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ABSTRACT Software development is a highly unpredictable process, and ensuring software quality and
reliability before releasing it to the market is crucial. One of the common practices during software
development is the reuse of code. It can be achieved by utilizing libraries, frameworks, and other reusable
components. Practically, when a fault is detected in replicated code, developers must check for similar
faults in other copies, as there is a dependency between faults. To prevent recurrence of observed failures,
developers must remove the corresponding leading fault and any related dependent faults. Many software
reliability growth models (SRGMs) have been proposed and studied in the past, but most SRGMs assume
that developers usually detect only one fault causing a failure. In actuality, it is necessary to consider the
possibility of detecting multiple faults that may share similarities or dependencies. Additionally, some
SRGMs rely on specific assumptions that may not always be valid, such as perfect debugging and/or
immediate debugging. In this study, the modified diffusion models are proposed to handle these unrealistic
situations, and are expected to better capture the dynamics of open source software (OSS) development.
Experiments using real OSS data show that the proposed models can accurately describe the fault correction
process of OSS. Finally, an optimal software release policy is proposed and studied. This policy takes into
account some factors, including the remaining number of faults in the software, the expenses associated with
identifying and rectifying those faults, and the level of market demand for the software. By considering these
factors, developers can determine the optimal time to release the software to the market.

INDEX TERMS Software reliability, diffusion model, open source software, software release, debugging,
testing.

I. INTRODUCTION
In today’s technological landscape, software plays a criti-
cal role in numerous safety- and/or life-critical systems that
undergo an extremely rigorous certification process. The pri-
mary concern, however, is how to produce high-quality and
reliable software products as quickly as possible. Typically,
the source code of software systems under development can
be divided into two categories: closed-source software (CSS)
systems like Microsoft Office, Apple’s iOS, and others, and
open-source software (OSS) systems like Firefox, Ubuntu
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Linux, Apache, GCC, and others. To assess the reliability
of both CSS and OSS systems, software practitioners must
monitor the failure occurrence process using collected failure
data. With the accumulation of more failure data or customer-
reported bugs, it becomes possible to more accurately predict
software reliability, failure intensity, the total number of ini-
tial faults, the remaining faults, and other parameters.

In software testing, assessing software reliability is crucial
as it helps developers make informed decisions throughout
the software development process. Reliability is often mathe-
matically defined as the probability that a system or a system
capability functions without failure for a specified duration
or number of natural units within a given environment [1].
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Essentially, reliability is dependent on various characteristics
of the software product and development process. Over the
past three decades, there have been numerous Software Relia-
bility Growth Models (SRGMs) published, each with its own
set of assumptions, strengths, and weaknesses [1], [2], [3].
Many SRGMs consider different development environments
and operational conditions when predicting software relia-
bility. Software reliability engineering is firmly grounded
in a well-established theoretical framework that encom-
passes operational profiles, SRGMs, statistical estimation,
and sequential sampling theory [1], [2]. Kim et al. [4] once
proposed a software reliability engineering process for soft-
ware development in the Korea defense industry. The pro-
cess involves incorporating additional reliability activities
into each phase of the software development lifecycle, along
with the application of models and metrics for assessing and
analyzing software reliability. By analyzing the failure data
collected during testing, SRGMs can be utilized to make
predictions about software reliability.

It is worth noting that SRGMs not only serve as valuable
tools for testing, but they can also be utilized for debugging
purposes. Practically, software development often involves
many different parts of the software that perform similar
tasks. To increase efficiency, programmers typically reuse
existing code rather than rewriting similar code from scratch.
However, this practice of copying and pasting code can lead
to the creation of replicated code within the software. When
a fault is found in this replicated code, it is common for
developers to also search for similar faults in other copies
of the code. This phenomenon of fault dependency can pose
significant problems for software development. A fault can
fall into one of two categories: leading or dependent faults.
Leading faults are those that can be removed directly. Con-
versely, mutually dependent faults cannot be eliminated until
the corresponding leading fault is addressed first.

When a failure occurs, it may be the result of a mutually
dependent fault, meaning that developers must address the
corresponding leading fault as well as any related dependent
faults to prevent future failures from occurring. As a result,
developers may need to identify and address multiple faults
when investigating a failure. To account for the possibility
of detecting multiple faults that may be similar or dependent
on each other, we propose the term ‘‘additional debugging
effort’’ to reflect the fact in this study. However, it has to be
noted that many existing SRGMs do not consider the phe-
nomenon of additional debugging and assume that developers
can only identify and eliminate the single fault responsible
for a given failure. Therefore, it is necessary to relax some
assumptions by accounting for the possibility of multiple
faults and additional debugging effort [5].

On the other hand, it can be found that most SRGMs rely
on a set of assumptions that may not always be reasonable,
particularly in the context of developing OSS. One of these
assumptions is immediate and perfect debugging, this is,
faults are detected and corrected instantly and flawlessly.

However, this assumption is often not true because it ignores
the time delay that can occur between fault detection and
correction. The design and development process of CSS and
OSS differ significantly from a usage pattern perspective.
CSS is not only developed within a software company but
is also sold on the public market and used by numerous
users. In OSS development, debugging can take longer due
to the lack of dedicated resources and personnel. There is no
guarantee that a detected fault will be resolved immediately,
as developers may prioritize different tasks or face resource
constraints.

In general, OSS can be characterized by its informality and
lack of formal documentation at times [6]. This can make
it more challenging for developers to analyze faults, leading
to a greater likelihood of imperfect debugging. In this case,
traditional SRGMs could not be well-suited for modeling the
reliability of OSS since they don’t account for the unique
challenges and complexities of OSS development [7]. In this
study, we propose to extend the diffusion model proposed by
Bass [8] to handle the phenomenon of additional debugging.
The diffusion model originally was used to predict sales of
new consumer products. The primary concept behind the
diffusionmodel in economics is to distinguish buyers into two
groups: innovators and imitators. Innovators are individuals
who adopt a new product based on their own perceptions
and without any external influence. In contrast, imitators
are individuals whose adoption decisions are influenced by
the social pressures of the surrounding system. This model
acknowledges the impact of social influence on the adoption
of a new product and can be used to predict and analyze the
diffusion process of the product in the market.

Likewise, we can categorize removed faults as those that
caused failures and those that did not. When a fault is
removed, there is a possibility that other related faults can
also be removed without causing any further failures. This
is because of the presence of fault dependencies and sim-
ilarities, where removing one fault can reveal and remove
other faults as well. This highlights the importance of thor-
ough debugging and testing to identify and remove all faults,
including those that may not be immediately apparent but
could cause future failures if left unaddressed [9].

Based on the discussions above, we aims to extend the dif-
fusion model to account for the realistic development process
of OSS. This includes considering phenomena such as addi-
tional debugging, debugging time lags, and imperfect debug-
ging that are commonly observed in practice. Actual data
collected from two OSS projects will be used to present and
analyze the experiments. Moreover, the proposed modified
diffusion model serves as the basis for creating constructive
rules to identify the ideal time for software release. These
rules can assist project managers in deciding the appropriate
moment to conclude testing and launch the software to the
market.

The paper is organized as follows. In Section II, we provide
a literature survey that covers past works on modifying the
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assumptions of traditional SRGMs to make them more suit-
able for software reliability analysis. Section III introduces
how the diffusion model can be applied to software reliabil-
ity and how it can be extended to derive new models that
consider the aforementioned phenomena. Section IV presents
an evaluation of our models using two OSS projects and
compares the results with those obtained from traditional
SRGMs. In Section V, we discuss how the proposed models
can be used to determine the optimal release time and offer a
decision procedure. Finally, Section VI provides our conclu-
sion, where we summarize the contributions of this study.

II. BACKGROUND AND LITERATURE REVIEW
As time progresses and technology continues to develop,
software has become an increasingly integral part of our daily
lives. It is crucial that software functions correctly for end-
users, making the assessment of software reliability a criti-
cal step in the testing phase. To accurately predict software
reliability, various SRGMs have been proposed to describe
the process of fault detection and correction [1], [2], [3]. It is
important to note that there are still many SRGMs published
in the literature. These models vary in terms of their underly-
ing assumptions, mathematical formulations, and applicabil-
ity to different types of software systems.

For example, Liu et al. [11] considered software reliability
modeling under the framework of uncertainty theory, and
deduced a software belief reliability growth model (SBRGM)
using uncertain differential equations. Basically, Liu et al.’s
SBRGM is based on the concept of belief degrees, which
are used to measure the degree of belief that a particular
software component will not fail at a given time. The model
uses uncertain differential equations to describe the growth
of belief degrees over time, taking into account the effects
of various factors that can affect software reliability. Their
experimental results suggested that the proposed SBRGM
outperforms several popular probability-based SRGMs, such
as the exponential model, the power law model, and the
Weibull model. In addition, Yang et al. [12] once proposed
a method for predicting the trend and quantity of bugs in
new versions of a software project by combining complex
network theory with the panel data model. Their approach is
applicable in both within-project and cross-project contexts.
Their proposed method leverages the insights from complex
network theory to model the relationships between software
components and their interactions in a software project. They
used this network-based approach to analyze the factors that
affect software bug occurrences, including code complexity,
software architecture, and development team dynamics.

Vizarreta et al. [13] also developed a framework that uti-
lizes the SRGM to evaluate and anticipate the level of matu-
rity of software-defined networking (SDN) controllers. The
goal of their framework is to provide valuable insights into
the dependability and functionality of SDN controllers, and
to facilitate the identification of potential areas of improve-
ment. They presented some guidelines to assist network oper-
ators in making informed decisions about the deployment

of SDN controller software in operational environments.
Garg et al. [14] proposed a hybrid approach called Entropy-
Combinative Distance-Based Assessment (CODAS-E) to
effectively select and rank software reliability growth
models using multiple performance indexes. In addition,
Wu et al. [15] proposed an approach to incorporate the time
dependencies between the fault detection, and fault correc-
tion processes, focusing on the parameter estimations of the
combined model.

Generally, many of the traditional SRGMs are based on
similar assumptions [1], [8]. In some cases, faults detected
during testing may not be corrected immediately. This delay
in fault correction can be caused by various factors such as
prioritization of tasks, availability of resources, or complexity
of the fault. As a result, the software reliability growth process
can be impacted, and traditional SRGMs may not accurately
reflect the actual reliability of the software. To address this,
some SRGMs have been developed to account for delayed
fault correction and other factors that may affect the soft-
ware reliability growth process [11], [12], [15]. Raymond
and O’Reilly [6] noticed that beta testing plays a crucial
role in the testing of OSS. Therefore, the test team for OSS
is often separate from the development team. When a fault
is detected in OSS, developers typically require additional
time to communicate with testers and rectify the issue. This
situation often leads to longer debugging times for OSS, and
delays in the fault correction process are more likely to occur.

The assumption of perfect debugging in the fault correction
process is unrealistic as it is impossible for developers to
achieve perfect debugging throughout the entire correction
process. When trying to fix more complex faults, develop-
ers may inadvertently introduce new issues. Furthermore,
studies indicate that the development process of open-source
software (OSS) lacks structure and formal documentation,
including the testing phase. As a result, debugging can
be especially challenging for OSS, and traditional SRGMs
that assume perfect debugging may not provide an accurate
assessment of software reliability [7]. The absence of for-
malized procedures and documentation, combined with the
separation of development and testing teams, creates a chal-
lenging and complex debugging process for OSS. As a result,
it is common to encounter imperfect debugging, where devel-
opers are unable to completely eliminate all faults during the
correction process. This phenomenon is a direct consequence
of the unique nature of OSS development, which relies heav-
ily on collaboration between teams and individuals. It is noted
that Pham [10] has previously shown that models that account
for imperfect debugging provide a more accurate fit to actual
fault data compared to models that do not consider this factor.
In other words, the inclusion of imperfect debugging in the
models results in a better representation of the real-world
performance of software systems.

To address the issue of time lags between fault detection
and correction, various research papers have proposed novel
software reliability growth models (SRGMs). For instance,
Schneidewind [16] developed a model that treated the fault
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correction process as a delayed fault detection process, with
a fixed delay time assumed for all corrections. However, this
assumption of a constant lag time is unrealistic, as the level
of difficulty for each fault can vary significantly, and the time
taken to correct each fault can also differ. Xie and Zhao [17]
addressed the issue of constant delay time in the Schnei-
dewind model by introducing a time-dependent function for
the delay time. Xie et al. [18] once presented a new SRGM
that accounts for heterogeneous faults. The model assumes
that each fault has specific parameters for detection time and
correction delay, which can follow arbitrary distributions.

Huang and Lin [19] showed experimentally that there is
evidence of fault dependency. In cases where a mutually
dependent fault results in a failure, it is imperative for devel-
opers to first address the associated leading fault before
attempting to remedy the dependent fault. As the form of the
fault content function is dependent on testing environments,
several different forms have been proposed. Additionally,
Yamada et al. [20] used a linearly increasing function and an
exponentially increasing function as fault content functions.

It is important to highlight that most SRGMs, including the
one mentioned above, do not take into account the possibility
of additional debugging due to the interdependence and sim-
ilarity of faults. These models typically assume that when a
failure occurs, only the fault responsible for the failure will
be identified. Li et al. [21] found that large software suites
often contain a considerable amount of duplicated code, and
detecting a fault in one instance of the replicated code can lead
to the identification of similar faults in the other instances.
For example, the X window system’s entire source code com-
prises 19% of duplicated code [22]. Although copy-and-paste
activities can reduce programming efforts, replicated code
can introduce faults [21]. This is primarily because program-
mers may copy and paste code without making necessary
modifications.

To account for additional debugging effort, Kapur et al. [9]
utilized the diffusion model as their SRGM. The diffusion
model, originally proposed by Bass [2] in economics, initially
considers the number of potential purchasers as a constant.
However, Mahajan and Peterson [23] argued that the number
of potential purchasers should vary over time. Similarly, due
to imperfect debugging, the fault content should be treated
as a time-dependent function rather than a constant. As the
phenomenon of additional debugging is prevalent in OSS,
we have extended the diffusion model to account for it. Our
approach considers the realistic conditions of OSS develop-
ment, which includes the presence of time-lags in debugging
and imperfect debugging. In the following, we propose to
develop new diffusion models that more accurately fit the
observed fault data in OSS projects.

III. MODELING FAULT CORRECTION PROCESS
A. GENERALIZED DELAYED NHPP RELIABILITY MODEL
Previous research has proposed several models, with many
conventional NHPP reliability models being based on the
following assumptions [1], [8].

1. The fault detection/correction process is modeled by
NHPP.

2. Software is subject to failures during execution caused
by faults remaining in the software.

3. The mean number of faults detected in the time inter-
val (t, t +1t] is proportional to the mean number of
remaining faults in the system.

4. The failure rate of each detectable fault is identical.
5. Each time a failure is detected, the fault is immediately

removed.
6. During the fault detection/correction process, no new

faults are introduced into the software.
Based on these assumptions, Pham et al. [8] introduced a

generalized NHPP reliability model that can be obtained by
solving the following equation:

dm (t)
dt

= b (t) [a (t)− m (t)] , (1)

wherem(t) is the mean value function (MVF) of the expected
number of faults removed in time (0, t], b(t) is a time-
dependent fault detection rate function, and a(t) is a time-
dependent fault content function. Note that the functions a(t)
and b(t) are defined based on certain assumptions regarding
the behavior of the detection process. The majority of tradi-
tional SRGMs assume perfect debugging, which leads to the
assumption that a(t) is a constant. After solving (1) under the
initial condition m(0) = 0, we can get the generalized NHPP
SRGM as:

m(t) = e−B(t)
∫ t

0
a(τ )b(τ )eB(t)dτ, (2)

and

B(t) =

∫ t

0
b(τ )dτ . (3)

To account for time lags between fault detection and cor-
rection, a generalized delayed NHPP reliability model is
derived by extending (2). This is necessary because (2) does
not take into consideration the possibility of such time lags.

mnew(t)=m(t−ϕ(t))=e−B(t−ϕ(t))
∫ t−ϕ(t)

0
a (τ ) b (τ ) eB(τ )dτ,

(4)

The delayed-time function ϕ(t) is used to describe the time
lags between fault detection and correction. In many studies,
it is assumed that when a failure is detected, the fault is
immediately removed, resulting in ϕ(t) being equal to 0.

As previously mentioned, Assumption (5) and (6) are not
realistic in practice, and they assume that a (t) = a and
ϕ (t) = 0. In the following section, we propose the use of the
diffusion model for software reliability analysis. We begin by
deriving the basic diffusion model, which only accounts for
additional debugging. We then relax some of the assumptions
that are not reasonable in practice and derive the extended
diffusion models, which consider the additional debugging
effort, debugging time lags, and imperfect debugging.
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B. APPLYING A DIFFUSION MODEL IN SOFTWARE
RELIABILITY MODELING
The diffusion model shares many of the underlying assump-
tions of conventional SRGMs. However, it differs in one
significant aspect: Upon a failure observation, the fault
detection phenomenon may also detect the proportion of the
remaining faults.As previously mentioned, the occurrence of
a single failure may lead to the discovery of not only the fault
responsible for the failure but also related or similar faults.
This phenomenon is known as the diffusion process, which
is described by the exclusive assumption mentioned above.
Using the assumptions of perfect debugging and immedi-
ate debugging, we can define the fault content function as
follows:

a (t) = a, (5)

and the delayed-time function as:

ϕ (t) = 0. (6)

Moreover, due to the above exclusive assumption for the
diffusion model, the time-dependent fault detection rate is:

b (t) =

(
p+ q

m (t)
a

)
, (7)

wherem(t) is the mean value function (MVF) of the expected
number of the faults detected in time (0, t], a is the number
of initial faults in the software, p is the failure rate, and
q is the additional fault detection rate. Since the expected
number of faults detected at time 0 always is zero, we can
get the following MVF by substituting (7) and (5) into (1)
and solving it under the initial condition m (t) = 0:

m (t) = a
1 − e−(p+q)t

1 +
q
pe

−(p+q)t . (8)

Basically the diffusion model that is derived is highly
flexible, allowing for the modeling of software reliability
growth in various ways. This includes the ability to shape the
growth curve as either S-shaped or exponential by utilizing
different combinations of p and q. If p ≥ q, the shape will
be exponential, otherwise it will be S-shaped. It is worth
noting that if only one fault is detected for each failure, i.e.,
q = 0, then this model will reduce to a Goel-Okumoto
(GO) model [6]. Because (7) includes m(t), we cannot derive
the MVF by directly substituting it into (4). In order to get
the extended diffusion models from the generalized delayed
NHPP reliability model in (4), we have to use a newmodeling
approach for the diffusion process to avoid complicating the
resultant models [20].

The diffusion model is a flexible approach to software
reliability modeling, as it allows the fault detection rate to be
described using various distribution functions. These func-
tions can help account for the complexity of software devel-
opment and the variability in the fault detection process [23].
To avoid mathematical complexity, we will propose a new
form that takes into account the diffusion process to describe

the fault detection rate. Here, we use the logistic as the fault
detection rate proposed by Pham et al. [24]:

b(t) =
p+ q

1 +
q
pe

−(p+q)t . (9)

Substituting (9) into (4) with constant values of a(t) and
ϕ(t) as a and 0, respectively, we have

m(t) = a
1 − e−(p+q)t

1 +
q
pe

−(p+q)t . (10)

It is evident that (10) is equivalent to (8). Thus, we can
demonstrate that the logistic form of b(t) can describe the
diffusion process in the same way as the original form, (7).
Therefore, to simplify the mathematics involved and develop
extended diffusion models, we will use (9) as the fault
detection equation for the diffusion model in the subsequent
section.

C. MODELING OF DEBUGGING TIME LAGS AND
IMPERFECT DEBUGGING IN DIFFUSION MODELS
Complicated faults can lead to a time lag between detection
and correction, particularly in OSS development. Practivally,
beta testing is a vital part of OSS testing [3], necessitating
time for developers to analyze failure reports and communi-
cate with testers. It is evident that a time lag exists between
fault detection and correction in OSS. To account for this
reality, we modify Assumption (5) presented in Section III-A
as follows:
The detected fault may not be immediately removed, and

follows the fault detection process with a time lagϕ(t) .
It is important to note that modifying Assumption (5) in

Section III-A is inadequate since it assumes not only imme-
diate debugging, but also that a single failure is caused by
only one fault, and the primary fault will be immediately
removed, resulting in the failure occurring only once [23].
After modifying Assumption (5) in Section III-A, we also
need to introduce an additional assumption as follows:
Only the first occurrence of a failure is counted and each

failure is caused by exactly one fault.
The accuracy of SRGMs that incorporate the delayed-

time function ϕ(t) in describing the correction process in
practice is dependent on the specific form of ϕ(t). Previous
research [18] suggests that certain existing SRGMs can be
interpreted as delayed detection SRGMs based on the GO
model, and the delayed-time functions listed below can be
extracted from conventional SRGMs.

• Delayed-time Function 1 (DF1) from the Yamada
delayed S-shaped model [7], [24]:

ϕ1 (t) =
1
p
ln (1 + pt) . (11)

• Delayed-time Function 2 (DF2) from the Inflected S-
shaped model [7], [24]:

ϕ2 (t) =
ψe−pt

p
(
1 + ψe−pt

) . (12)
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Once we extract the delayed-time functions from conven-
tional SRGMs, we will be able to develop diffusion models
that not only describe the process of fault correction but also
take into account the time lags associated with debugging.
These models are useful in predicting the effectiveness of
fault correction and can aid in the optimization of debugging
processes.
Case 1: Extended diffusion model Model #1 when using

DF1. Here we assume:

a (t) = a, (13)

ϕ (t) =
1
p
ln (1 + pt) , (14)

b (t) =
p+ q

1 +
q
pe

−(p+q)t . (15)

From the generalized delayed NHPP reliability model in (4),
we have

m(t) = a
1 − e−(p+q)(t− 1

p ln(1+pt))

1 +
q
pe

−(p+q)(t− 1
p ln(1+pt))

. (16)

Case 2:Extended diffusionmodelModel #2when usingDF2.
Here we assume:

a (t) = a, (17)

ϕ (t) =
ψe−pt

p(1 + ψe−pt )
, (18)

b (t) =
p+ q

1 +
q
pe

−(p+q)t . (19)

From the generalized delayed NHPP reliability model in (4),
we have:

m(t) = a
1 − e

−(p+q)(t− ψe−pt

p(1+ψe−pt )
)

1 +
q
pe

−(p+q)(t− ψe−pt

p(1+ψe−pt )
)
. (20)

As previously mentioned, the debugging process is a com-
plex task that involves identifying and rectifying relevant
faults, particularly in the context of OSS development. The
process poses a significant challenge for developers due to the
unstructured nature of OSS development and the lack of for-
mal documentation, increasing the likelihood of incomplete
or imperfect debugging. In order to better accommodate real-
world scenarios, we have made modifications to assumption
(6) as presented in Section III-A, as follows [24]:
During the debugging phase, a detected/ removed fault will

introduce faults at a constant rate r.
In this case, we formulate the time-dependent fault content

function a(t) as:

a (t) = a (1 + rt) , (21)

where r is the increasing rate of the number of introduced
faults to the initial fault. a(t) is the number of total faults,
including the initial faults and introduced faults, at time t and
a (t) = a. Once we have obtained the fault content function
in (21), we suggest that the models should also take into

account imperfect debugging and debugging time lag to more
accurately depict the software correction process in practice.
Case 3: Extended diffusion model Model #3, when using

DF1 and imperfect debugging:

a (t) = a (1 + rt) , (22)

ϕ (t) =
1
p
ln (1 + pt) , (23)

b (t) =
p+ q

1 +
q
pe

−(p+q)t . (24)

From the generalized delayed NHPP reliability model in
(4), we get (25).

m (t) =
a

1 +
q
pe

−(p+q)
(
t− 1

p ln(1+pt)
)

×

((
1 − e

−(p+q)
(
t− 1

p ln(1+pt)
))(

1 −
r

p+ q

)
+ r

(
t −

1
p
ln(1 + pt

))
. (25)

Case 4:Extended diffusionModel #4, when usingDF1 and
imperfect debugging:

ϕ (t) =
ψe−pt

p(1 + ψe−pt )
, (26)

b (t) =
p+ q

1 +
q
pe

−(p+q)t . (27)

From the generalized delayed NHPP reliability model
in (4), we get (28).

m (t) =
a

1 +
q
pe

−(p+q)
(
t− ψe−pt

p(1+ψe−pt)

)

×

1 − e
−(p+q)

(
t− ψe−pt

p(1+ψe−pt)

)(1 −
r

p+ q

)

+ r

(
t −

ψe−pt

p
(
1 + ψe−pt

))) . (28)

IV. DATA ANALYSIS AND EXPERIMENTS FOR OSS
A. DATA SETS
In this study, we have selected two widely recognized OSS
data sets to assess the accuracy of our proposed models.
The first data set (DS1) was obtained from Eclipse 3.7, and
was collected from the Bugzilla site of Eclipse [27], [28].
The second data set (DS2) was obtained from Tomcat 5, and
was collected from the Bugzilla site of the Apache Software
Foundation (ASP) [29]. Table 1 provides a summary of DS1
and DS2. It is worth noting that the cumulative faults curve
for DS1 is S-shaped, while that of DS2 follows an exponential
pattern. This implies that the data sets we have collected are
suitable for both exponential and s-shaped models.

Additionally, we performed a Laplace trend test on the cho-
sen datasets to determine whether the software’s reliability
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FIGURE 1. Laplace trend test.

TABLE 1. Summary of selected data sets.

was increasing. The Laplace trend factor at time period k,
u(k), is defined as follows:

u(k) =

k∑
i=1

(i− 1)n(i) −
k−1
2

k∑
i=1

n(i)√
k2−1
12

k∑
i=1

n(i)

, (29)

where n(i) is the number of faults removed at time period i.
In the fault counts model, we split the total time interval for
testing into ntime periods. The Laplace trend test determined
the trend (increase/decrease) of each time period by plugging
in time into (30). A positive value of u(k) indicated that
the software reliability was decreasing during time period
k , while a negative value of u(k) indicated that the software
reliability was increasing during time period k . To facilitate
comparison, we normalized the testing time intervals of the
selected data sets to [0,1].

Fig. 1(a) shows that during the initial 35% of the testing
time, the values of u(k) demonstrate an upward trend, which
means that the reliability falls. Throughout the remaining
65% of the testing time, there is a persistent decline, sug-
gesting an improvement in reliability. Similarly, upon exam-
ination of Fig. 1(b), in the initial 10% of the testing period,
u(k) values display an upward trend, indicating a decline in
reliability. However, during the remaining 90% of the testing
time, there is a consistent decrease in u(k) values, suggesting
an improvement in reliability. Fig. 1(a) and (b) illustrates that
there are signs of improved reliability after the completion of
testing. Therefore, our proposedmodel and other SRGMs can
be utilized to forecast the quantity of detected faults in DS1
and DS2.

B. COMPARISON CRITERIA
To evaluate the performance of all selected models,
we employ the following criteria for assessment and to pro-
vide quantitative comparisons.
(1) TheMean Square Error(MSE) is defined as [1] and [8]:

MSE =
1

n− k

n∑
i=1

(
m (ti)− mti

)2
, (30)

where m (ti) denotes the estimated number of faults removed
by time ti, mti denotes the actual number of faults removed
by time ti and n denotes the size of the adopted data set, kis
the degree of freedom, which means the number of estimated
parameters in the adopted SRGM. The MSE is a commonly
used criterion to assess the performance of SRGMs. It quanti-
fies the difference between the estimated value and the actual
data. A smaller value of the MSE indicates a better fit of the
SRGM. It is important to consider that the MSE takes the
degree of freedom into account, which means that the number
of estimated parameters in the SRGM can also impact the
value of the MSE.
(2) The Coefficient of determination (R2) is defined

as [30]:

R2 = 1 −

∑n
i=1

(
m (ti)− mti

)2∑n
i=1

(
mt1 − m

)2 . (31)

The coefficient of determination, denoted as R2, is a mea-
sure of the goodness of fit of a SRGM to data points. R2

ranges from 0 to 1, representing the proportion of data varia-
tion that the SRGM can account for. As a result, a higher R2

value indicates a better fit of the SRGM to the data.
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(3) The Theil’s U Statistics are defined by [31] and [32]

U1 =

√∑n
i=1

(
mti − m (ti)

)2√∑n
i=1m

2
ti +

√∑n
i=1m (ti)

2
, (32)

and

U2 =

√√√√√√√
∑n−1

i=1

(
m(ti+1)−mti+1

mt

)2

∑n−1
i=1

(mti+1−mti
mti

)2 . (33)

Theil’s U Statistics is a performance evaluation mea-
sure for the selected model, with U1 measuring the dis-
crepancy between estimated results and actual data, ranging
from 0 to 1. A lower U1 value indicates a more precise fit.
U2 determines whether the selected model’s results outper-
form naive forecasts that rely on historical averages. U2 also
ranges from 0 to 1, and a value less than 1 implies superior
performance compared to the forecasts.

(4) The Akaike information criterion (AIC) is defined
as [8]:

AIC = 2k − 2 ln (L) , (34)

where k is the number of estimated parameters in the selected
model and L is the likelihood function of the selected model
at its maximum value. The smaller the value of AIC the better
the fit. Since increasing the number of parameters of the
model tends to yield a better fit, AIC also takes the degree
of freedom into account.

(5) The Prediction at levell (Pred (l)) is defined as [32]:

Pred (l) =
p
n
, (35)

where p indicates the number of estimated values that are
within l of the actual value. For example, there is a model
whose Pred (0.25) = 80%, which indicates 80% of the
prediction of the model falls within 25% of the actual values.
Generally l is set as 0.25, and besides, Pred (0.25) ≥ 0.75 is
an acceptable performance criterion for a model [32]. The
higher the value of Pred(l) on a fixed l, the more precise the
estimation of the model.

C. PERFORMANCE ANALYSIS
In this study, the Goel-Okumoto (GO) model, the Yamada
delayed S-shaped (YDS) model, the Inflected S-shaped
(IS) model, the Logistic growth (LG) model, the Gom-
pertz growth (GG) model, and the original Diffusion (DF)
model are considered as the candidate models for com-
parison [8], [25], [26]. All selected candidate models are
listed in Table 2. To obtain estimates for all parameters of
the candidate models, we employed the methods of least
squares estimation (LSE) and maximum likelihood estima-
tion (MLE) [34].

TABLE 2. Summary of candidate models.

1) DS1
First, Table 3 presents the estimated parameter values for all
candidate models using LSE and MLE. As shown in Table 3,
the additional detection rate values were not zero. Fig. 2
gives the plot of cumulative curves of actual and estimated
number of faults for DS1. Table 4 shows the comparison
results. Based on the results in Table 4, the DF outperforms
the GO model in all criteria, indicating the presence of addi-
tional debugging phenomenon in DS1. Upon considering the
delayed time lag, it was observed that the proposedModels #1
and #2 outperform the original diffusion model, indicating
the presence of delayed time lag between detection and cor-
rection in DS1. Furthermore, the proposed Models #3 and #4
perform better than those that do not consider imperfect
debugging when considering delayed time lag as well, sug-
gesting the presence of imperfect debugging in the DS1.
On the other hand, using either LSE orMLE as the estimation
method, we can see that the all criteria value of the proposed
Models #3 and #4 are ranked first or second. This means that
the prediction of our proposed models is more accurate than
other candidate models. Fig. 3 shows the Pred(l) plots of all
candidate models at different levels. If one model has better
performance in terms of Pred(l), its Pred(l) curve would lie
on top of that for the other models. Similarly, Fig. 3 indicates
the proposed Models #3 and #4 perform better at different
levels. The performance of the GO model was the worst in
the candidate models, since it was an exponential model.

2) DS2
For DS2, Table 5 presents the estimated parameter values
for each candidate model. The plot of cumulative curves of
actual and estimated number of faults for DS2 is illustrated
graphically in Fig. 4. The actual curve of faults corrected in
this dataset was found to be exponential, which favors the use
of exponential SRGMs. The parameter q values in Table 5
are close to zero, indicating the absence of the phenomenon
of additional debugging. Two primary cases may contribute
to this outcome: inefficient testing procedures that fail to
identify similar or related faults in a failure and a coding
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TABLE 3. Results of parameter estimation for DS1.

style lacking in fault similarity and dependency. Based on the
parameter values, it was challenging to determine which case
applied to DS2. As mentioned in Section III-B, this dataset
demonstrates that when q approaches zero, the diffusion
model will simplify to the GO model.

Table 6 displays the comparison results for all selected
models. Given that the proposed Model #2 outperforms the
DF model, we can infer that the delayed time lag was indeed
present in DS2. Additionally, the proposed Model #2 out-
performs the proposed Model #1 in most criteria, while the
proposed Model #4 outperforms the proposed Model #3 in
most criteria. Therefore, we can conclude that DF2 is more
suitable for describing the delayed time lag in DS2 than
DF1. The parameter r values indicate that the phenomenon
of imperfect debugging exists in DS2.

Furthermore, the proposed Model #3 outperforms the pro-
posed Model #1, and the proposed Model #4 outperforms
the proposed Model #2, providing further evidence of the
existence of imperfect debugging in DS2. Regardless of the
estimation method used, the proposed Models #2, #3, and #4
consistently rank among the top three inmost criteria, demon-
strating their flexibility as they can reduce to exponential
models when the a ctual data shape is exponential. In addition

to our models, the GO model performs better than the other
candidate models, confirming the suitability of this dataset
for exponential SRGMs. Fig. 5 displays the plots of all can-
didate models at various levels, indicating that the proposed
Models #2, #3, #4, and the GO model perform better at
different levels.

V. OPTIMAL RELEASE TIME AND MANAGEMENT
Determining the ideal release time is a crucial issue for
software developers, often referred to as the optimal release-
time problem. Over the years, several models and methods
have been proposed to address this challenge [35], [36],
[37], [38], [39], [40], [41], [42]. For example, Yang et al. [41]
proposed a novel approach for modeling the reliability of
multi-release open source software (OSS) using general
masked data. Unlike traditional methods that use change
point models, their proposed approach is based on an additive
model that can accommodate general masked data.

Given that open-source software development typically
involves frequent and early releases, it is essential to consider
the potential advantages and drawbacks of early releases. As a
result, OSS project developers must determine the optimal
time to release their software, considering that issues are often
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TABLE 4. Results of the model comparisons for DS1.

FIGURE 2. Cumuliative number of faults for DS1 and the fitted curves for all models.

addressed in subsequent versions. This section aims to exam-
ine various approaches and factors that software developers
must consider when determining the optimal release time for
their projects.

A. COST FACTORS
The calculation of the anticipated cost of open-source soft-
ware (OSS) EC(t) encompasses three factors: (i) the cost of
testing, (ii) the cost incurred due to faults detected during
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FIGURE 3. Pred(l) for different l level (DS1).

TABLE 5. Results of parameter estimation for DS2.

operation, and (iii) the benefit or penalty of releasing the
software earlier or later, respectively.

1) THE TESTING COST
The testing cost is computed by

C1 × t, (36)
where C1 is the cost per unit time for testing.

2) THE DAMAGE COST
The damage cost for fault detected during operation is
given by

C2 (a− m (t)) , (37)

where C2 is the damage cost per fault detected during
operation.
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TABLE 6. Results of the model comparisons for DS1.

FIGURE 4. Cumuliative number of faults for DS2 and the fitted curves for all models.

3) THE BENEFIT AND PENALTY FUNCTION
Due to the nature of open-source software development, early
and frequent releases are common. This approach allowsOSS
projects to receive more user feedback and gain a larger

market share than competitors who release their products
later. Additionally, releasing OSS before the deadline can
free up testing resources early, allowing developers to focus
on other tasks. Therefore, if an OSS project can be released
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FIGURE 5. Pred(l) for different l level (DS2).

ahead of schedule, it can potentially benefit from increased
market share, enhanced user feedback, andmore time to work
on other tasks. Here we propose to use the linear function to
describe the benefit and the benefit function B (t) as:

B (t) =

{
(D− t)B1, 0 ≤ t < D
0, t ≥ D,

(38)

where D is the deadline for the software release and B1 is
the comprehensive benefit per unit of time for an early OSS
release. In contrast, if an OSS project is released after the
deadline D, in addition to the testing cost, it incurs a penalty
cost due to the loss of market share, user feedback, and the
delay of other work. This penalty cost is justifiable because,
due to user familiarity, later releases of OSS may lose market
share and user reactions, even if their reliability is higher than
other OSS projects released earlier. As additional costs tend
to increase rapidly in the early stages and gradually in the later
stages, an exponential function is typically used to describe
the penalty cost. Therefore, we can represent the penalty cost
as the penalty function P(t).

P (t) =

{
0, 0 ≤ t < D

P1
(
1 − e−(t−D)

)
, t ≥ D,

(39)

where P1 is the maximum penalty cost for releasing the
OSS late.

Hence, the total expected cost EC(t)is given by:

EC (t) =

{
C1 · t + C2 (a− m (t))− B(t), 0 ≤ t < D
C1 · t + C2 (a− m (t))+ P(t), t ≥ D.

(40)

In order to derive a set of simple decision rules, we can
rewrite (40) as:

EC(t) = θ1(t)I[0,D)(t) + θ2(t)I[D,∞)(t), (41)

where

θ1 (t) = C1 · t + C2 (a− m (t))− B (t) , 0 ≤ t < ∞ (42)

θ2 (t) = C1 · t + C2 (a− m (t))+ P (t) , 0 ≤ t < ∞ (43)

FIGURE 6. Decision flow chart.

and the indicator function IA is:

IA (x) =

{
0, t /∈ A
1, t ∈ A.

(44)

Let t1 and t2 be the solutions of θ ′

1 (t1) = 0 and θ ′

2 (t2) = 0,
respectively. OSS usually has an expected lower boundary of
reliability LR. So we also have to know the lower boundary
of release time tr which can be obtained by the following:

LR =
a

m (t)
. (45)

B. DECISION PROCEDURES
Although the OSS projects tend to be released early and
often, the OSS should achieve the expected lower boundary
of reliability before releasing. Hence, in consideration of the
lower boundary of reliability, even if the cost function is at a
minimum at time t , which is smaller than tr , the OSS projects
would also not release their products at time t . It is obvious
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TABLE 7. Decision table.

TABLE 8. Data and results for examples 1-4.

that the optimal time in all cases are a point ofD, tr , t1 and t2.
Then, by arranging all potential cases, we can summarize
the necessary conditions for the optimal time decision, which
is provided in Table 7. Moreover, from Table 7, we further
derive the optimal time decision procedure in Fig. 6 where t∗

is the optimal release time. We strongly believe that this is a
valuable and convenient tool for OSS developers to ascertain
the optimal timing for the release of their products.

C. EXAMPLES
To demonstrate the decision-making process for determining
the optimal release time, we have selected four examples. The
corresponding parameter settings and the required calcula-
tions for all these examples can be found in Table 8.

1) EXAMPLE 1
In this example, the benefit for early release is relatively high
and the LR is medium. This implies that the target market
for this OSS project prefers to receive the product early on
in its development cycle, with a moderate level of reliability
expected at the time of release. We determine that the optimal
release t∗ is always t1 by using Table 7 and Fig. 6. The
total cost we calculate with the OSS being released at t1,
is minimal. After the OSS is released at t1, the proportion
of removed faults in the fault content is 91%. This is higher
than LR.

2) EXAMPLE 2
In this example, the end users are willing to tolerate encoun-
tering failures when using the OSS, as they see the benefits
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of an early release coupled with a moderate level of relia-
bility, and the cost associated with a fault detected during
operation is relatively low. By our decision procedure, the
optimal release time is D. After the OSS is released at D, the
proportion of removed faults in the fault content is 75%. This
is higher than LR.

3) EXAMPLE 3
In this case, the benefits of an early release for the OSS are
relatively minimal, and there is no penalty for a later release.
Therefore, the early release of the OSS would only result in
marginal gains, as the target users place a greater emphasis
on the quality and features of the OSS rather than its release
time. Based on our decision procedure, we recommend that
the optimal release time be set to t2. The proportion of
removed faults in the fault content is 98% after the OSS is
released at t2.

4) EXAMPLE 4
In this example, the OSS is assumed to be a life-critical
system, which means that the requirements for reliability and
the costs associated with testing are relatively high. As the
target users expect the OSS to operate with a high level of
reliability, the testing process needs to be more rigorous. Due
to tr > D and t2 ≤ tr , we can derive the optimal release
time as tr . After the OSS is released at tr , the proportion
of removed faults in the fault content is 95%, which is
equal to LR.

VI. CONCLUSION
During software development, most developers have likely
experienced situations where they choose to reuse existing
code instead of writing a similar code from scratch. However,
recent studies have shown that reusing replicated code can
increase the likelihood of introducing faults. This is because
developers may simply copy and paste the code without
making necessary modifications. Therefore, it is important to
acknowledge that when a fault is detected in a piece of repli-
cated code, developers should carefully check other copies to
ensure that similar faults are not present. By doing so, they
can prevent the spread of potential errors throughout their
codebase and ensure that their software remains reliable and
maintainable. In the past, several software reliability growth
models (SRGMs) were developed to analyze and predict
the reliability of software systems. However, many of these
models assume that developers can only detect one fault that
causes a failure, which may not be the case in real-world
scenarios.

Additionally, most traditional SRGMs are built on the
same set of assumptions that may not hold true, particularly
when considering the development of OSS. For instance, the
traditional assumptions of perfect and immediate debugging
do not align with the reality of OSS development. Debugging
in OSS is often done collaboratively. This makes it difficult to
achieve perfect and immediate debugging, which can impact
the reliability of the software. To account for this, we use the

diffusion model as our basic model and demonstrate that it is
a special case of the delayed generalizedNHHPmodel. Based
on the delayed generalized NHHP model, we derived the
extended diffusion models, which consider the phenomena of
debugging time lag and imperfect debugging by modifying
the assumptions. To validate our models, we used two real
OSS projects as our datasets. The experimental results indi-
cate that our proposed models can more accurately describe
and predict the fault correction process compared to other
models. Furthermore, our models show that the additional
debugging effort, debugging time lag, and imperfect debug-
ging are prevalent in most OSS projects. This provides valu-
able insights for developers in designing and implementing
effective fault detection and correction strategies for OSS
projects.

Finally, to apply the proposed models in determining the
optimal release time for OSS, a decision procedure is pro-
posed and discussed. By following the suggested decision
procedure, developers can make a decision about when to
release their software, taking into account the cost factors, the
potential for faults and the needed reliability. This approach
can help ensure that the software meets the needs of users
while also maintaining its desired reliability.
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