC∥F ≤ ∥F−FK−FAC∥F , where ∥·∥F
denotes the Frobenius norm.

III. EKFAC PRECONDITIONED SGLD
EKFAC is proven to give a more accurate approximation of
the FIM compared to K-FAC. Although not guaranteed, this
potentially leads to better parameter updates when applied
in training the DNN model [14]. Furthermore, Nado et al.
showed that applying K-FAC preconditioning can improve
SGLD more than using a preconditioner based on diagonal
approximation as in pSGLD [29]. Hence, it is quite reason-
able to implement the EKFAC preconditioning for SGLD.
We hypothesize that it could improve the SGLD performance
even more. Therefore, we perform numerical experiments to
validate that hypothesis.
EKSGLD works by estimating preconditioner F−1 in (3)

using EKFAC. We present high-level pseudocode for the
proposed method in algorithm 1. It is almost identical to the
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pseudocode for EKFAC presented in [14], with additional
parameters and procedures shown in blue. Basically, we add a
preconditionedGaussian noise from SGLDduring the param-
eter update of EKFAConce the training has passed the burn-in
phase.

Algorithm 1 EKSGLD
Require: m: recompute eigenbasis every m minibatches
Require: ϵ: learning rate
Require: ν: damping parameter
Require: b: burn-in steps

procedure EKFAC(Dtrain)
while convergence is not reached, iteration i do

Sample a minibatch D from Dtrain
Do forward and backprop pass to obtain h and δ
for all layer l do

if i%m = 0 then
ComputeEigenBasis(D, l)

end if
ComputeScalings(D, l)
∇

mini
← E(x,y)∈D

[
∇

(l)
θ (x, y)

]
UpdateParameters(∇mini, l)

end for
end while

end procedure

procedure ComputeEigenBasis(D, l)
U (l)
A , S

(l)
A ← eigendecomposition

(
ED

[
h(l)h(l)⊤

])
U (l)
B , S

(l)
B ← eigendecomposition

(
ED

[
δ(l)δ(l)⊤

])
end procedure

procedure ComputeScalings(D, l)

s∗(l)← ED

[((
U (l)
A ⊗ U

(l)
B

)⊤
∇

(l)
θ

)2
]

end procedure

function Precondition(M , l)

M̃ ←
(
U (l)
A ⊗ U

(l)
B

)⊤
M

M̃ ← M̃/s∗(l) + ν
Mprecond

←

(
U (l)
A ⊗ U

(l)
B

)
M̃

returnMprecond

end function

procedure UpdateParameters(∇mini, l)
∇

precond
← Precondition(∇mini, l)

if i > b then
ηprecond← Precondition(N (0, ϵ) , l)
θ (l)← θ (l) − ϵ∇precond

− ηprecond

else
θ (l)← θ (l) − ϵ∇precond

end if
end procedure

IV. METRICS AND METHODS
This section describes, in brief, the metrics used in this work.
We use arrows to indicate which direction is better.

Accuracy ↑: Multiclass classification is a task where the
input is to be classified into one, and only one, of l nonover-
lapping classes. One of the most basic and standard metrics
for classification is accuracy, which measures the overall
effectiveness of a classifier [39].
AUCµAUCµAUCµ ↑: The area under the receiver operating charac-

teristic curve, also known as the AUC, has been used for
measuring classifier performance everywhere in machine
learning research. This metric is initially defined for binary
classification, with only two target classes. Here, we use
AUCµ, a recently proposed extension of AUC for multiclass
classification, which has similar computational complexity
to AUC and maintains the properties of AUC for similar
interpretation and uses [22].

NLL ↓: The negative log-likelihood (NLL) as a loss func-
tion comes from a probabilistic formulation of the learn-
ing problem regarding the maximum conditional probability
principle. Given dataset D, we must find the parameter value
that maximizes the conditional probability of all the labels
given all the inputs in the dataset [26]. Besides being a loss
function in training neural network models, NLL is also a
common metric for evaluating the quality of model uncer-
tainty on some held-out sets.

ECE ↓ and MCE ↓: Expected calibration error (ECE)
measures confidence calibration quality relative to the ideal
condition where confidence matches empirical accuracy
exactly. The predictions are sorted and partitioned into K
fixed number of bins in computing this measure. We use
the default of K = 15 for all calibration measurements that
use binning throughout the experiments. Maximum calibra-
tion error (MCE) is similar to ECE, but instead of calculat-
ing expectations over the bins, MCE only considers maxi-
mum error among the bins [30]. Despite receiving criticism
recently [33], ECE remains the most popular metric used for
measuring calibration in recent publications.

OE ↓: High confidence but incorrect forecasts can be
extremely devastating in high-risk applications. Overcon-
fidence error (OE) is a variant of ECE in which pre-
dictions are only penalized when confidence surpasses
accuracy [41].

SCE ↓ and TACE ↓: These measurements are provided
in an attempt to solve the shortcomings of ECE. Adaptive
calibration error (ACE) calculates the final error score by
employing adaptive bin intervals that split the data into equal
numbers of predictions in each bin rather than equal bin
intervals as in ECE. Thresholded adaptive calibration error
(TACE) aims to improve ACE’s efficiency, particularly in
several target classes, by calculating the calibration error
score using only predictions over a predefined threshold.
We set the threshold to 0.001 when computing TACE in
this experiment. ECE is ideal for binary classification since
it focuses exclusively on the likelihood of the class with
the highest probability for every given data point. Static
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FIGURE 1. Comparing classification performance based on validation accuracy of different SGLD algorithms over training epoch (top) and over training
time (bottom). EKSGLD shows the highest accuracy after training with the same number of epochs in all of the experiments: (a), (b), and (c). Training
with EKSGLD requires more computation, indicated by the longer overall training time. However, it still shows the highest accuracy when compared to
the other methods at any given wall clock time, which means that we could potentially train EKSGLD with less number of epochs and still get better or
comparable accuracy: (d), (e), and (f).

FIGURE 2. Comparing the accuracy (top) and the number of predictions (bottom) when we only consider the predictions with confidence equal to or
above the threshold τ . All methods show increasing accuracy as the threshold τ increases, which is expected: (a), (b), and (c). EKSGLD consistently
retains the highest number of samples in all of the experiments except in MNIST/LeNet with τ = 1, where KSGLD has the highest number of samples:
(d), (e), and (f).

calibration error (SCE) is a straightforward modification of
ECE that considers the likelihood of each class for each given
data point in a multiclass environment. [33].

We present accuracy and AUCµ as the primary metrics
for assessing classification performance in the experiment
using the validation set. We provide and evaluate six metrics
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TABLE 2. Classification performance and confidence calibration of different SGLD algorithms on MNIST and CIFAR-10 validation set. No single method
performed best across all metrics and experiments, but EKSGLD achieved the best score (marked with a bold number) most often.

for assessing the quality of model uncertainty: ECE, MCE,
NLL, SCE, TACE, and OE scores. Additionally, we offer
the mean and standard deviation of training length in each
epoch to compare the computing resources consumed by each
optimizer.

We evaluate the accuracy and ECE on rotated pictures
from the validation set at various rotational degrees in the
experiment under dataset shift. This is intended to illustrate
how classification performance changes and if prediction
uncertainty can be maintained while shifting intensity on the
test dataset changes.

We did not assess accuracy in the experiment with entirely
OOD data since the train data had a completely different set
of class labels than the test data [35]. We provide histograms
of predicted entropy for OOD data and compare them to pre-
dictive entropy for i.i.d. data. On OOD data, we anticipate a
considerably greater predictive entropy. Additionally, we give
the number of samples with a confidence score greater than
a specified confidence level τ . We should anticipate a poor
confidence score for all predictions made using OOD data,
as the test data are completely unrelated to the train data.

V. EXPERIMENTS AND RESULTS
We evaluate the performance and the predictive uncertainty
quality of DNN models on MNIST and CIFAR-10 datasets.
For training the MNIST dataset, we use a four-layer LeNet
architecture following Palacci and Hess in [36] and refer to it
as LeNet-4 for brevity. Despite having less number of layers,
LeNet-4 contains more learnable parameters than the more
commonly used LeNet-5 owing to the larger number of output
channels in its convolutional layers. Table 3 presents the
detailed architecture for LeNet-4. We do not include detailed
architecture for LeNet-5 and ResNet-18 since they follow
standard settings commonly used in other machine learning
literature.

TABLE 3. LeNet-4 architecture. This model contains 909,770 learnable
parameters compared to LeNet-5, which only contains 62,006.

For training on the CIFAR-10 dataset, we use two models
of different capacities, namely, 5-layer LeNet and 18-layer
ResNet neural architectures, following Osawa et al. in [34].
We train the models using SGLDwith different precondition-
ing algorithms, including vanilla SGLD and SGD as a base-
line. We follow standard training and testing protocols for
each dataset, model, and optimization algorithm. However,
we additionally evaluate results on increasingly shifted data
and OOD dataset, loosely following the procedure in [35].
For reproducibility purposes, our PyTorch codes are available
online at https://github.com/har07/ngld-calibration/.

A. HYPERPARAMETERS
Table 4 summarizes the hyperparameter configurations used
in both MNIST and CIFAR-10 experiments. For each
method, we referred to existing literature to set the initial
hyperparameter configuration, then searched around the ini-
tial configuration and took the best hyperparameter config-
uration based on training accuracy. Note that the chosen
hyperparameter configurations might not be optimal since
we did not have the required computing power to do exten-
sive hyperparameter tuning over a wide range of values and
combinations. All experiments in this paper were run in the
free Google Colaboratory service environment. Hence, it is
supposed to require moderately low compute power and GPU
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TABLE 4. Hyperparameter configuration of every optimizer used in the
experiments.

memory space, which opens up possibilities for those with
limited resources to reproduce or build upon this benchmark.

For SGD, SGLD, and pSGLD, the initial hyperparameter
configuration is based on the MNIST classification experi-
ment from [27]. For ASGLD, we referred to the hyperparam-
eter configuration in the CIFAR-10 classification experiment
from [6]. Finally, for KSGLD and EKSGLD, we referred
to the MNIST and CIFAR-10 classification experiments
from [14]. We train the same model architecture for all meth-
ods with a minibatch size of 200. We trained the model for
ten epochs in the MNIST classification experiment and for
50 epochs in the CIFAR-10 classification experiment, with
the learning rate decreasing by half after every 20 epochs,
loosely following the block decay learning rate schedule
in [27].

B. MODEL ACCURACY
We train the same model architecture using various opti-
mization techniques and assess the accuracy at each epoch
using a standard validation set. As shown in Fig. 1, EKS-
GLD consistently achieves the highest accuracy throughout
all three experiments: MNIST/LeNet, CIFAR/LeNet, and
CIFAR/ResNet. Methods such as EKSGLD and KSGLD that
use a block-diagonal approximation of FIM are known to
be computationally more costly than those that use diagonal
approximation. As seen in the bottom row of Fig. 1, EKS-
GLD took much longer to complete the ten training epochs,
particularly in the experiment using ResNet-18, which has
deeper layers and a more significant number of parameters.
However, the exact figure demonstrates that the accuracy of
EKSGLD is equivalent to or greater than that of the other
approaches after the same training time. Other figures and
tables in this paper are obtained frommodels that were trained

for the same number of epochs, not the same amount of
training time.

KSGLD was the second-best approach in both the MNIST
and CIFAR trials that used the LeNet neural architecture.
However, its performance decreased dramatically in the
CIFAR experiment that used the ResNet neural architecture.
pSGLD and ASGLD showed a more consistent performance
across all experiments thanKSGLD.Additionally, we see that
training using SGLD is unstable and particularly difficult to
optimize in the experiment on CIFAR utilizing the ResNet
architecture. Due to the low precision of SGLD hyperpa-
rameters, we attempted to tune them for a longer period
of time than the other approaches, but we were unable to
discover hyperparameters’ values that resulted in comparable
performance even after the extended tuning time.

From now on, we will make predictions using a mixture
of 10 models created after each training period for all sorts of
SGLD approaches.We employ just onemodel from the end of
the previous training period for SGD. In Table 2, we calculate
classification performance and prediction uncertainty quality
parameters. As shown, EKSGLD continues to outperform the
other approaches in terms of accuracy and AUCµmetrics, but
its average training time is significantly greater. Generally,
the relative ordering of methods based on accuracy almost
always matches the ordering based on AUCµ, except for the
second and third positions in the CIFAR-10 experiment using
ResNet architecture, where pSGLD and ASGLD switch posi-
tions depending on whether the order is determined by accu-
racy or AUCµ. The following section examines the remaining
metrics in the table that relate to the quality of prediction
uncertainty.

C. PREDICTIVE UNCERTAINTY QUALITY
We now investigate models’ predictive uncertainty quality
using the same set of neural networks, optimization tech-
niques, and picture datasets. This section begins by assessing
the predictive distribution on the i.i.d. dataset. We utilize a
validation set that contains data drawn from the same dis-
tribution as the training set. Table 2 demonstrates that no
single strategy consistently outperformed the others across all
experiments andmeasurements. The table contains 18 figures
describing the prediction uncertainty associated with each
optimizer, especially six metrics (ECE, MCE, NLL, SCE,
TACE, and OE) across three trials (MNIST, CIFAR/LeNet,
and CIFAR/ResNet). As shown, EKSGLD was the best most
frequently, precisely on seven of the 18 instances, followed
by ASGLD on five occasions.

Additionally, we investigate the effect of introducing a
predictive confidence threshold τ on the model’s accuracy.
We anticipate that accuracy will rise as the value of τ is
increased, or in other words, as more predictions with low
confidence scores are discarded. Fig. 2 shows this is the case
for all methods. The ranking of techniques by accuracy is
nearly constant throughout all τ values in all trials, with
EKSGLD being on the top, except for theMNIST experiment
(Fig. 2(a)), where the accuracy of SGD and ASGLD begins
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FIGURE 3. Comparing validation accuracy and calibration of different SGLD algorithms under dataset shift. All methods experience degradation in
accuracy under dataset shift following similar graph patterns: (a), (b), and (c). KSGLD is slightly more robust, showing low ECE scores on (d) and (f).
However, both KSGLD and EKSGLD, i.e., the two methods based on block-diagonal approximations, have high calibration errors based on ECE in the
experiment using minimal model parameters (e).

to rise faster than that of KSGLD and EKSGLD at τ ≥
0.6. However, when the number of samples is considered
(Fig. 2(d)), KSGLD and EKSGLD have somewhat more
confident forecasts compared to SGD and ASGLD.

D. PREDICTIVE UNCERTAINTY UNDER DATASET SHIFT
In this part, we continue to evaluate the predictive distribu-
tion’s quality by rotating the image fromMNIST and CIFAR-
10 in various degrees to mimic distributional shifts with
varying intensities. While it is predicted that model perfor-
mance will deteriorate as the magnitude of the distributional
shift rises, it would be ideal if the model could maintain its
predictive distribution quality.

In practice, we may apply a confidence threshold to the
predictions to improvemodel accuracy by eliminating predic-
tionswith low confidence, which, when themodel predictions
are well-calibrated, means eliminating forecasts with a lesser
probability of being right. Regrettably, the outcome indicates
that this is not the case. Fig. 3 demonstrates that when a
distributional shift is added, both accuracy and prediction
uncertainty quality decline for all techniques.

Starting with comparable accuracy in the validation set,
SGLD accuracy degrades more rapidly than the others in
the MNIST distributional shift experiment. EKSGLD was
likewise unable to maintain the top position in terms of
accuracy when the distributional change occurred. KSGLD
consistently maintains a slightly greater accuracy throughout
all of the distributional shift studies.

Except for 90◦ rotation, EKSGLD exhibits a much greater
ECE when the CIFAR dataset is rotated using the LeNet
architecture. In the other two studies, namely, rotated
MNIST and rotated CIFARwith ResNet architecture, pSGLD
achieved the greatest ECE scores. In rotated MNIST and
rotated CIFAR with ResNet, KSGLD gets the lowest ECE
scores.

Generally, KSGLD is slightly more resilient to dis-
tributional change than the other approaches. However,
our CIFAR/LeNet experiment demonstrates that approaches
based on second-order approximation are prone to substantial
calibration errors under distributional shifts when employed
with an under-parameterized model.

E. PREDICTIVE UNCERTAINTY ON OOD
The trials’ final section assesses models’ prediction uncer-
tainty using totally OOD data. We assess models trained on
MNIST using the notMNIST dataset [8] and models trained
on CIFAR using the SVHN dataset [32]. Each pair of datasets
comprises a distinct set of labels that do not overlap, and
we consider OOD data to lack ground-truth labels. One may
imagine that predictive distributions onOODdatawould have
a high degree of entropy, whereas predictive distributions on
i.i.d. data would have a low degree of entropy. The difference
in the entropy of prediction distributions can be used by the
model to signify what it knows or does not know.

We provide the entropy histogram for each technique on
OOD data and compare it to the entropy on the validation
set, which is assumed to be i.i.d. data, as shown in Fig. 4.
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FIGURE 4. Comparing predictive entropy histogram of different SGLD algorithms on i.i.d. (top) and OOD (bottom) datasets. Overall, the entropy on the
OOD is relatively higher compared to the entropy on the validation set.

FIGURE 5. Comparing the number of samples of different SGLD algorithms on the OOD dataset for different thresholds τ . SGLD could be the most
robust method showing the lowest number of samples with high confidence scores; however, previously, we see that this is correlated with its low
accuracy on the validation set. KSGLD is shown to be the most overconfident in (a) and (b), whereas SGD is the most overconfident in (c).

Combining the observations from Table 2 (accuracy) and
Fig. 4 (entropy histogram), we see that the predictive distri-
butions on the validation set have a relatively higher entropy
when the model accuracy is low, and a relatively low entropy
when the model accuracy is high, as illustrated in Fig. 4.
For example, SGLD has the lowest accuracy on CIFAR-
10 experiments according to Table 2, and it has the highest
entropy according to Fig. 4 (b) and (c). Additionally, for
all approaches, we note that the predictive distributions on
OOD data have a larger entropy than the respective predictive
distributions on the validation set, which is consistent with
expectations.

As shown in Fig. 5, vanilla SGLD is the most resilient
approach to OOD data, with a low confidence score for
all of its predictions, particularly in the two trials utilizing
the SVHN dataset. However, as previously seen in Fig. 2
and Table 2, SGLD likewise exhibits poor confidence and

accuracy on i.i.d. data. SGD and ASGLD are more resilient
in the two tests with LeNet neural architecture, but EKSGLD
is more robust in the experiments involving ResNet neural
architecture. Overall, no one technique consistently produces
both low confidence and high accuracy predictions on OOD
data and high confidence and high accuracy predictions on
i.i.d. data across all tests.

F. DISCUSSIONS
We can see in Table 2 that EKSGLD achieves the best clas-
sification performance based on both accuracy and AUCµ
while also maintaining a good calibration performance based
on the majority of calibration metrics, especially TACE and
NLL. Ashukha et al. argued that TACE and NLL are better
metrics than ECE for comparing predictive uncertainty qual-
ity [5]. Based on this argument, we can say that EKSGLD
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produces the best predictive uncertainty quality on i.i.d. data.
Moreover, we have illustrated the accuracy versus confidence
curves in Fig. 2. Despite showing an expected trend where the
accuracy increases as the threshold τ increases, it is still far
from perfect calibration (a perfect diagonal line).

Regarding experiments on predictive uncertainty under
dataset shift, we expect that accuracy decreases as shift
intensity increases, but the ECE should be stable. However,
we observe from Fig. 3 that calibration error (i.e., the ECE)
increases as the accuracy decreases. This means that despite
some methods being better than others, all methods in these
experiments are not entirely robust to dataset shift.

In Fig. 4, we see a similar pattern for all methods. Gen-
erally, the entropy on OOD data is relatively higher than the
entropy on the validation set. This means the models produce
relatively uncertain predictions on OOD data compared to
the predictions produced on i.i.d. data, which is the expected
behavior. Our results from both predictive uncertainty under
dataset shift and on OOD data experiments complement the
results from previous papers since they do not include approx-
imate NGLD [21], [35]. However, the takeaways are still
aligned: improved performance and confidence calibration
on the validation set may not always equate to the same case
when the dataset is shifted and when given OOD data input.

VI. CONCLUSION
In this work, we presented EKSGLD, a new approach based
on SGLD, to obtain an accurate and calibrated classification
model. We show that the approach produces better accuracy
and predictive uncertainty quality on i.i.d. data compared to
the other tested methods, which is a step closer to a well-
calibrated model. Subsequent experiments showed that main-
taining predictive uncertainty quality under dataset shift and
on OOD data remains challenging for all of the SGLD pre-
conditioning approaches shown here, necessitating a possible
area of future research.

It will be interesting to see how these methods perform
more challenging tasks such as medical image analysis
and whether simple improvements from recent works such
as cyclic learning schedule [47] can improve approximate
NGLD methods.
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