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ABSTRACT The strong product on graphs is also called the normal product or the AND product. It is
the union of Cartesian product and tensor product, and also is a binary operation on graphs. This operation
takes two graphs and produces a new graph. In this paper, we will study the strong product on weighted
graphs. The key to study the relationship between the spectrum of two original weighted graphs and that of
their strong product graph is to provide a reasonable weight function to the weighted strong product graph.
We introduce a definition of the weight function to the strong product graph G⊠ H , where G = (X , a) and
H = (Y , b) are two connected weighted graphs. And we derive an expression for the spectrum of G ⊠ H
by using the spectrums of the weighted graph G and H . In this paper, we will also study the Ricci curvature
of two adjacent points for the strong product. We prove that the Ricci curvature for strong product of two
regular graphs with simple weight is bounded by the Ricci curvature of G and H .

INDEX TERMS Strong product, spectrum, Ricci curvature.

I. INTRODUCTION
A graph product is a binary operation on graphs. This oper-
ation takes two graphs G1 and G2 and produces a new graph
H with the following properties: (1) The vertex set of H
is the Cartesian product V (G1) × V (G2), where V (G1) and
V (G2) are the vertex sets of G1 and G2, respectively. (2) Two
vertices (u1, v1) and (u2, v2) of H are connected by an edge
if and only if the vertices u1, u2, v1, v2 satisfy a condition
that takes into account the edges of G1 and G2. The graph
products differ in exactly which this condition is, such as
Cartesian product [10], [30], strong product [5], [25], tensor
product [24], [27], lexicographic product [6], [17].

The strong product palys a very important role in graph
theory. It is well known that the king’s graph, a graph whose
vertices are squares of a chessboard and whose edges rep-
resent possible moves of a chess king, is a strong product
of two path graphs. Many results are established on simple
finite graphs. The strong product was introduced by Sabidussi
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in [26]. In that setting, the strong product is contrasted against
a weak product, but the two are different only when applied
to infinitely many factors. The strong product is also called
the normal product or the AND product. It is the union of the
Cartesian product and the tensor product. Abajo-Casablanca-
Diánez-Vázquez [1] showed that the strong product of two
maximally connected graphs with at least three vertices and
girth at least 5 is maximally connected.

Strong product has also important applications in computer
science. It can be used to combine multiple networks into a
single, larger network. This can be useful in situations where
it is necessary to communicate between different networks,
such as in a distributed system or the Internet. By using the
strong product, different networks can be merged together
while maintaining their original properties, allowing for more
efficient and effective communication.

Recently, many researchers’ attentions were draw to var-
ious properties on weighted graphs, the readers can refer
to [2], [3], [4], [11], [14], [15], [18], and [29]. Grigor’yan [13]
studied Cartesian product on weighted graphs. They proved
all the eigenvalues of the Laplace operator on the weighted
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Cartesian product graph are the convex combinations of
eigenvalues of the Laplace operator of two original graphs.

Inspired by Grigor’yan’ work in [13], we will consider the
strong product on weighted graphs in this paper. The main
difficulty to study the relationship between the spectrum of
two original weighted graphs and that of their strong prod-
uct graph lies in giving a reasonable weight function to the
weighted strong product graph.

The Ricci curvature plays a very important role on geo-
metric analysis on Riemannian manifolds. Many results are
established on manifolds with non-negative Ricci curvature
or on manifolds with Ricci curvature bounded below. The
first definition of Ricci curvature on graphs was introduced
by Chung-Yau in [8]. Lin-Yau [21] proved that the Ricci cur-
vature for locally finite graph in the sense of Bakry and Emery
is bounded below by−1. And they also showed that the Ricci
curvature in the sence of Ollivier for simple random walk on
graphs is bounded below. The Ricci flat graph in the sense of
Chung and Yau was proved to be a graph with Ricci curvature
bounded below by zero. Münch-Wojciechowski [22] showed
that a lower bound on the Ollivier curvature is equivalent to
a certain Lipschitz decay of solutions to the heat equation.
Cushing-Liu-Peyerimhoff [9] proved that the curvature func-
tions of the Cartesian product of two graphs G1,G2 are equal
to an abstract product of curvature functions of G1,G2.
In this paper, we will also study the Ricci curvature of two

adjacent points for the strong product. Since there are three
kinds of edges for the strong product (Section II-A), we fall
into three results to explain the bounds of the Ricci curvature.

The remaining part of this paper is organized as follows:
In Section II, we give some notations and definitions on
weighted graphs and state our main results. In Section II-A,
we give an expression for the spectrum of G ⊠ H by using
the spectrums of graph G and graph H . In Section II-B,
by following the method in [20], we give the bound of Ricci
curvature for the strong product of two regular locally finite
graphs. In Section III, we give the proofs of our main results.

II. MAIN RESULTS
A graph is called simple if it has no loops and multiple edges.
All graphs considered in this paper are connected, simple,
undirected and weighted graphs. We denote by V (G) and
E(G) the vertex set and the edge set of G, respectively. For
any two vertices u and v of G, denote by dG(u, v) the distance
between u and v in G. G ⊠ H denotes the strong product
between graph G and H . Now, we recall basic definitions for
weighted graphs, refer to [3], [7], and [13]. Let V be a finite
discrete space serving as the set of vertices of a graph G, and
E be the set of edges of the graph, µ : V × V ∋ (x, y) 7→

µxy ∈ [0, ∞) be an edge weight function satisfying: (1)
µxy = µyx , ∀x, y ∈ V ; (2)

∑
y∈V µxy < ∞, ∀x ∈ V . These

induce a combinatorial (undirect) graph structureG = (V ,E)
with the set V of vertices and the set E of edges, such that for
x, y ∈ V , {x, y} ∈ E if and only if µxy > 0, in symbols
x ∼ y. Alternatively, µxy can be considered as a positive
function on the set E of edges, that is extended to be 0 on

non-edge pairs (x, y). Therefore, we may denote a weighted
graph by G = (V , µ). We call a graph G has simple weight if
the weight function µ on G satisfying either µxy = 1 for any
x ∼ y or µxy = 0 for any x ̸∼ y in G. Any weight µxy gives
rise to a function on vertices as follows:

µ(x) =

∑
y∼x

µxy.

Andµ(x) is called the weight of a vertex x. For example, if the
weight µ is simple, then µ(x) = deg(x).

A. SPECTRUM
Firstly, let us recollect the strong product of two unweighted
graphs. Assume (X ,E1) and (Y ,E2) are two unweighted
graphs. Their strong product is defined as follows:

(V ,E) = (X ,E1) ⊠ (Y ,E2)

where V = X × Y and the set E of edges is defined by

(x, y) ∼ (x ′, y′) if and only if


x ∼ x ′ and y ∼ y′,
or x ∼ x ′ and y = y′,
or x = x ′ and y ∼ y′,

where x, x ′
∈ X and y, y′ ∈ Y . It is easy to see that |V | =

|X ||Y |, deg(x, y) = deg(x) + deg(y) + deg(x) deg(y) for all
x ∈ X , y ∈ Y and |E| = |X ||E2| + |Y ||E1| + 2|E1||E2|. In the
following, we construct a suitable weight function of product
graph from two original graphs’ weight functions.
Definition 1: Let G = (X , a) be a locally finite connected

weighted graph and H = (Y , b) be a finite connected
weighted graph. Fix three numbers p1, p2, p3 > 0 and define
the strong product graph

(V , µ) = G⊠ H (p1, p2, p3),

as follows: V = X × Y and the weight µ on V is defined by

µ(x,y)(x ′,y′) =


p1axx ′byy′ , x ∼ x ′ in G, y ∼ y′ in H ,

p2axx ′b(y), x ∼ x ′ in G, y = y′ in H ,

p3a(x)byy′ , x = x ′ in G, y ∼ y′ in H ,

0, otherwise.

(1)

Now we recall the definition of the Laplace operator and
Markov operator on weighted graphs (refer to [13]). Let
(V , µ) be a locally finite weighted graph without isolated
points. For any function f : V → R, the function 1f is
defined by

1f (x) =
1

µ(x)

∑
y

µxy
(
f (y) − f (x)

)
. (2)

The operator 1 acting on functions on V , is called the
weighted Laplace operator of (V , µ). For any function f :

V → R, the function Pf is defined by

Pf (x) =

∑
y

P(x, y)f (y), (3)
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where the Markov kernel P(x, y) = µxy/µ(x) is the random
walk with transition probability of moving from a vertex x to
each of its neighbours y. This operator P is called theMarkov
operator.
Theorem 2: Let G = (X , a) and H = (Y , b) be finite

connected weighted graphs with m and n vertices respec-
tively. Suppose that {αk}

m
k=1 and {βl}

n
l=1 be the sequences

of the eigenvalues of the Markov operators A on X and B
on Y respectively, counted with multiplicities. Then all the
eigenvalues of the Markov operator P on the strong product
G⊠ H (p1, p2, p3) are given by{

p1αkβl + p2αk + p3βl
p1 + p2 + p3

}
where k = 1, 2, . . . ,m and l = 1, 2, . . . , n.

From (2) and (3), we know the Laplace operator 1 and the
Markov operator P are related by a simple identity

1 = P− id,

where id is the identical operator in F , which is the set
of all real-valued functions on V . It is easy to see that the
same relation holds for the eigenvalues of 1 and P. Hence,
by Theorem 2, we have
Corollary 3: Let G = (X , a) and H = (Y , b) be finite

connected weighted graphs with m and n vertices respec-
tively. Suppose that {αk}

m
k=1 and {βl}

n
l=1 are the sequences

of the eigenvalues of the Laplace operators A on X and B
on Y respectively, counted with multiplicities. Then all the
eigenvalues of the Laplace operator 1 on the strong product
G⊠ H (p1, p2, p3) are given by{

p1(αkβl + αk + βl) + p2αk + p3βl
p1 + p2 + p3

}
where k = 1, 2, . . . ,m and l = 1, 2, . . . , n.

B. RICCI CURVATURE
We will use similar notations as in [20] and [23]. A

probability distribution over the vertex-set V (G) is a mapping
m : V (G) → [0, 1] satisfying

∑
x∈V (G) m(x) = 1. Suppose

two probability distributions m1 and m2 have finite support.
A coupling between m1 and m2 is a mapping A : V (G) ×

V (G) → [0, 1] with finite support so that∑
y∈V (G)

A(x, y) = m1(x) and
∑

x∈V (G)

A(x, y) = m2(y).

The transportation distance between two probability distri-
butions m1 and m2 is defined as follows:

W (m1,m2) = inf
A

∑
x,y∈V (G)

A(x, y)d(x, y),

where the infimum is taken over all coupling A between
m1 and m2. A function f over graph G is c-Lipschitz if

|f (x) − f (y)| ≤ cd(x, y),

for all x, y ∈ V (G). By the duality theorem of a linear
optimization problem, the transportation distance can also be
written as follows:

W (m1,m2) = sup
f

∑
x∈V (G)

f (x)(m1(x) − m2(x)),

where the supremum is taken over all 1-Lipschitz function f .
Noting that any c-Lipschitz function f over a metric subspace
can be extended to a c-Lipschitz function over the whole met-
ric space. The W (m1,m2) only depends on distances among
vertices in supp(m1) ∪ supp(m2). For any vertex x ∈ V (G),
let N (x) denote the set of neighborhood of x, i.e., N (x) =

{y ∈ V (G) : y ∼ x in G}, and N [x] = N (x) ∪ {x}. For any
α ∈ [0, 1] and any vertex x, the probability measure mα

x is
defined as

mα
x (v) =


α, if v = x,
1 − α

deg(x)
, if v ∈ N (x),

0, otherwise.

(4)

For any x, y ∈ V (G), we define α-Ricci-curvature kα to be

kα(x, y) = 1 −
W (mα

x ,m
α
y )

d(x, y)
,

and the Ricci curvature at (x, y) in the graph is

k(x, y) = lim
α→1

kα(x, y)
1 − α

. (5)

Now we state our main results about the Ricci curvature of
G⊠ H as follows:
Theorem 4: LetG andH be r-regular and k-regular locally

finite and connected graphs with simple weight respectively,
where G ̸= Kr+1. For u1 ∼ u2 in G, v ∈ V (H ), the Ricci
curvature of G ⊠ H is bounded, and if NG(u1) ∩ NG(u2) ⫋
NG(u1) \ {u2},

(rk + r)kG(u1, u2) − 2rk
rk + k + r

≤ kG⊠H ((u1, v), (u2, v))

≤
(kr + r)kG(u1, u2) + 2k

kr + k + r
,

if NG(u1) ∩ NG(u2) = NG(u1) \ {u2} = NG(u2) \ {u1},

(rk + r)kG(u1, u2)
rk + k + r

−
2kr2 + kr − 3k
r(rk + k + r)

≤ kG⊠H ((u1, v), (u2, v)) ≤
(kr + r)kG(u1, u2) + 2k

kr + k + r
.

Theorem 5: LetG andH be r-regular and k-regular locally
finite and connected graphs with simple weight respectively,
where G ̸= Kr+1. For u ∈ V (G), v1 ∼ v2 in H , the Ricci
curvature of G ⊠ H is bounded, and if NH (v1) ∩ NH (v2) ⫋
NH (v1) \ {v2},

(rk + k)kH (v1, v2) − 2rk
rk + k + r

≤ kG⊠H ((u, v1), (u, v2))

≤
(kr + k)kH (v1, v2) + 2r

kr + k + r
,
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if NH (v1) ∩ NH (v2) = NH (v1) \ {v2} = NH (v2) \ {v1},

(rk + k)kH (v1, v2)
rk + k + r

−
2rk2 + kr − 3r
k(rk + k + r)

≤ kG⊠H ((u, v1), (u, v2)) ≤
(kr + k)kH (v1, v2) + 2r

kr + k + r
.

Theorem 6: LetG andH be r-regular and k-regular locally
finite and connected graphs with simple weight, respectively.
For u1 ∼ u2 in G, v1 ∼ v2 in H , the Ricci curvature of G⊠H
is bounded and

−4r2k2 + 10rk − 2k − 4r
rk(rk + k + r)

≤ kG⊠H ((u1, v1), (u2, v2))

≤
min{(kr + r)kG(u1, u2) + 2k, (kr + k)kH (v1, v2) + 2r}

kr + k + r
.

III. PROOFS
Theorem 7: Let G = (X , a) be a locally finite connected

weighted graph and H = (Y , b) be a finite connected
weighted graph. Suppose that A, B are the Markov kernels
on X in G and Y in H , respectively. Then the Markov kernel
P on the strong product G⊠ H (p1, p2, p3) = (V , µ) is given
by as shown in the equation at the bottom of the next page,
where x, x ′

∈ X , y, y′ ∈ Y and p1, p2 and p3 are three given
positive numbers.

Proof: From the definition, the weight on the vertices
of V is

µ(x, y)

=

∑
(x ′,y′)∼(x,y)

µ(x,y)(x ′,y′)

=

∑
x ′∼x
y′∼y

µ(x,y)(x ′,y′) +

∑
x ′∼x
y′=y

µ(x,y)(x ′,y′) +

∑
x ′

=x
y′∼y

µ(x,y)(x ′,y′)

= p1
∑
x ′∼x
y′∼y

axx ′byy′ + p2b(y)
∑
x ′∼x

axx ′ + p3a(x)
∑
y′∼y

byy′

= (p1 + p2 + p3)a(x)b(y).

In the case x ∼ x ′, y ∼ y′, by (1), we have

P((x, y), (x ′, y′)) =
µ(x,y)(x ′,y′)

µ(x, y)
=

p1axx ′byy′

(p1 + p2 + p3)a(x)b(y)

=
p1

p1 + p2 + p3
A(x, x ′)B(y, y′),

and other cases are treated similarly. □
Lemma 8: If G = (X , a) and H = (Y , b) are r-regular, k-

regular graphs with simple weights, respectively. Then their
strong product

G⊠ H (1,
1
k
,
1
r
)

is a (r + k + rk)-regular graph with a simple weight.

Proof: Since a, b are simple weights of G and H , with
the regularity of graphs G and H , we have

a(x) = deg(x) = r, b(y) = deg(y) = k.

Hence, by the definition of the weight function on strong
product, we get

µ(x,y)(x ′,y′) =


p1, x ∼ x ′ in G, y ∼ y′ in H ,

p2k, x ∼ x ′ in G, y = y′ in H ,

p3r, x = x ′ in G, y ∼ y′ in H ,

0, otherwise.

(6)

Therefore, when taking the parameters p1, p2 and p3 as

p1 = 1, p2 =
1
k
, p3 =

1
r
,

we have µ(x,y)(x ′,y′) = 1 for any (x, y) ∼ (x ′, y′) and
µ(x,y)(x ′,y′) = 0 for any (x, y) ̸∼ (x ′, y′) in G ⊠ H , that is
the weight µ is also simple. □
Corollary 9: Let (V ,E) be a finite connected r-regular

graph, and set (V n,En) = (V ,E)⊠n = (V ,E)⊠(V ,E)⊠· · ·⊠
(V ,E) be the strong product of n (V ,E). Let µ be a simple
weight on V , and {αk}

|V |

k=1 be a sequence of the eigenvalues
of the Markov operator on (V , µ), counted with multiplicity.
Let µn be a simple weight on V n. Then the eigenvalue λϒn of
the Markov operator on (V n, µn) is given by

λϒn =

∑n
j=1 r

j ∑
I⊆[n], |I |=j

∏
i∈I αki

(r + 1)n − 1
(7)

where ϒn = (k1, k2, . . . , kn) ∈ {1, 2, . . . , |V |}
n,

[n] = {1, 2, . . . , n} and each eigenvalue is counted with
multiplicity.

Proof: We use induction on n. If n = 1, then there is
nothing to prove. Let us make the inductive step from n to
n+ 1. Denote Dn as the degree of (V n,En), then Dn satisfies
Dn+1 = rDn + r + Dn, D1 = r . We can easy to see that

Dn = (r + 1)n − 1.

Note that (V n+1,En+1) = (V n,En)⊠ (V ,E). It follows from
Lemma 8 that

(V n+1, µn+1) = (V n, µn) ⊠ (V , µ)(1,
1
r
,
1
Dn

).

By the inductive hypothesis, the eigenvalues of the Markov
operator on (V n, µn) are given by formula (7). Hence, by
Theorem 2, the eigenvalue λϒn+1 on (V n+1, µn+1) is given
by

λϒn+1

=
1

1 +
1
r +

1
Dn

{
λϒnαkn+1 +

1
r
λϒn +

1
Dn

αkn+1

}
=

1
1 + 1/r + 1/((r + 1)n − 1)

·

{∑n
j=1 r

j ∑
I⊆[n], |I |=j

∏
i∈I αki

(r + 1)n − 1
αkn+1
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+
1
r

∑n
j=1 r

j ∑
I⊆[n], |I |=j

∏
i∈I αki

(r + 1)n − 1
+

1
(r + 1)n − 1

αkn+1

}
=

1
(r + 1)n+1 − 1

{ n∑
j=1

r j+1
∑

I⊆[n], |I |=j

∏
i∈I

αkiαkn+1

+

n∑
j=1

r j
∑

I⊆[n], |I |=j

∏
i∈I

αki + rαkn+1

}

=

∑n+1
j=1 r

j ∑
I⊆[n+1], |I |=j

∏
i∈I αki

(r + 1)n+1 − 1
,

which is just to be proved. □
Now we shall prove our main results for the spectrum of

the strong product.
Proof of Theorem 2: Let f be an eigenfunction of A with

the eigenvalue α and g be an eigenfunction of B with the
eigenvalue β. That is to say, for any x ∈ X and y ∈ Y , there
holds

Af (x) =

∑
x ′∈X

A(x, x ′)f (x ′) = αf (x),

Bg(y) =

∑
y′∈Y

B(y, y′)g(y′) = βg(y).

Now, let us show that the function h(x, y) = f (x)g(y) is the
eigenfunction of Pwith the eigenvalue p1αβ+p2α+p3β

p1+p2+p3
. For any

(x, y) ∈ X × Y , by Theorem 7, we have

Ph(x, y)

=

∑
x ′

∈X
y′∈Y

P
(
(x, y), (x ′, y′)

)
h(x ′, y′)

=
p1

p1 + p2 + p3

∑
x ′∼x
y′∼y

A(x, x ′)B(y, y′)f (x ′)g(y′)

+
p2

p1 + p2 + p3

∑
x ′∼x
y′=y

A(x, x ′)f (x ′)g(y′)

+
p3

p1 + p2 + p3

∑
x ′

=x
y′∼y

B(y, y′)f (x ′)g(y′)

=
p1

p1 + p2 + p3
αf (x)βg(y) +

p2
p1 + p2 + p3

αf (x)g(y)

+
p3

p1 + p2 + p3
f (x)βg(y)

=
p1αβ + p2α + p3β
p1 + p2 + p3

h(x, y),

which is to be proved.

Let {fk} be a basis in the space of functions on X such that
Afk = αk fk , and {gl} be a basis in the space of functions
on Y such that Bgl = βlgl . Then {hkl(x, y) = fk (x)gl(y)}
is a linearly independent sequence of functions on X × Y .
Since the number of such functions is mn = |X × Y |, we see
that hkl is a basis in the space of functions on X × Y . Since
hkl is the eigenfunction with the eigenvalue

p1αkβl+p2αk+p3βl
p1+p2+p3

,

we conclude that the sequence p1αkβl+p2αk+p3βl
p1+p2+p3

exhausts all
the eigenvalues of P. □
In the following, we shall prove our main results on Ricci

curvature of the strong product of two regular graphs.

A. PROOF OF THEOREM 5
Claim 1: Let G and H be r-regular and k-regular locally

finite connected graphs with simple weight respectively,
where G ̸= Kr+1. For u1 ∼ u2 in G, v ∈ V (H ), the
Ricci curvature of G⊠ H is bounded below, and if NG(u1) ∩

NG(u2) ⫋ NG(u1) \ {u2},

kG⊠H ((u1, v), (u2, v)) ≥
rk + r

rk + k + r
kG(u1, u2)

−
2rk

rk + k + r
,

if NG(u1) ∩ NG(u2) = NG(u1) \ {u2} = NG(u2) \ {u1},

kG⊠H ((u1, v), (u2, v)) ≥
rk + r

rk + k + r
kG(u1, u2)

−
2kr2 + kr − 3k
r(rk + k + r)

.

Proof:Assume thatA is a coupling function betweenmα
u1

and mα
u2 which defined as (4), and A achieves the infimum of

W (mα
u1 ,m

α
u2 ), that is

W (mα
u1 ,m

α
u2 ) =

∑
x,y∈V (G)

A(x, y)d(x, y).

Since u1 ∼ u2 in G, (u1, v) ∼ (u2, v) in G ⊠ H . We define a
function D1 : V (G⊠ H ) × V (G⊠ H ) → [0, 1] as follows:
If ((x1, y1), (x2, y2)) ∈ S1, then

D1((x1, y1), (x2, y2)) =
rk + r

rk + k + r
A(x1, x2) +

αk
rk + k + r

,

if ((x1, y1), (x2, y2)) ∈ S2, then

D1((x1, y1), (x2, y2))

=
rk + r

rk + k + r
A(x1, x2) +

(α − 1)k
(rk + k + r)r

,

P((x, y), (x ′, y′)) =



p1
p1 + p2 + p3

A(x, x ′)B(y, y′), x ∼ x ′ in G, y ∼ y′ in H ,

p2
p1 + p2 + p3

A(x, x ′), x ∼ x ′ in G, y = y′ in H ,

p3
p1 + p2 + p3

B(y, y′), x = x ′ in G, y ∼ y′ in H ,

0, otherwise.
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if ((x1, y1), (x2, y2)) ∈ S3, then

D1((x1, y1), (x2, y2)) =
rk + r

rk + k + r
A(x1, x2),

if ((x1, y1), (x2, y2)) ∈ S4, then

D1((x1, y1), (x2, y2)) =
1 − α

k(rk + k + r)
,

if ((x1, y1), (x2, y2)) ∈ S5, then

D1((x1, y1), (x2, y2)) =
1 − α

k(rk + k + r)
,

if ((x1, y1), (x2, y2)) ∈ S6, then

D1((x1, y1), (x2, y2)) =
(1 − α)(1 − r)
k(rk + k + r)

,

otherwise, D1((x1, y1), (x2, y2)) = 0.
Here S1 = {((x1, y1), (x2, y2)) ∈ V (G⊠ H ) × V (G⊠ H ) :

x1 = u1, x2 = u2, y1 = y2 = v}, S2 = {((x1, y1), (x2, y2)) ∈

V (G ⊠ H ) × V (G ⊠ H ) : x1 ∼ u1, x2 ∼ u2, y1 = y2 = v},
S3 = {((x1, y1), (x2, y2)) ∈ V (G⊠H )×V (G⊠H ) : (x1, x2) ̸=

(u1, u2), (x1, x2) ̸∈ NG(u1) × NG(u2), y1 = y2 = v},
S4 = {((x1, y1), (x2, y2)) ∈ V (G ⊠ H ) × V (G ⊠ H ) : x1 =

u1, y1 ∼ v, x2 ∼ u2, y2 ∼ v}, S5 = {((x1, y1), (x2, y2)) ∈

V (G⊠ H ) × V (G⊠ H ) : x1 ∼ u1, y1 ∼ v, x2 = u2, y2 ∼ v},
S6 = {((x1, y1), (x2, y2)) ∈ V (G ⊠ H ) × V (G ⊠ H ) : x1 =

u1, y1 ∼ v, x2 = u2, y2 ∼ v}.
Now we claim that D1 is a coupling function between

mα
(u1,v)

and mα
(u2,v)

. Set a characteristic function as follows:

1S (x) =

{
1, if x ∈ S,

0, otherwise,
(8)

and we denote M1 = {(x, y) ∈ V (G ⊠ H ) : x ∼ u2, y = v},
M2 = {(x, y) ∈ V (G ⊠ H ) : x ∼ u2, y ∼ v} and M3 =

{(x, y) ∈ V (G⊠ H ) : x = u2, y ∼ v}.
Then ∑
(x1,y1)∈V (G⊠H )

D1((x1, y1), (x2, y2))

=
rk + r

rk + k + r

∑
x1∈V (G)

A(x1, x2)1{v}(y2)

+
αk

rk + k + r
1{u2}(x2)1{v}(y2)

+

∑
x1∈NG(u1)

(α − 1)k
r(rk + k + r)

1M1 (x2, y2)

+

∑
y1∈NH (v)

1 − α

k(rk + k + r)
1M2 (x2, y2)

+

∑
x1∈NG(u1)
y1∈NH (v)

1 − α

k(rk + k + r)
1M3 (x2, y2)

+

∑
y1∈NH (v)

(1 − α)(1 − r)
k(rk + k + r)

1M3 (x2, y2)

=
rk + r

rk + k + r
mα
u2 (x2)1{v}(y2)

+
αk

rk + k + r
1{u2}(x2)1{v}(y2) +

(α − 1)k
rk + k + r

1M1 (x2, y2)

+
1 − α

rk + k + r
1M2 (x2, y2) +

1 − α

rk + k + r
1M3 (x2, y2)

= mα
(u2,v)(x2, y2).

Similarly, we have∑
(x2,y2)∈V (G⊠H )

D1((x1, y1), (x2, y2)) = mα
(u1,v)(x1, y1).

So D1 is a coupling function between mα
(u1,v)

and mα
(u2,v)

.

For any x1, x2 ∈ V (G), d((x1, v), (x2, v)) ≤ d(x1, x2); for
any ((x1, y1), (x2, y2)) ∈ S4 ∪ S5, d((x1, y1), (x2, y2)) ≤ 2; for
any ((x1, y1), (x2, y2)) ∈ S6, d((x1, y1), (x2, y2)) ≥ 1. Then
we obtain

W (mα
(u1,v),m

α
(u2,v))

≤

∑
(x1,y1)∈V (G⊠H )
(x2,y2)∈V (G⊠H )

D1((x1, y1), (x2, y2))d((x1, y1), (x2, y2))

=
rk + r

rk + k + r

∑
x1,x2∈V (G)

A(x1, x2)d((x1, v), (x2, v))

+
αk

rk + k + r

+
(α − 1)k

r(rk + k + r)

∑
x1∈NG(u1)
x2∈NG(u2)

d((x1, v), (x2, v))

+
1 − α

k(rk + k + r)

∑
S4

d((x1, y1), (x2, y2))

+
1 − α

k(rk + k + r)

∑
S5

d((x1, y1), (x2, y2))

+
(1 − α)(1 − r)
k(rk + k + r)

∑
S6

d((x1, y1), (x2, y2))

≤
rk + r

rk + k + r

∑
x1,x2∈V (G)

A(x1, x2)d(x1, x2)

+
(α − 1)k

r(rk + k + r)

∑
x1∈NG(u1)
x2∈NG(u2)

d((x1, v), (x2, v)) +
αk

rk + k + r

+
(1 − α)

(
2|S4| + 2|S5| + (1 − r)|S6|

)
k(rk + k + r)

=
rk + r

rk + k + r
W (mα

u1 ,m
α
u2 )

+
(α − 1)k

r(rk + k + r)

∑
x1∈NG(u1)
x2∈NG(u2)

d((x1, v), (x2, v))

+
3kr(1 − α) + k
rk + k + r

. (9)

Denote 0 = NG(u1) ∩ NG(u2) and t = |0|. If r > t + 1,
we claim for any x ∈ 0, there exists at least one point x ′

∈

NG(u1)∪NG(u2)\{x} such that x ′
̸∼ x. Suppose it is not, then

deg(x) = 2(r − t − 1) + t − 1 + 2 = 2r − t − 1 > r .
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Which contradicts to the graph G is a r-regular graph. Then

d((x, v), (x ′, v)) = d((x ′, v), (x, v)) = 2.

Hence ∑
x1∈NG(u1)
x2∈NG(u2)

d((x1, v), (x2, v))

=

∑
x1∈NG(u1), x2∈NG(u2)

x1 ̸=x2

d((x1, v), (x2, v))

≥ 2t + (r2 − 2t) · 1

= r2. (10)

Taking (10) in (9), we have

W (mα
(u1,v),m

α
(u2,v))

≤
rk + r

rk + k + r
W (mα

u1 ,m
α
u2 ) +

2kr(1 − α) + k
rk + k + r

.

Thus, for any α ∈ [0, 1], we get

kG⊠H ((u1, v), (u2, v))

= lim
α→1

kG⊠H
α ((u1, v), (u2, v))

1 − α

= lim
α→1

1 −W (mα
(u1,v)

,mα
(u2,v)

)

1 − α

≥
rk + r

rk + k + r
lim
α→1

1 −W (mα
u1 ,m

α
u2 )

1 − α
−

2kr
rk + k + r

=
rk + r

rk + k + r
kG(u1, u2) −

2kr
rk + k + r

. (11)

If r = t + 1, then 0 = NG(u1) ∩ NG(u2) = NG(u1) \ {u2} =

NG(u2) \ {u1}. This means there exists two different points
x, x ′ in 0 such that x ̸∼ x ′. Otherwise, the graph G = Kr+1
which contradicts G ̸= Kr+1. Thus∑

x1∈NG(u1)
x2∈NG(u2)

d((x1, v), (x2, v))

=

∑
x1∈NG(u1), x2∈NG(u2)

x1 ̸=x2

d((x1, v), (x2, v))

≥ 2 · 2 +
(
r2 − 2 − (r − 1)

)
· 1

= r2 − r + 3. (12)

Taking (12) in (9), we have

W (mα
(u1,v),m

α
(u2,v))

≤
rk + r

rk + k + r
W (mα

u1 ,m
α
u2 )

+
(1 − α)(2kr2 + kr − 3k) + rk

r(rk + k + r)
.

Thus, for any α ∈ [0, 1], we get

kG⊠H ((u1, v), (u2, v))

= lim
α→1

1 −W (mα
(u1,v)

,mα
(u2,v)

)

1 − α

≥
rk + r

rk + k + r
lim
α→1

1 −W (mα
u1 ,m

α
u2 )

1 − α

−
2kr2 + kr − 3k
r(rk + k + r)

=
rk + r

rk + k + r
kG(u1, u2) −

2kr2 + kr − 3k
r(rk + k + r)

. (13)

Combine (11) with (13), we get Claim 1. □
Claim 2: Let G and H be r-regular and k-regular locally

finite connected graphs with simple weight, respectively. For
u1 ∼ u2 in G, v ∈ V (H ), the Ricci curvature of G ⊠ H is
bounded above, that is

kG⊠H ((u1, v), (u2, v)) ≤
kr + r

kr + k + r
kG(u1, u2)

+
2k

kr + k + r
.

Proof: Let f be an 1-Lipschitz function which achieves
the supremum in the duality theorem ofW (mα′

u1 ,m
α′

u2 ), i.e.,

W (mα′

u1 ,m
α′

u2 ) =

∑
x∈NG[u1]

f (x)mα′

u1 (x) −

∑
y∈NG[u2]

f (y)mα′

u2 (y),

where α′ satisfies

1 − α′

1 − α
=

kr + r
kr + r + αk

. (14)

We define a function φ : N [(u1, v)] ∪ N [(u2, v)] → R as

φ(x, y) =


f (x), x ∈ (NG(u1) ∪ NG(u2))\{u1, u2},

y ∈ NH [v],
f (u1), x = u1, y ∈ NH [v],
f (u2), x = u2, y ∈ NH [v].

In fact, φ(x, y) = f (x) in N [(u1, v)] ∪ N [(u2, v)]. Now,
we show that φ is an 1-Lipschitz function over N [(u1, v)] ∪

N [(u2, v)]. It suffices to prove that for any two points
(x1, y1), (x2, y2) ∈ N [(u1, v)] ∪ N [(u2, v)], there holds
|φ(x1, y1) − φ(x2, y2)| ≤ d((x1, y1), (x2, y2)).

When x1, x2 ∈ (NG(u1) ∪ NG(u2))\{u1, u2}, y1, y2 ∈

NH [v], we have

|φ(x1, y1) − φ(x2, y2)| = |f (x1) − f (x2)| ≤ d(x1, x2).

To prove

d(x1, x2) ≤ d((x1, y1), (x2, y2)), (15)

we can discuss it according to the value of d(x1, x2), i.e.,
0, 1, 2, 3. If d(x1, x2) = 0 or d(x1, x2) = 1, then (15) holds
clearly. If d(x1, x2) = 2, then x1 ̸= x2 and x1 ̸∼ x2.
This implies d((x1, y1), (x2, y2)) ≥ 2. Hence (15) holds.
If d(x1, x2) = 3, then x1 ̸= x2 and x1 ̸∼ x2 and
d((x1, y1), (x2, y2)) ≥ 2. If d((x1, y1), (x2, y2)) = 2, there
exists a point (x3, y3) ∈ N [(u1, v)] ∪ N [(u2, v)] such that
(x1, y1) ∼ (x3, y3) ∼ (x2, y2), which means d(x1, x2) ≤ 2.
This contradicts to d(x1, x2) = 3. So d((x1, y1), (x2, y2)) ≥

3 and (15) holds.
Hence, in the case x1, x2 ∈ (NG(u1) ∪ NG(u2))\{u1, u2},

y1, y2 ∈ NH [v], we have |φ(x1, y1) − φ(x2, y2)| ≤
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d((x1, y1), (x2, y2)). And checking other cases, we also have
|φ(x1, y1) − φ(x2, y2)| ≤ d((x1, y1), (x2, y2)). That is, φ is an
1-Lipschitz function over N [(u1, v)] ∪ N [(u2, v)], so that φ

can be extended to an 1-Lipschitz function over V (G ⊠ H ).
Then

W (mα
(u1,v),m

α
(u2,v))

≥

∑
(x,y)∈N [(u1,v)]

φ(x, y)mα
(u1,v)(x, y)

−

∑
(x,y)∈N [(u2,v)]

φ(x, y)mα
(u2,v)(x, y)

=

∑
x∈NG(u1)
y∈NH [v]

f (x)mα
(u1,v)(x, y) −

∑
x∈NG(u2)
y∈NH [v]

f (x)mα
(u2,v)(x, y)

+

∑
y∈NH [v]

f (u1)mα
(u1,v)(u1, y) −

∑
y∈NH [v]

f (u2)mα
(u2,v)(u2, y)

=
kr + r + αk
kr + k + r

∑
x∈NG[u1]

f (x)mα′

u1 (x)

−
kr + r + αk
kr + k + r

∑
x∈NG[u2]

f (x)mα′

u2 (x)

+
(1 − α)k
kr + k + r

(f (u1) − f (u2))

≥

( ∑
x∈NG[u1]

f (x)mα′

u1 (x) −

∑
y∈NG[u2]

f (y)mα′

u2 (y)
)

·
kr + r + αk
kr + k + r

−
(1 − α)k
kr + k + r

=
kr + r + αk
kr + k + r

W (mα′

u1 ,m
α′

u2 ) −
(1 − α)k
kr + k + r

.

Thus

kG⊠H
α ((u1, v), (u2, v))

= 1 −
W (mα

(u1,v)
,mα

(u2,v)
)

d((u1, v), (u2, v))

≤ 1 −
kr + r + αk
kr + k + r

W (mα′

u1 ,m
α′

u2 ) +
(1 − α)k
kr + k + r

=
kr + r + αk
kr + k + r

(1 −W (mα′

u1 ,m
α′

u2 )) + 2
(1 − α)k
kr + k + r

=
kr + r + αk
kr + k + r

kGα′ (u1, u2) +
2(1 − α)k
kr + k + r

.

Using (14), we get

kG⊠H ((u1, v), (u2, v)) = lim
α→1

kG⊠H
α ((u1, v), (u2, v))

1 − α

≤ lim
α→1

kr + r + αk
kr + k + r

kG
α′ (u1, u2)

1 − α
+

2k
kr + k + r

=
kr + r

kr + k + r
lim

α′→1

kG
α′ (u1, u2)

1 − α′
+

2k
kr + k + r

=
kr + r

kr + k + r
kG(u1, u2) +

2k
kr + k + r

. □

Proof of Theorem 4: Combing Claim 1 with Claim 2,
we get Theorem 4.

Proof of Theorem 5: By the symmetry, from Theorem 4,
we have Theorem 5.

B. PROOF OF THEOREM 6
Claim 3: Let G and H be r-regular and k-regular locally

finite connected graphs with simple weight, respectively. For
u1 ∼ u2 in G, v1 ∼ v2 in H , the Ricci curvature of G⊠ H is
bounded below and

kG⊠H ((u1, v1), (u2, v2)) ≥
−4r2k2 + 10rk − 2k − 4r

rk(rk + k + r)
.

Proof:Assume thatB is a coupling function betweenmα
u1

and mα
u2 which defined as (4). Since u1 ∼ u2 in G, v1 ∼ v2 in

H , (u1, v1) ∼ (u2, v2) in G ⊠ H . We define a function D2 :

V (G⊠ H ) × V (G⊠ H ) → [0, 1] as follows:
If ((x1, y1), (x2, y2)) ∈ S ′

1, then

D2((x1, y1), (x2, y2)) = α,

If ((x1, y1), (x2, y2)) ∈ S ′

2, then

D2((x1, y1), (x2, y2)) =
1 − α

(rk + k + r)r
,

If ((x1, y1), (x2, y2)) ∈ S ′

3 ∪ S ′

4, then

D2((x1, y1), (x2, y2)) =
1 − α

k(rk + k + r)
,

If ((x1, y1), (x2, y2)) ∈ S ′

5, then

D2((x1, y1), (x2, y2)) =
(1 − α)(1 − r)
k(rk + k + r)

,

otherwise, D2((x1, y1), (x2, y2)) = 0. Where S ′

1 =

{((x1, y1), (x2, y2)) ∈ V (G ⊠ H ) × V (G ⊠ H ) : x1 =

u1, y1 = v1, x2 = u2, y2 = v2}, S ′

2 = {((x1, y1), (x2, y2)) ∈

V (G⊠H )×V (G⊠H ) : x1 ∼ u1, y1 = v1, x2 ∼ u2, y2 = v2},
S ′

3 = {((x1, y1), (x2, y2)) ∈ V (G ⊠ H ) × V (G ⊠ H ) : x1 =

u1, y1 ∼ v1, x2 ∼ u2, y2 ∼ v2}, S ′

4 = {((x1, y1), (x2, y2)) ∈

V (G⊠H )×V (G⊠H ) : x1 ∼ u1, y1 ∼ v1, x2 = u2, y2 ∼ v2},
S ′

5 = {((x1, y1), (x2, y2)) ∈ V (G ⊠ H ) × V (G ⊠ H ) : x1 =

u1, y1 ∼ v1, x2 = u2, y2 ∼ v2}.
Now we claim that D2 is also a coupling function between

mα
(u1,v1)

and mα
(u2,v2)

. We denote M ′

1 = {(x, y) ∈ V (G ⊠ H ) :

x ∼ u2, y = v2}, M ′

2 = {(x, y) ∈ V (G ⊠ H ) : x ∼ u2, y2 ∼
v2} M ′

3 = {(x, y) ∈ V (G ⊠ H ) : x = u2, y ∼ v2}. Using the
characteristic function 1S (x) defined as (8), we have∑
(x1,y1)∈V (G⊠H )

D2((x1, y1), (x2, y2))

= α1{u2}(x2)1{v2}(y2) +

∑
x1∈NG(u1)

1 − α

r(rk + k + r)
1M ′

1
(x2, y2)

+

∑
y1∈NH (v1)

1 − α

k(rk + k + r)
1M ′

2
(x2, y2)

+

∑
x1∈NG(u1)
y1∈NH (v1)

1 − α

k(rk + k + r)
1M ′

3
(x2, y2)
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+

∑
y1∈NH (v1)

(1 − α)(1 − r)
k(rk + k + r)

1M ′

3
(x2, y2)

= α1{u2}(x2)1{v2}(y2) +
1 − α

rk + k + r
1M ′

1
(x2, y2)

+
1 − α

rk + k + r
1M ′

2
(x2, y2) +

1 − α

rk + k + r
1M ′

3
(x2, y2)

= mα
(u2,v2)(x2, y2).

Similarly, we obtain∑
(x2,y2)∈V (G⊠H )

D2((x1, y1), (x2, y2)) = mα
(u1,v1)(x1, y1).

So D2 is a coupling function between mα
(u1,v1)

and mα
(u2,v2)

.
Then

W (mα
(u1,v1),m

α
(u2,v2))

≤

∑
(x1,y1)∈V (G⊠H )
(x2,y2)∈V (G⊠H )

D2((x1, y1), (x2, y2))d((x1, y1), (x2, y2))

= α +
1 − α

r(rk + k + r)

∑
S ′

2

d((x1, y1), (x2, y2))

+
1 − α

k(rk + k + r)

∑
S ′

3

d((x1, y1), (x2, y2))

+
1 − α

k(rk + k + r)

∑
S ′

4

d((x1, y1), (x2, y2))

+
(1 − α)(1 − r)
k(rk + k + r)

∑
S ′

5

d((x1, y1), (x2, y2)). (16)

We consider the distance sum in S ′

2 firstly. It is easy to
see that, for any (x1, x2) ∈ {u2} × NG(u2) ∪ NG(u1) ×

{u1}, there holds d((x1, v1), (x2, v2)) = 1; for (x1, x2) ∈

(NG(u1) × NG(u2))\({u2} × NG(u2) ∪ NG(u1) × {u1}), there
holds d((x1, v1), (x2, v2)) ≤ 3. Hence∑

S ′

2

d((x1, y1), (x2, y2))

≤ (2r − 1) · 1 + (r2 − 2r + 1) · 3

= 3r2 − 4r + 2. (17)

Now we consider the distance sum in S ′

3. Noting that for
any y2 ∈ NH (v2), there holds d((u1, v2), (u1, y2)) = 1;
for any y1 ∈ NH (v1), there holds d((u1, y1), (u1, v1)) = 1;
for any x2 ∈ NG(u2) \ {u1} and y2 ∈ NH (v2), there holds
d((u1, v2), (x2, y2)) ≤ 2; and for other cases in S ′

3, there holds
d((u1, y1), (x2, y2)) ≤ 3. Hence∑

S ′

3

d((x1, y1), (x2, y2))

≤ (2k − 1) · 1 + k(r − 1) · 2

+ (rk2 − 2k + 1 − k(r − 1)) · 3

= 3rk2 − rk − 3k + 2. (18)

Similarly,∑
S ′

4

d((x1, y1), (x2, y2)) ≤ 3rk2 − rk − 3k + 2. (19)

And for any ((x1, y1), (x2, y2)) ∈ S ′

5, d((x1, y1), (x2, y2)) ≥ 1,
so ∑

S ′

5

d((x1, y1), (x2, y2)) ≥ |S ′

5| = k2. (20)

Taking (17), (18),(19) and (20) in (16), we obtain

W (mα
(u1,v1),m

α
(u2,v2))

≤ α +
(1 − α)(3r2 − 4r + 2)

r(rk + k + r)

+
2(1 − α)(3rk2 − rk − 3k + 2)

k(rk + k + r)
+

(1 − α)(1 − r)k2

k(rk + k + r)

= α +
(1 − α)(5r2k2 + r2k + rk2 − 10rk + 2k + 4r)

rk(rk + k + r)
.

(21)

Thus, for any α ∈ [0, 1], we get

kG⊠H ((u1, v1), (u2, v2))

= lim
α→1

1 −W (mα
(u1,v1)

,mα
(u2,v2)

)

1 − α

≥ 1 −
5r2k2 + r2k + rk2 − 10rk + 2k + 4r

rk(rk + k + r)

=
−4r2k2 + 10rk − 2k − 4r

rk(rk + k + r)
. □

Claim 4: Let G and H be r-regular and k-regular locally
finite connected graphs with simple weight, respectively. For
u1 ∼ u2 in G, v1 ∼ v2 in H , the Ricci curvature of G⊠ H is
bounded above and

kG⊠H ((u1, v1), (u2, v2))

≤
min{(kr + r)kG(u1, u2) + 2k, (kr + k)kH (v1, v2) + 2r}

kr + k + r
.

Proof: Let g be a 1-Lipschitz function which achieves
the supremum in the duality theorem ofW (mα′

u1 ,m
α′

u2 ), i.e.,

W (mα′

u1 ,m
α′

u2 ) =

∑
x∈NG[u1]

g(x)mα′

u1 (x) −

∑
y∈NG[u2]

g(y)mα′

u2 (y),

where α′ satisfies
1 − α′

1 − α
=

kr + r
kr + r + αk

. (22)

We define a function ϕ : N [(u1, v1)] ∪ N [(u2, v2)] →

R as ϕ(x, y) = g(x). Through the similar analysis to
the function φ in Claim 2, where partition N [(u1, v1)] ∪

N [(u2, v2)] into four mutually disjoint regions, i.e.,
((NG(u1) ∪ NG(u2))\{u1, u2})×((NH (v1) ∪ NH (v2))\{v1, v2}),
(NG(u1) × {v1}) ∪ (NG(u2) × {v2}), {u1} × NH [v1], {u2} ×

NH [v2], we can get that ϕ is an 1-Lipschitz function over
N [(u1, v1)] ∪ N [(u2, v2)]. So that ϕ can be extended to an
1-Lipschitz function over V (G⊠ H ).
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Then, we have

W (mα
(u1,v1),m

α
(u2,v2))

≥

∑
(x,y)∈N [(u1,v1)]

ϕ(x, y)mα
(u1,v1)(x, y)

−

∑
(x,y)∈N [(u2,v2)]

ϕ(x, y)mα
(u2,v2)(x, y)

=

∑
x∈NG(u1)
y∈NH (v1)

g(x)mα
(u1,v1)(x, y) −

∑
x∈NG(u2)
y∈NH (v2)

g(x)mα
(u2,v2)(x, y)

+

∑
y∈NH [v1]

g(u1)mα
(u1,v1)(u1, y)

−

∑
y∈NH [v2]

g(u2)mα
(u2,v2)(u2, y)

+

∑
x∈NG(u1)

g(u1)mα
(u1,v1)(x, v1)

−

∑
x∈NG(u2)

g(u2)mα
(u2,v2)(x, v2)

=

( ∑
x∈NG[u1]

g(x)mα′

u1 (x) −

∑
y∈NG[u2]

g(y)mα′

u2 (y)
)kr + r + αk
kr + k + r

+
(1 − α)k
kr + k + r

(g(u1) − g(u2))

≥
kr + r + αk
kr + k + r

W (mα′

u1 ,m
α′

u2 ) −
(1 − α)k
kr + k + r

.

Thus

kG⊠H
α ((u1, v1), (u2, v2)) = 1 −

W (mα
(u1,v1)

,mα
(u2,v2)

)

d((u1, v1), (u2, v2))

≤ 1 −
kr + r + αk
kr + k + r

W (mα′

u1 ,m
α′

u2 ) +
(1 − α)k
kr + k + r

=
kr + r + αk
kr + k + r

kGα′ (u1, u2) +
2(1 − α)k
kr + k + r

.

Using (22), we get

kG⊠H ((u1, v1), (u2, v2))

= lim
α→1

kG⊠H
α ((u1, v1), (u2, v2))

1 − α

≤ lim
α→1

kr + r + αk
kr + k + r

kG
α′ (u1, u2)

1 − α
+

2k
kr + k + r

=
kr + r

kr + k + r
kG(u1, u2) +

2k
kr + k + r

.

Similarly, we can also obtain

kG⊠H ((u1, v1), (u2, v2))

≤
kr + k

kr + k + r
kH (v1, v2) +

2r
kr + k + r

.

These give Claim 4. □
Proof of Theorem 6: Applying Claim 3 and Claim 4

gives Theorem 6.

IV. CONCLUSION
In this paper, we introduce a definition of the weight function
to the strong product graph G⊠ H , and derive an expression
for the spectrum of G ⊠ H by using the spectrums of G and
H . It is proved that the Ricci curvature for strong product
of two regular graphs with simple weight is bounded by the
Ricci curvature of G and H . However, at present we cannot
completely settle the problem for general weights. The main
problem is that we need to find some new auxiliary methods
to improve the bound for general weights.
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