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ABSTRACT The mode mixing and mode dispersion in the multimode fiber (MMF) will produce complex
speckle patterns in the distal end of the fiber as an object passes through the MMF, rendering image
reconstruction to be a challenging task. In recent years, convolutional neural networks have been successfully
applied to image reconstruction from speckles. However, the imaging spectra of these studies are mostly
in the visible spectrum range and require complete speckle information for reconstruction. In this paper,
researchers build an optical imaging system that employs up-conversion imaging technology to collect
speckle patterns generated by infrared light transmitting through a multimode fiber and a frequency-
doubling crystal. They propose a speckle restoration network (SRNet) based on a generative adversarial
network (GAN) to reconstruct speckle images. The generator of GAN uses ResNest and atrous spatial
pyramid pooling (ASPP) to extract multi-level features and multi-scale context information, respectively.
The discriminator of GAN significantly improves the quality of the reconstructed image generated by the
generator. In addition, researchers adopt a special training method named pre-training generator to avoid
gradient disappearance or gradient explosion in the training process.With the designed network, high-quality
images were successfully reconstructed even with only a portion of the speckle information.

INDEX TERMS Multimode fiber, neural network, speckle restoration, frequency doubling.

I. INTRODUCTION
Optical fiber has been extensively used in endoscopic
imaging [1], [2], [3]. Multimode fiber (MMF) has been
demonstrated to transmit a significant number of modes
simultaneously [1], which significantly enhances the infor-
mation transmission efficiency compared to single-mode
fiber [4]. However, dispersion, coupling, and other phenom-
ena will occur between various modes duringMMF transmis-
sion, resulting in unrecognizable speckle patterns in the distal
end of the fiber. Some researchers have developed methods
for reconstructing images from speckle patterns, such as
transmission matrix [5], [6], [7], wavefront shaping [8], and
digital phase
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conjugation [9]. These methods have been proven to be able
to reconstruct images from speckles. However, these methods
require very precise control and measurement as well as are
sensitive to the optical system and imaging environment.
Even minor changes in the scattering medium may seriously
affect the imaging quality. To address these issues, many
researchers have proposed a new imaging method based on
deep learning, which overcomes the limitations of traditional
imaging methods and reconstructs images more stably and
continuously. For example, the widely used convolutional
neural network (CNN) has been employed for speckle recon-
struction [10], [11], [12], [13]. To train CNN, a large number
of speckle image pairs need to be used as training data to real-
ize end-to-end training [14], [15]. In the training process, the
neural network learns the corresponding relationship between
the input image and the label image, without considering
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the structure of the relational optical system and the light
propagation process.

The research works mentioned above [10], [11], [12],
[13] prove that deep learning can be effectively applied to
speckle image reconstruction. However, most of the current
research is based on the imaging spectrum in the visible
range (wavelength: 400 – 700 nm). When the imaging spec-
trum is outside of the visible spectrum range, the imag-
ing of MMF will be difficult to obtain [16], [17], such as
THZ imaging. In addition, some previous work [18], [19]
used complete speckle information for image reconstruction.
However, complete speckle fields may not be obtained in
practical applications. Therefore, it is of great significance to
re-construct the complete original image from the incomplete
speckle image. In this paper, we collected the visible speckle
images as the infrared laser beam passes through the MMF
and subsequently through a frequency-doubling crystal. The
deep learning method has been employed to reconstruct the
original infrared images from speckles detected by the detec-
tor working in the visible range. Specifically, because the
infrared spectrum is not in the visible light range, the up-
conversion imaging technology (such as frequency doubling)
is used in the system to transfer the imaging wavelength from
the infrared range to the visible light wavelength, so that the
charge-coupled device (CCD) can detect the output speckle
pattern. Then we built a network called SRNet (speckle
restoration network), which is inspired by Deeplabv3+ [20]
and GAN [21]. Similar to most image restoration architec-
tures, our generator is also based on encoder-decoder archi-
tecture. The difference is that we do not use the traditional
U-shaped structure. In the proposed model, ResNext101 and
ASPP [20] modules are embedded in the encoder to extract
features, and then the decoder is used to recover the extracted
features. To improve the repair quality of image details,
we designed a discriminator to monitor the output of the
network.

We evaluated the performance of SRNet on the collected
data set. Specifically, two experiments prove the powerful
capability of the proposed network. Firstly, we collected three
groups of speckle patterns generated by different incident
energy, and the structural similarity (SSIM) of reconstruction
results of each group of data can reach above 0.9. Secondly,
only local speckle information is used to train the model.
The experimental results show that the proposed model can
reconstruct high-quality images when only one-quarter of the
original speckle image is used.

II. MATERIALS AND METHODS
A. EXPERIMENTAL SETUP AND DATA ACQUISITION
The data acquisition device is shown in Fig. 1. The incident
light is emitted by an infrared laser with a wavelength of
1028 nm. The polarizer adjusts the polarization direction of
the laser beam to meet the modulated polarization direc-
tion of the spatial light modulator (SLM). When the label
image is uploaded to SLM, the beam reflected by SLM will

FIGURE 1. Experimental apparatus for collecting data. In the distal end of
the MMF, an infrared speckle pattern is generated, and the infrared
speckle patterns are upconverted to the visible patterns of wavelength
514nm by second harmonic generation (SHG). P is a polarizer, BS is a
beam splitter. SLM is a spatial light modulator, O1 and O2 are two
objective lenses, O1: 10×, NA = 0.25, WD = 7.316mm; O2: 20×, NA = 0.4,
WD = 1.875mm. MMF is a multimode fiber of length 20 m with a core
diameter of 62.5µm, and NA of 0.275. LBO is a frequency-doubling crystal,
FB is a bandpass filter, and CCD is a common charge-coupled device.

carry object information and be reflected by BS to objec-
tive lens O1. The objective lens O1 couples the laser beam
into the MMF. The transmission of light in MMF will lead
to dispersion, mode coupling, and other phenomena, which
will lead to the formation of infrared speckles. The infrared
speckle output from MMF is collected by objective lens O2
and is up-converted to visible speckle by an LBO frequency
doubling crystal. The remaining infrared light can be filtered
out by using a band-pass filter. The visible speckle pattern is
collected by CCD.

We use the device shown in Fig. 1 to get our dataset, which
is based on the open-source dataset MNIST [22]. The specific
method is to extract 10000 pictures from MNIST and upload
them to the spatial light modulator (SLM), after passing
through the device of Fig. 1, the corresponding visible speckle
pattern is collected by the CCD. The dataset is further divided
into three groups by modulating the incident light power, i.e.
the incident energy is 1000 nJ, 2000 nJ, and 4000 nJ. There
are 10000 pairs of images in each group. The data set is
divided into the training set and the test set by the ratio of 8:2.

B. NETWORK STRUCTURE
The architecture of the SRNet is shown in Fig. 2. Inspired
by the GAN [21] network, the structure is divided into a
generator and a discriminator. The generator is responsible
for generating the reconstructed speckle image, and the dis-
criminator is responsible for judging the difference between
the image generated by the generator and the real image. The
discriminator will promote the quality of the image generated
by the generator. The generator and the discriminator play
games with each other until they reach a balance. In this
situation, the discriminator cannot recognize the true and
false pictures from the generator.

Fig. 2 (a) and Fig. 2 (b) are the encoder and decoder of the
generator, respectively. In the encoder, the feature extraction
backbone network is Resnest-101, which is different from
Resnet-101 [23] in Deeplabv3+ [20]. We think that the split-
attention in Resnest can perform better in extracting the
features from speckle images, which will help improve the
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FIGURE 2. SRNet network structure (a) the encoder (b) the decoder c) the discriminator.

quality of reconstructed images. The backbone network out-
puts two feature maps of different sizes low_level_features
and X. X is first sent into the atrous spatial pyramid
pooling (ASPP) module, which contains five operations:
a 1 × 1 ordinary convolution, three convolution kernels
with a size of 3 × 3 with different expansion rates, and
a global average pooling [24]. Concatenate the five feature
maps output by the above five operations, and then the output
of ASPP is gotten. The output of ASPP is connected to
the decoder through a jump connection, in which we use
1 × 1 convolution and up-sampling to adjust the dimensions
of the feature map.

Another output of the feature extraction backbone net-
work, low_level_features, is directly input into the decoder.
In the decoder, we first apply 1 × 1 convolution to
low_level_features to reduce its channel number, so that
low_level_features can balance with X6 in dimensions. After
the connection, several 3 × 3 convolutions are used to refine
the features, and then another bilinear upsampling is used to
obtain the final output.

The predicted picture from the generator and the ground
truth is input to the discriminator and then converted to an
18× 18 tensor by a series of convolution operations, as shown
in Fig. 2 (c). Each dis_block module is composed of Conv2D,
BatchNormalization, and LeakyRelu. The convolution kernel
size in the yellow dis_block is 3 × 3 and the stride is 1, the
convolution kernel size in the blue dis_block is 3 × 3 and
the stride is 2. The discriminator calculates the loss using all

1 tensors of the ground truth value image and all zero tensors
of the generator output, respectively. This strategy attempts
to classify the input image as true or false [25].

C. LOSS FUNCTION
The objective function in this paper is a combination of global
loss and adversarial loss. Such multiple losses are conducive
to the convolution network to avoid the local optimum [26].
The expression is

loss = αV + global_Loss (1)

where V is the adversarial loss and global_ Loss is the global
loss, the α is the weight of the adversarial loss. In (1), the
global_ Loss is responsible for repairing the main content of
the image, while the adversarial can enrich the image details
and make the reconstructed image more realistic.

The form of adversarial loss of the model proposed in this
paper is given by

min
G

max
D

V (D,G) = Ex∼Pdata(x) [logD (x)]

+Ez∼Pz(z)[log(1 − D(G(z)))] (2)

where X is the label image, Z is the speckle image. G(z) and
D(x) represent the output of the generator and discriminator.
Equation (2) can be expressed as maximizing the discrimina-
tor loss and minimizing the generator loss. D(x) represents
the probability that an image is a real image. When the
discriminator thinks that the probability of an image being

VOLUME 11, 2023 55563



Y. Zhang et al.: Reconstructing Images Through MMF From the Up-Conversion Speckle Patterns

a real image is relatively high, D(x) approaches 1, otherwise,
D(x) approaches 0. In the training process, G is first fixed and
D is trained. Since x is a real label image and z is a speckle
image, D(X) is expected to be larger andD(G(x)) smaller, that
is maxD. Then fix D and train G. G is expected to generate a
realistic enough picture to fool the discriminator, so D(G(z))
is expected to be larger, that isminG. Through this continuous
alternating training, the generator and discriminator are grad-
ually optimized. Finally, a balance is reached, so that D(G(z))
is close to 0.5. For the global loss in (1), i.e. the generator loss,
the binary cross entropy loss is adopted, and the formula is

l
(
ŷi, yi

)
= −

1
N

∑N

i
(yi log ŷi + (1 − yi) log(1 − ŷi)) (3)

where ŷi is the prediction, whose size is between 0 and 1, and
yi is the ground truth, which is equal to 0 or 1. N is the total
number of pixels.

D. NETWORK TRAINING
Experiments were performed using the data collected as
described in subsection A, each group of data is composed
of 10000 image pairs, with 80% being the training set and
20% being the test set.

1) DETERMINE THE WEIGHT OF THE LOSS FUNCTION
The total loss function in (1) is in the form of weighted global
loss and adversarial loss. The weight of global loss is set
to 1. To prevent the loss of the discriminator feed-back to the
generator from being too large, resulting inmodel divergence,
the value α should be carefully chosen. After several attempts
by selecting different values between 0 and 0.01, the value is
selected as 0.00004.

FIGURE 3. The output of the generator after 1 epoch of training. (a) is the
ground truth and (b) is the generated image.

2) TRAINING METHOD
In the training process, the generator is used to reconstruct
the target image, and the discriminator is used to judge
whether the generated image is true or false. In theory, the
discriminator should be abandoned after the two reach Nash
equilibrium. But considering the poor performance of the
generator at the initial stage of training and the difference
between the true graph and the false graph is very obvious,
the discriminator can easily have strong discrimination ability
and feedback large losses to the generator, which makes it
difficult for the generator to converge. Therefore, the gener-
ator is trained for n (number of epochs that the generator has

been pre-trained) epoch firstly to ensure that the generator
has a certain ability, and then the discriminator is introduced.
Experiments show that the generator has enough performance
to confuse the discriminator when n is 1. The generator output
after one epoch of training is shown in Fig. 3. It can be seen
from Fig. 3 that the generator has formed the corresponding
contour of the image after one round of training. After a round
of training, the discriminator is introduced to constrain the
generator.

The optimizer selects Adam. The learning rate is finally
determined to be 0.00003 through continuous adjustment,
batch_size = 16, and all data was trained for 60 epochs. The
detailed parameters of training are shown in Table 1.

TABLE 1. The training parameters of the network.

III. RESULT
A. EVALUATING INDICATOR
To evaluate the quality of the generated image, we introduced
the structural similarity index (SSIM) [27] and Pearson corre-
lation coefficient (PCC) [28]. Structural similarity evaluates
the image quality from three aspects of brightness, contrast,
and structure, which is more consistent with the visual effect
observed by human vision, given two signals x and y, the
calculation formula is given by

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)
(4)

where µ and σ represent the mean and covariance, respec-
tively, and c1, c2, c3 are constants. Pearson correlation coef-
ficient can measure the correlation between two images, and
its calculation formula is:

PCC

=

∑a
i=1

∑b
j=1

(
A (i, j) − Ā

) (
B (i, j) − B̄

)√∑a
i=1

∑b
j=1

(
A (i, j)−Ā

)2√∑a
i=1

∑b
j=1

(
B (i, j) − B̄

)2
(5)

B. RESULTS ON THE ORIGINAL SPECKLE IMAGE
The size of the speckle image we collected from the speckle
field is 256 × 256, an image of this size can contain almost
all the useful information in the speckle field. Fig. 4 shows
the loss change curve during data training corresponding to
different incident energy. Fig. 4 (a) is the loss curve of the
first epoch of training for the generator. It can be seen that
the first epoch of training loss converges quickly. In this
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FIGURE 4. The loss curve during the training process. (a) The loss curve of one round of
pre-training by the generator. (b) The loss change of the generator after adding the
discriminator. (c) The change curve of the total loss during the training process. (d) The
convergence process of the discriminator.

stage, the picture output by the generator has been somewhat
confusing to the discriminator. Fig. 4 (b) shows the loss
change curve of the generator after adding the discriminator,
the network can converge well.

In each group of data, 2000 pairs of images are used as
the test set to verify the training effect of the model. Fig. 5
shows the results of each model on its corresponding test
set. The upper left corner of the image is the SSIM value.
The results show that the visual effect of the reconstructed
digital image is very similar to that of the label image.
It seems that the reconstruction quality is slightly declining
with the increasing energy. This is related to the physical
mechanism of the frequency doubling. We employ frequency
doubling to realize the up-conversion imaging. The intensity
of the frequency doubling is proportional to the square of
the intensity of the incident fundamental frequency, this is
I(2ω) ∝ I(ω)2. From this point, the speckle pattern of the
up-conversion imaging generally is different from that of the
initial speckle pattern (the fundamental frequency I(ω)), as is
shown in Fig. 6, and the increasing of the intensity will result
in a larger difference deviated from the initial speckle pattern
(the fundamental frequency I(ω))), leading to the decreasing
of the reconstruction quality.

The average SSIM and PCC of the test set are given
in Fig.7. The results show that our network can recon-
struct high-fidelity images from handwritten digital data
sets. It is worth mentioning that, because our loss function

contains adversarial loss, the network repairs the details of
the image very well, making the recovered image have a
higher SSIM.

C. RECONSTRUCTION OF SPECKLE IMAGE USING
ONLY LOCAL INFORMATION
In some practical applications, it is difficult to detect the full
speckle pattern. Therefore, it is meaningful to verify whether
partial information in the speckle field can be used to recon-
struct images. Based on the speckle image obtained, we inter-
cept the local information of different sizes and explore how
to use only a part of the speckle information to reconstruct
the complete speckle image. This task is challenging because
a portion of the speckle pattern may not contain enough
information about the original image.

Specifically, we intercept parts of different sizes at the
center of the speckle field, as shown in Fig. 8. The intercepted
size is 128 × 128 and 64 × 64. This means that only a small
part of speckle information is used to reconstruct a complete
image.

To achieve our goal, we use the proposed network to train
on data of different sizes, we only use speckles with an
incident energy of 1000nJ as an example in this work. Fig. 9
shows the loss of generators in each group of data training,
each group of data can converge well.

Fig. 10 shows the comparison of reconstruction results
of speckle images with different sizes. The reconstruction
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FIGURE 5. Object reconstruction with speckles collected at different
incident energy using SRNet. The upper left corner of the reconstructed
image is the corresponding SSIM value.

FIGURE 6. The second row is the speckles without frequency doubling
(i.e., the speckle in the wavelength 1028 nm), and the third row is the
speckles after frequency doubling (i.e., the speckle in the wavelength
514 nm).

results are different in different sizes. Specifically, the result
obtained on the original speckle image is the best. With
the decrease in the speckle image size, the quality of the
reconstructed image decreases slightly. However, accord-
ing to the results obtained still has a good appearance and
high SSIM. Table 2 shows the index comparison of speckle
image reconstruction at different scales.

D. ABLATION STUDY
To analyze the effectiveness of the feature extraction back-
bone network and discriminator, ablation experiments were

FIGURE 7. The column diagram shows the speckle reconstruction results
with an incident energy of 1000nJ, 2000nJ, and 3000nJ.

FIGURE 8. Complete speckle image restoration using local speckle
information.

FIGURE 9. Generator loss variation curve for different size training.
(a) Loss of one epoch of pre-training by the generator. (b) Generator loss
for 60 training epochs.

TABLE 2. Reconstruction results of speckle images with different scales.

FIGURE 10. Reconstruction results using local speckle information of
different sizes.

performed on the data set with an incident energy of 1000 nJ.
The experimental results are given in Table 3.
First of all, compare the effects of Resnest-101

and Resnet-101 on the reconstruction quality without
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TABLE 3. Effects of different combinations of Resnest-101, Resnet-101,
and discriminator on reconstruction quality.

adding a discriminator (Row 2 and Row 3 in Table 3).
When Resnest-101 is used instead of Resnet-101, both SSIM
and PCC are improved. Then we add the discriminator
(Row 4 and Row 5 in Table 3), and Resnest-101 still performs
better. In addition, no matter who is chosen as the feature
extraction backbone network, the addition of a discriminator
will also improve the SSIM and PCC, this proves the validity
of the designed discriminator.

IV. CONCLUSION
In this paper, we combine upconversion imaging technology
with deep learning to study the imaging problem of infrared
objects through multi-mode fiber. Firstly, we convert infrared
speckles into visible speckles by using a frequency-doubling
crystal. Then, to get useful information, we set up a neural
network to reconstruct the speckle. The proposed network
is named SRNet, which uses Resnest101 as the backbone of
the generator to extract multi-level features. A discriminator
is introduced to improve the quality of the reconstructed
image of the generator. Moreover, the method of pre-training
generator is used to avoid the problem of model divergence
that may be caused by introducing a discriminator.

The results show that the trained SRNet can reconstruct
high-quality images by using the partial speckle image, and
the network has good generalization for different incident
energies. Considering that it is difficult to detect complete
speckle images in some scenes of practical applications, our
work is very meaningful. In addition, our work also proves
that the combination of upconversion imaging technology
and deep learning technology is significant for expanding the
imaging wavelength.
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