
Received 8 April 2023, accepted 11 May 2023, date of publication 23 May 2023, date of current version 1 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3279280

Use of Ensemble Learning to Detect Buffer
Overflow Exploitation
AYMAN YOUSSEF 1, MOHAMED ABDELRAZEK2,
AND CHANDAN KARMAKAR 1, (Member, IEEE)
1Faculty of Science, Engineering, and Built Environment, School of Information Technology, Deakin University, Melbourne, VIC 3125, Australia
2A2I2D, Applied Aritificial Intelligence Institute, Deakin University, Melbourne, VIC 3125, Australia

Corresponding author: Ayman Youssef (ayman.youssef@research.deakin.edu.au)

ABSTRACT Software exploitation detection remains unresolved problem. Software exploits that target
known and unknown vulnerabilities are constantly used in attacks. Signature-based detection techniques
are limited to known exploits and susceptible to circumvention. Current research on the use of Machine
Learning (ML) for software exploitation detection is limited in quantity and use cases. Existing research
lacks the use of public datasets, discussions of feature importance, and elaboration of parameters that affect
data preparation and subsequently model performance. This paper presents ML models based on different
ensemble algorithms to detect software exploitation using runtime traces. We focus on buffer overflow
vulnerabilities in user-space applications within Windows Operating Systems (OS), given the prevalence of
the type of vulnerability and the OS.We utilized a publicly available raw dataset of 11Windows applications
under exploitation. Multiple distinct models (based on Random Forest and XGBoost) are created and tested.
Testing was performed several times using various aggregation parameters and different testing applications.
Our results demonstrate that we can achieve up to 100% recall with 0% false positive rate. We report on
the different parameters that must be addressed to curate runtime traces and demonstrate their impact on the
performance of theMLmodels.We demonstrate that the proper training of models on a subset of exploitation
techniques enables the model to detect techniques never seen before, such as return-oriented programming.
Finally, we conclude with a discussion of the important features that had the highest impact on each of the
models, along with the key takeaways.

INDEX TERMS Buffer overflow, exploitation detection, machine learning, random forests, XGBoost.

I. INTRODUCTION
In April 2022, Microsoft released a report stating that owing
to the current conflict between Ukraine and Russia, the global
cybersecurity community should expect an increase in the
use of sophisticated attacks that utilize zero-day attacks and
other novel attack techniques [1]. In its M-Trends report for
2021, Mandiant reported that 37% of the attacks investigated
used software exploits as the initial attack vector [2]. Fur-
thermore, Mandiant noticed that the median dwell time (i.e.,
time taken by an organization to remediate breaches) was
on average 21-days. This means that attackers who utilize
zero-day exploits can remain within the enterprise network
for up to 21 days from the time an organization is made
aware of the breach. Moreover, the most commonly used

The associate editor coordinating the review of this manuscript and

approving it for publication was Sangsoon Lim .

technique reported by Mandiant experts is (as per MITRE
attack framework) T1027 Obfuscated Files or Information.
Obfuscation is a technique used by attackers to thwart static
analysis tools, further increasing the emphasis on the need for
dynamic analysis techniques [3].

Several techniques have been embedded in modern Oper-
ating System (OS) defenses to help protect user-space appli-
cations but have proven to be insufficient. Techniques such
as Address Space Layout Randomization (ASLR) [4] and
Data Execution Prevention (DEP) [5] have been circum-
vented [6]. Furthermore, exploitation detection frameworks
that have been proposed based on signatures or heuristic-
based rules [7] fail to cope with newer-evolved exploitation
techniques [8].

In 2011, Lockheed Martin developed a model called The
Cyber Kill Chain® which outlines the different stages of
cybersecurity attacks [9]. The Cyber Kill Chain® comprises

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

52009

https://orcid.org/0000-0002-0136-9534
https://orcid.org/0000-0003-1814-0856
https://orcid.org/0000-0001-9924-7115


A. Youssef et al.: Use of Ensemble Learning to Detect Buffer Overflow Exploitation

seven stages: these are, reconnaissance, weaponization, deliv-
ery, exploitation, installation, command and control (C&C),
and actions on objectives [10]. Exploitation refers to the
process of deploying/executing an exploit on a target system
and initiating communications with a command and control
server (C&C) [11]. Cisco defines an exploit as ‘‘a program,
or piece of code, designed to find and take advantage of a
security flaw or vulnerability in an application or computer
system, typically for malicious purposes such as installing
malware. An exploit is not malware itself, but rather it is a
method used by cybercriminals to deliver malware’’ (please
refer to the Background section for differences between
exploitation detection and malware, intrusion and vulnerabil-
ity detection) [12].

For the purpose of this research, exploitation detection
refers to the ability to detect an attacker exploiting a vul-
nerable program based on runtime traces. Machine Learn-
ing (ML)-based exploitation detection research is limited in
terms of quantity and content. To the best of our knowledge,
we were able to find only 14 papers [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26] that
discussed the use of ML for exploitation detection. None
of the 14 papers publicly presented their datasets. These
research papers were segmented into seven that relied on
runtime traces [13], [14], [15], [16], [17], [24], [25], four that
relied on network traces, [18], [19], [20], [26] and three that
relied on static analysis of the application under test (AUT)
(i.e., vulnerable program) [21], [22], [23]. Of the 14 papers,
13 did not discuss feature importance and only one paper
discussed feature importance by providing a single table with
the Fisher score of each feature [16]. Furthermore, none of
the 14 papers discussed the aggregation parameters and their
impact on the performance of different algorithms.

The aim of this study is to provide guidance on fea-
ture importance and engineering to enable strong exploita-
tion detection algorithms. We curated a raw dataset based
on 11 Windows applications to train two ensemble machine-
learning (ML) algorithms. Each application has a buffer over-
flow vulnerability, which is exploited. Table 1 lists the AUTs,
the ‘‘Exploit Technique’’ used with each application and the
size (in terms of assembly instructions) of each raw trace
under column header ‘‘No. Trace Inst.’’ The column ‘‘No.
Payload Inst.’’ lists the number of assembly instructions that
are part of the exploit payload found in the raw dataset.
Furthermore, we classified the category of each application
to further enrich the reporting of ML performance.

Our choice of Windows OS is driven by the fact that
Windows is the most popular desktop OS, based on mar-
ket share [27]. The choice of buffer overflow vulnerabilities
is driven by their prevalence, as demonstrated in MITRE’s
25 top Common Weakness Enumeration (CWE) weaknesses
for the 2022 report [28]. The report shows that three of the
top 25 spots were due to buffer errors (CWE-119, CWE-
787, and CWE-125), taking the spots for 1st, 5th, and 9th
most dangerous CWEs. Furthermore, a review of all vulner-
abilities announced by the National Vulnerability Database

TABLE 1. List of applications used in the dataset.

(NVD) from January 1st, 2008, to 22nd December 22, 2022,
[29] shows that 162,806 vulnerabilities were announced dur-
ing that period. Of this total value, 22,776 vulnerabilities
(14.20%) are attributed to one of the three buffer-related
CWEs of MITRE’s 2022 top 25.

Our selection of ensemble ML models is driven by two
aspects: performance and ability to report feature importance.
We selected two algorithms, from one of the two main types
of ensemble algorithms: bagging and boosting. Stacking
algorithms were excluded from our research because of their
inability to report feature importance [30].

For the bagging algorithm we selected Random Forests
(RF) [31] and for the boosting algorithm we selected
XGBoost [32]. Both algorithms have been utilized in recent
studies and have provided advantageous results in various
areas [33], [34], [35], [36].

To summarize, our contribution in this paper is:
• Provide a design (covering details of data preparation)
for the use of ML in exploitation detection based on
runtime traces.

• Discussion of the different features and their relative
importance to be able to use them for ML.

• Comparison of two ensemble classifiers that utilize two
different techniques (bagging and boosting) based on
selected performance criteria.

In the remaining parts of this research, Section
II provides background information on the differences
between exploitation research and malware, intrusion and

52010 VOLUME 11, 2023



A. Youssef et al.: Use of Ensemble Learning to Detect Buffer Overflow Exploitation

vulnerability detection research. Section III describes related
exploitation detection research performed on runtime traces.
Section IV describes the dataset and Section V presents the
methodology used for the feature engineering, building, and
tuning of ML models. Section VI discusses the experiment
results and feature importance. Section VII provides a sum-
mary of the key takeaways based on the experimental results
and Section VIII discusses research limitations and future
work. Finally, we conclude the study in Section IX.

II. BACKGROUND
This section highlights the differences between exploitation
detection and malware, intrusion and vulnerability detection.
Each of these domains intersects with exploitation detection;
however, they differ in their research approach.

Malware detection fits in the fifth stage of the Cyber Kill
Chain®, that is, installation. Malware detection engines can
sometimes detect files that contain exploits as malware of
type ‘‘exploit’’ [21]. However, as illustrated below, this is not
the core competency of anti-malware and is part of the gray
area where the line between exploits and malware is blurred.

Intrusion detection targets several stages of the Cyber
Kill Chain®, including reconnaissance, delivery, exploita-
tion, installation, C&C, and actions on objectives [37], [38],
[39], [40], [41]. Nevertheless, this broad feature set makes
current research and current datasets too coarse-grained to be
effective in exploitation detection.

Finally, vulnerability detection research is a precursor to
exploitation. Vulnerability detection typically occurs at the
reconnaissance stage of the Cyber Kill Chain® where attack-
ers search for vulnerabilities to target. Vulnerability detection
research aims to identify and locate vulnerabilities in soft-
ware before a malicious actor exploits such vulnerabilities.
Exploitation detection targets malicious actors in the act of
exploiting a vulnerability. Hence, despite the intersection of
two the research directions, they address the same problem
from two different angles with different approaches and in
different scenarios.

A. EXPLOITation DETECTION VS. MALWARE DETECTION
We first highlight that the word ‘‘malware’’ used in main-
stream research is sometimes confused with ‘‘exploits.’’
Wikipedia defines malware as ‘‘any software intentionally
designed to cause disruption to a computer, server, client,
or computer network, leak private information, gain unau-
thorized access to information or systems, deprive access to
information, or which unknowingly interferes with the user’s
computer security and privacy.’’ Reference [42] Although
software that has exploits embedded into it is a mali-
cious software (i.e., ‘‘malware’’) researchers tend to exclude
‘‘exploits’’ from ‘‘malware’’ and define it as an independent
category [12]. The behavior of ‘‘exploits’’ is significantly
different from that of mainstream malware families. Main-
stream malware usually relies on destructive activities such
as exfiltrating data, wiping data, and encryption for ransom
purposes. Furthermore, malware activities involve reading

files, changing registry keys, and accessing protected files
[43].

Exploitation, on the other hand, is considered the fourth
stage of the Cyber Kill Chain®, a stage prior to the installa-
tion of malware and the establishment of a command channel
[10]. An exploit is usually a group of bytes (i.e., shellcode)
sent remotely or embedded in a file; when consumed by a
vulnerable application, it causes the application to behave
in a manner not intended by its creators. Examples of such
behaviors include downloading destructive malware, con-
necting with remote command and control (C&C) servers,
or simply causing an application to crash, resulting in a denial
of service. Each exploit can be created by using different
coding techniques and payloads [2]. Payloads can be of dif-
ferent types, such as command execution, creating reverse
TCP/UDP connections, and binding the application to a spe-
cific port [44]. All of these could exhibit different behaviors,
and hence are not properly covered by the existing body of
research on malware detection.

B. EXPLOITation DETECTION VS. INTRUSION DETECTION
The current intrusion detection research includes a wealth of
research on the use of ML for intrusion detection [45], [46],
[47]. The key differentiator between exploitation detection
and intrusion detection research (based on ML models) is
the dataset used. IDS datasets focus on the context of an
attack, including several steps of the attack lifecycle (a.k.a.
Cyber Kill Chain®). This is different from exploitation
detection datasets, which focus solely on the behavior of
exploits. Furthermore, IDS datasets do not focus on reporting
the types of vulnerabilities exploited nor do they focus on
including a large number of exploitable vulnerabilities within
each category. Unlike Exploitation Detection datasets, which
document the type of vulnerabilities being exploited, how
exploitation occurs (i.e., locally or remotely) and the payload
content being used [48].

To elaborate further on the shortcomings of IDS datasets
for support of exploitation detection research, we sam-
pled some of the highest-cited IDS datasets (as per the
Google Scholar search engine1). The ADFA-WD and ADFA-
WD:SAA datasets are host-based. The ADFA-WD and
ADFA-WD:SAAwere published in [37] and has 56 citations.
The ADFA-LD was also published by the same lead author
and is similar to ADFA-WD, except that it targets the Linux
OS. ADFA-LD has 303 citations in Google Scholar. Both
datasets were part of the thesis published in [38] which
has been cited 94 times. In ADFA-WD, the author explains
that there are 12 vulnerabilities exploited in attack scenarios
that mimic stealth attacks, data exfiltration, and Distributed
Denial of Service (DDoS) attacks. The dataset was limited
to 9 DLLs. The dataset is composed of Windows audit logs.
The dataset was created with anomaly detection in mind,
and anomaly-detection algorithms were used to validate its
usefulness. As for the ADFA-LD, the authors included a

1Citation counts as of 22nd December 2022

VOLUME 11, 2023 52011



A. Youssef et al.: Use of Ensemble Learning to Detect Buffer Overflow Exploitation

variety of attacks similar to the ADFA-WD, but with a much
lower number of vulnerabilities and only two exploits. The
ADFA-LD gathered only system call traces.

As shown in both datasets (ADFA-WD and ADFA-LD),
traces were limited in type (only audit logs of system calls
or DLL calls). This is in contrast to the exploitation based
dataset presented in [48] and shown in Fig.1 and 2, which
contains a greater level of detail that enables researchers to
perform in-depth investigations of feature importance across
different ML models. As shown in the Experiments section,
different features have different importance levels depending
on the algorithm and aggregation parameters. Furthermore,
the author did not report the effectiveness of the algorithms
based on vulnerability types. In this exploitation-detection-
focused study, we clarified the vulnerability type, exploitation
technique, and payload content.

The NGIDS [41] dataset has 162 citations and is con-
sidered a hybrid dataset containing network and host-based
traces. NGIDS was created in a cyber range that aims to
mimic real-world scenarios. The NGIDS dataset comprises
network packet captures and system logs that represent a
system’s reaction to network-based attacks. The authors used
seven categories of attacks, two of which are titled ‘‘exploits’’
and ‘‘shellcodes’’. The authors did not report on the Com-
mon Vulnerabilities and Exposures (CVEs) that were tar-
geted or elaborate on the differences between ‘‘exploits’’ and
‘‘shellcode’’.

The same pattern can be observed in different datasets,
where the focus is on the entire kill chain, instead of a
specific type of vulnerability. In UNSW-NB15 [39], which
has 1721 citations and contains network traces, the authors
reported 10 attack categories. Two of them were also labelled
‘‘exploits’’ and ‘‘shellcode.’’ No clarification of targeted
CVEs or vulnerability types Similarly, CICIDS 2017 [40]
contains 2007 citations and network-based traces. Of the
11 attack types described, only 3 exploits were included.
Of the three exploits elaborated, only two had CVEs
explaining the type of vulnerability. As noted above, both
network-based datasets (UNSW-NB15 and CICIDS 2017)
have a much larger number of citations (1721 and 2007,
respectively) than host-based datasets (ADFA and NGIDS)
combined with 615 citations.

Hence, Intrusion Detection datasets are not suitable for
exploitation detection research, and research performed on
them does not provide sufficient insight into their effective-
ness against specific types of exploits.

C. EXPLOITATION DETECTION VS. VULNERABILITY
DETECTION
The terms vulnerability and exploit are often confused in
research papers [49]. To achieve a comprehensive definition
of vulnerability, Zeng et al. [50] surveyed the definitions in
seminal work. Zeng et al.’s noted the interchangeable use
of keywords in each definition. These keywords were an
error, a fault, and a mistake. Based on their analysis and
comparative investigation of the meaning of these keywords

from the IEEE Standards Glossary of Software Engineer-
ing [51], they came up with a definition and an explanation of
vulnerability. In their explanation, a vulnerability is a mistake
made by a human in the writing of the software code. This
mistake resulted in a fault in the software. The execution
of faulty program statements does not necessarily result in
a violation of the security policies governing the program.
However, upon processing specially crafted data (i.e., the
exploit) by the faulty statements, a security violation occurs
(i.e., exploitation resulting in a security failure) [50]. Hence,
Vulnerability detection research is focused on identifying the
type of mistake, and the location of the faulty statement(s)
before it is exploited.

Vulnerability detection research can be broadly divided
into three types: static, dynamic and hybrid (using a mixture
of static and dynamic) [52]. Static analysis based vulnera-
bility detection is based on the analysis of source code and
binary files [53], [54], [55]. Binary file analysis is performed
after disassembling the files and converting the assembly
code to a high level code for analysis [56]. This study focuses
on exploitation detection based on runtime traces; hence,
static analysis is not relevant in this comparison.

Dynamic analysis techniques involve inspecting the pro-
gram behavior during runtime. Several techniques are based
on dynamic taint analysis [49], symbolic code execution [57]
and fuzzing [58]. For dynamic taint analysis and symbolic
code execution techniques, binary instrumentation is neces-
sary to apply the rules necessary to identify the presence
of vulnerabilities. Fuzzing, however, can be segmented into
black, white, and gray box fuzzing [59]. White and gray box
fuzzing are techniques that rely on prior knowledge of the
AUT [60], [61]. This information is used to guide the test
cases that will be presented to the program. Black box fuzzing
does not include any knowledge of the AUT [58]. In all the
fuzzing situations explained above, the main idea is that there
is a random (in the case of the black box) or valid (in the
case of the grey and white boxes) seed input provided to the
AUT; then, this seed input is mutated with every testing cycle.
This mutation process could be governed in gray/white box
testingwith analysis of the program’s behavior using different
instrumentation techniques [62]. The black box approach
does not include any knowledge of the AUT, therefore, the
mutation is performed without specific feedback about the
AUT’s internal state [58].

The aforementioned research differs from our research
direction for exploitation detection in the following ways.

• Object of detection: In dynamic analysis techniques for
vulnerability detection, the object of detection is the
fault. Dynamic taint analysis and symbolic execution
techniques detect faults by using expertly crafted rules.
Fuzzing techniques detect faults by the program state
(for example, program crashing or hanging). Not all
detections in vulnerability detection are exploitable, and
results usually require manual vetting or the use of auto-
mated signature generation systems [63]. Exploitation

52012 VOLUME 11, 2023



A. Youssef et al.: Use of Ensemble Learning to Detect Buffer Overflow Exploitation

detection does not detect the fault but detect the pattern
of exploitation and report the incident.

• Technique of detection: Dynamic analysis techniques
for vulnerability detection (with the exception of black
box fuzzing) perform some form of instrumentation
on the AUT. Exploitation detection aims to detect the
exploitation based on the runtime traces.

• Methods used: Vulnerability detection relies on repeti-
tive launching of the AUT and feeding it random/crafted
messages to test whether it will crash. Exploitation
detection does not benefit from repetition to detect the
same exploit. If the exploit is not detected from the first
pass, then the ML model (or the expert rules used) must
be modified.

• Output of detection process: The output in vulnerability
detection is the type and location of the vulnerability
in the AUT code. However, the output of vulnerabil-
ity requires further validation to confirm whether the
vulnerability is exploitable. The output of exploitation
detection is the notification (and potential prevention)
of the exploitation process which may result in further
actions on the target.

III. RELATED WORK
Existing techniques can be divided into two broad categories:
signature/heuristic-based andML-based. Signature/heuristic-
based techniques have been proven to have a limited capabil-
ity to adapt to changes in attack techniques [8], [64], [65].

This review of the existing literature on the use of ML
for exploitation detection focuses on papers that use runtime
traces from processors as signals. Research that uses network
traffic, such as [18], [19], [20], [26] static file analysis, [21],
[22], [23] is excluded from the scope of this literature review.
Furthermore, research on the use of heuristic-based tech-
niques is also excluded.

To the best of our knowledge, and up to the date of this
paper, there are only 7 research papers on the topic of using
ML for exploitation detection based on runtime traces [13],
[14], [15], [16], [17], [24], [25]. Of those seven, three relied
completely on hardware performance counters (HPC) as the
signal source for the feature set [15], [25], [66]. Two of the
seven relied on Intel’s PTrace traces [17], [24]. One paper is
based on Android-specific system events, [13] and another
includes a combination of HPCs and independent micro-
architectural features [16].We segment the research into three
categories, based on the source of datasets. Datasets that are
entirely composed of HPCs are categorized as ‘‘HPC based
datasets’’. While, datasets that are largely or purely based
on Intel Ptrace are called ‘‘Intel’s PTrace based datasets’’.
Third category is based on datasets that are generated based
on binary instrumentation, and this category is titled ‘‘Binary
instrumentation based datasets’’.

A. HPC BASED DATASETS
In Omotosho et al. [15] the authors provide a technique for
launching Return-Oriented Programming (ROP) and Jump

Oriented Programming (JOP) attacks on embedded systems
that use an Xtensa processor. The Xtensa processor is widely
used in the Internet of Things (IoT). The authors attempt
to evaluate several HPC and identify those that are best to
describe/provide patterns for detecting attacks. The authors
created vulnerable programs and launched attacks. The final
dataset created by the authors contained 6061 rows and
30 features. A Support Vector Machine (SVM) was used as
the ML classifier in this study. The authors opted for the use
of precision and recall as the main performance measurement
indicators and reported results of up to 84% recall for some
test instances and 100% precision for others.

Torres et al. [25] attempted to detect data-only attacks
by using an SVM for anomaly detection. They used data
from the HPC and a vulnerable application with heartbleed
vulnerability to test their models. Single andmulticlass SVMs
were created, and single/multiple event thresholds were used
as comparative techniques to evaluate the performance of the
model. Although the authors claimed a detection accuracy of
over 92% using a two-class SVM, they also concluded that
HPCs have a limited ability to detect leakage attacks that
are less than 8 KBs. The authors recommended that greater
architectural support for HPCs be incorporated into Central
Processor Units (CPUs) to enable researchers to capture more
events with higher fidelity.

In Liu et al. [14] the authors targeted the detection of
data attacks using a variety of algorithms trained on traces
received from the HPCs. The authors set up a Nginx server
with two vulnerabilities known as ‘rootdir,’ and ‘keyleak.’
Furthermore, a third platform is used for an encryption down-
grade attack based on a vulnerability known as ‘FREAK.’
The authors trained models based on Linear Regression (LR),
autoencoder (AE), Stacked Denoising Autoencoder (SDA)
and Echo State Networks (ESN). Five datasets were created
for each exploitation hltype. Each subset was segmented into
80%-20% training and testing. The class distribution in the
test samples was 50% benign and 50% malicious, respec-
tively. The classification results demonstrated that almost
all classifiers had high accuracy rate 100% for ‘FREAK’
and ‘rootdir’ exploits. While the ‘keyleak’ exploit was the
trickiest to detect with high accuracy across all algorithms.
SDA and ESN both performed very well with ‘keyleak’ while
the rest of the algorithms performed at considerably lower
performance.

This hlstudy differs from the above in that it does not rely
on HPCs. AlthoughHPCs offer a convenient means of gather-
ing runtime information, they do not provide a comprehensive
view of hlthe runtime traces. HPCs are not uniformly defined
across all CPU vendors evenwithin the same vendor, different
models may have different performance counters. Further-
more, the number of performance counters is usually limited
by the processor type. In this study, all traces were based
on debugging. Although not as practical as HPCs, the aim
is not to provide what is practical, but to provide knowledge
of how efficient frameworks should work. This is achieved
through the wealth of information provided by debuggers and

VOLUME 11, 2023 52013



A. Youssef et al.: Use of Ensemble Learning to Detect Buffer Overflow Exploitation

the flexibility in curation (i.e., data preparation) techniques
that can be applied.

B. INTEL’S PTRACE BASED DATASETS
In Chen et al. [17] The authors proposed HeNet. HeNet
is a framework that uses packets from Intel’s PTrace and
applies an ensemble of deep learning to detect ROP attacks
against Adobe Reader 9.3 on a Windows 7 32-bit platform.
The authors used the Taken-not-Taken (TNT) and Target IP
(TIP) packets from Intel’s PTrace as the input source. This
approach involves converting the trace of the TNT and TIP
packets into a 1xD image. Subsequently, a low-level Deep
Neural Network (DNN) model is applied. They used transfer
learning and deep DNNs trained on large image datasets. The
low-level DNN produces a probability for each stream of
images. This probability is fed into an upper-layer ensemble
model that aggregates the probabilities and applies a precon-
figured threshold to identify what is considered malicious
or benign. The HeNet model produced 98% accuracy and a
0.73% false-positive rate (FPR).

C. BINARY INSTRUMENTATION BASED DATASETS
In Elsabagh et al. [16] the authors proposed detecting ROP
attacks using what they call EigenROP. EigenROP is an
unsupervised anomaly-detection approach based on a novel
algorithm developed by the authors. The algorithm maps the
data into a high dimensional space, then extracts the princi-
pal components using Kernel Principal Component Analysis
(KPCA). A representative direction was then extracted from
all principal components during the learning phase. During
the testing phase, the distance between the direction and the
principal components of the testing sample was measured.
If the measurement exceeded a certain threshold, the test
sample was considered an anomaly.

Furthermore, the authors used signals based on indepen-
dent micro-architectural characteristics, as well as HPCs.
They calculated the Fisher score for a group of 15 characteris-
tics to identify the ones to be used. Twelve Linux applications
were used to train the model. Testing was performed on two
applications: Linux Hex Editor version 2.0.20, and PHP ver-
sion 5.3.6. The results demonstrated that EigenROP achieved
an overall accuracy rate of an 81% (based on AUC), with up
to 80% True Positive Rate (TPR) and 0.8% FPR. The authors
also noted that their testing focused mainly on detecting the
ROP gadgets only, without detecting the underlying vulnera-
bilities.

This study differs from others presented in [16] in several
respects. First, we did not perform anomaly detection, but
attempted to classify benign and malicious samples in a
binary classification problem. Second, we steer away from
unsupervised learning algorithms and focus on using algo-
rithms that are more aligned with the explainable algorithms.
Third, we did not include HPC and included instruction
categories rather than actual instructions (as used in [16]).
Fourth, we include traces that cover the entire shellcode of
the payloads, not just ROP code gadgets, and we focus on

buffer overflow attacks, which include ROP-based shellcodes
in addition to other techniques.

Suarez-Tangil et al. [13] performed anomaly detection
on Android Mediaserver components. The objective is to
detect the exploitation of a vulnerability called ‘‘Stagefright.’’
The exploit targets the mediaserver, which is responsible for
playing the media files in the Android OS. The experiment
involved playing a large set of benign media files to establish
the mediaserver’s normal behavior. Several variations of the
‘‘Stagefright’’ exploits have been used for testing purposes.
Suarez-Tangil used a dynamic instrumentation platform for
Android, called CopperDroid. Anomaly detection was based
on multivariate statistical network monitoring (MSNM) to
extract events and features using principal component anal-
ysis (PCA) techniques.

This study differs from that of Suarez-Tangil et al. in sev-
eral respects. This research is based on theWindows platform
as opposed to the Android OS. Our work focuses on a class
of vulnerabilities (i.e., buffer overflows) and not on a specific
exploit. Hence, our work should be suitable for use across any
user-space application that might be subject to exploits tar-
geting such vulnerabilities. Finally, our work is based on the
classification of malicious behavior, as opposed to anomaly
detection.

IV. DATASET STRUCTURE
The dataset generation was based on the methodology and
toolset presented in [48]. The exploits were downloaded from
exploit-db.com and tested on Windows 7 OS. Each applica-
tion was traced using tracer software, as described in [48].
The list of applications was further expanded in this study to
cover all the applications listed in Table 1.

The data trace for each application in Table 1 comprises
two files. One file is for the control flow, and the second
file is for the memory traces. Both types of files were in
JavaScript Object Notation (JSON) format. For the control-
flow trace, each instruction traced is represented by a single
JSON object that contains the elements in Fig. 1-a. A JSON
object is present in the memory file for each instruction that
performs the memory-altering operations. Memory altering
instructions were classified into four categories. The first
category is for instructions that cause a change in the stack
but do not necessarily involve operations on memory con-
tent (e.g., call and return instructions). These instructions fit
into the element ‘‘stack_change,’’ as sown in Fig. 2-b. The
second category of memory-altering instructions are instruc-
tions that execute certain operations on the memory content
(e.g., mov and add). These instructions fit into the element
‘‘mem_change,’’ as sown in Fig. 2-b.

The third category includes instructions that include a
call instruction for a module that is not part of the list of
modules within the AUT, such as system DLL and compiler
modules. The fourth category pertains to the loops. When a
loop is detected in a trace, the tracer iterates through the loop
twice and skips it. Loop skipping is performed by creating
breakpoints for all the possible branches that exit the loop.

52014 VOLUME 11, 2023



A. Youssef et al.: Use of Ensemble Learning to Detect Buffer Overflow Exploitation

FIGURE 1. Control Flow Dataset. (a) Raw data format (b) Selected data (c) CF Feature set.

FIGURE 2. Memory Dataset. (a) Raw data format (b) Memory feature set.

FIGURE 3. Overview of approach to build the ML.

For the first two categories, only the contents of the addresses
were recorded in the trace file. For the latter two categories,
a dump in the entire memory is captured in the element
‘‘mem_dump,’’ as shown in Fig. 2-b.

V. METHODOLOGY
The approach to building a machine learning model requires
twomain phases: feature engineering and building and tuning
the ML model (see Fig. 3). The most important aspect of fea-
ture engineering is feature extraction, that is, identifying the
feature space. Feature extraction is driven by they hypothesis
of the most important features.

Data preparation involves performing the necessary com-
puting/calculation/analysis steps on each group of rows and
then aggregating the results into a specific feature. This
intermediate step of performing aggregation is often over-
looked in reporting of ML research when building and tuning
models. We believe that this step affects the performance
of the model and should be a part of the reporting of ML
performance/tuning experiments.

Therefore, the first step in building an ML model is to
infer the aggregation parameters most likely to yield high-
performance models. The second step is to build actual mod-
els and perform hyperparameter tuning. We illustrate these
steps in greater detail in Fig. 4, and detail each step in the
following sections.

A. FEATURE ENGINEERING
1) HYPOTHESIS
To explain this hypothesis, an example of buffer overflow
exploitation is first presented. For stack smashing exploits,
the attacker would provide the program with a large input
(larger than the buffer size) and would engineer the input
such that when the current function returns, a specially crafted
address would replace the current frame return address. This
address is found somewhere within the buffer that the attacker
supplies to the program. Usually, attackers would populate
the exploit payload with NOPS (no operation). NOPS acts as
both a buffer filler and at the same time a sledge for the jump
address to accommodate minor changes in memory layouts
from one machine to another.

Similarly, for SEHOP Overwrite, the attackers exceed
the buffer until the SEHOP address is overwritten and an
exception is raised. Subsequently, the SEHOP address points
towards the attacker’s payload. In examining this type of
behavior, our hypothesis of the most important features is as
follows:

VOLUME 11, 2023 52015



A. Youssef et al.: Use of Ensemble Learning to Detect Buffer Overflow Exploitation

• EIP distance: how much distance is travelled in terms
of executable instructions.

• ESP distance: how much data were pushed or popped
out of the stack. Distance travelled within the stack for
either frame switching or for other reasons.

• Instruction category: How frequently are the data
movement instructions? How frequently are control-
flow instructions? The frequency of use of each instruc-
tion category was recorded during the learning process.

• Instruction category: How frequently are the data
movement instructions? How frequently are the control-
flow instructions? The frequency of each instruction
category was recorded during the learning process.

• Memory impact: Does the instruction affect the mem-
ory? Did this cause a change in memory content? How
large is the change in the memory content? What kind of
memory change occurred in the stack or in other areas
of memory?

We assume that the major obstacle to incorporating new
technologies into production environments is the fear that
new technologies would break what is currently running.
Endpoint security with a high FPR would halt productivity.
We also assume that the second highest priority is how good
the solution is at detecting exploits. This position is also
reciprocated by technical evaluators in the industry, such as
av-comparatives.com [67] and av-tests [68].

Hence, FPR and recall are the main scoring metrics used to
evaluate the best-performing models. The FPR is calculated
as all false positive (FP) instances divided by the sum of FP
and true negative (TN) instances. Recall, is calculated as all
true positive (TP) instances divided by the sum of TP and
false negative (FN) instances. Hence, the use of both FPR
and recall involves all possible instances (TP, FN, FP and
TN) of a model’s decision. While the use of other metrics,
such as recall and precision (which is calculated as TP/TP +

FP), will not include all parameters, as it will exclude TN.
Nevertheless, other metrics such as precision and accuracy,
were also included to provide overall indicators of the health
and viability of the model.

2) DATASET PREPARATION
As shown in Fig. 4, we elaborate on the preparatory steps in
the following subsections.

a: CONTROL FLOW (CF) DATASET PREPARATION
The raw data selected for this model are shown in Fig.1-b.
To use these as features, we expanded them to the list shown
in Fig. 1-c. For each feature in this, a counter was used
to represent the number of instructions that the feature was
true. If no instructions are executed within that module, the
counter is zero. The entire aggregated row is then labeled as
either benign or malicious, as elaborated on in the following
paragraphs.

b: EIP DISTANCE
This feature measures the distance covered in terms of the
EIP addresses within a series of instructions aggregated in a

window. For each instruction, its EIP address is evaluated if it
is higher or lower than the address of the previous instruction.
If it is higher, only the difference in the distance from the
previous instruction is added to the EIP distance counter.
If the distance was lower, the difference was subtracted.

c: ESP DISTANCE
The same calculations used for the EIP distance are applied
to the ESP distance. The main difference is that the ESP
distance increases with lower ESP values; hence, the opposite
is performed. Instruction category: The categorization of the
instructions was performed based on Intel Developer’s guide
[69]. The lists for each category were copied from the guide
and used to automatically identify the category to which
each instruction belonged. Subsequently, for each category,
a feature column was created in the dataset. The number of
instructions belonging to each category represents the final
instruction count belonging to that category in each window.
As ‘‘Kernel32.dll’’ is heavily utilized within the Windows
API, it is treated as a separate category (i.e., a special case
of instruction categories).

d: MODULE
The module to which the instruction belongs has four sepa-
rate features. These are the Kernel32.dll’’, ‘‘AUT’’, ‘‘System
modules’’, and ‘‘Compiler modules’’. ‘‘Kernel32.dll’’ refers
to the DLL library called KERNEL32.DLL. AUT modules
refer to either the main AUT thread or other libraries or
software modules indigenous to the AUT. The ‘‘Systemmod-
ules’’ category refers to all other DLLs other than KER-
NEL32.DLL, such as KERNELBASE.DLL, NTDDLL.DLL,
OLE32.DLL among others. Finally, the ‘‘Compiler modules’’
refers to compiler created modules, such as MSVCR71.DLL,
MSVCR80.DLL, EXPLORERFRAME.DLL among others.

e: MEMORY DATASET PREPARATION
To capture memory traces, a ‘memory image’ was first
created. A ‘memory image’ is composed of a JSON file,
where each single byte-level address within the memory is
an element that contains a dictionary of instruction IDs. The
instruction ID acts as a unique identifier for each execution
instruction. Each instruction ID that resulted in a change in
memory content was then included along with the new value
of the memory after executing the instruction.

For each instruction ID, the ‘memory image’ file is
checked. If there is a new value in, then it is mapped to the
right category and the amount of change from the previous
value is calculated. The features populated in the final dataset
are the three types of memory changes, as shown in Fig. 2-b.
For each type, there is a column to identify whether it was
indeed the type of change. This is in addition to another
column that captures the change in content size.

f: DATA LABELLING
We define malicious data as instructions that are part of the
exploit payload and are executed by the CPU within the

52016 VOLUME 11, 2023



A. Youssef et al.: Use of Ensemble Learning to Detect Buffer Overflow Exploitation

FIGURE 4. Flowchart of experimentation steps.

FIGURE 5. XGBoost Aggregation Parameters Performances.

context of the AUT process. The exploits downloaded from
exploit-db.com are in raw format, that is, they are composed
of Python files. Each raw exploit file contains code to create
a binary version of the exploit. Because this study focuses
on buffer overflows, the binary version of the exploits is
designed to be consumed by the AUT to fill a data vari-
able (i.e., buffer). The exploit will result in overflowing the
boundaries allocated to that variable and result in command
execution of the process of choice. The exploit structure is

FIGURE 6. RF Aggregation Parameters Performances.

composed of three components; shellcode, NOPS/junk, and a
specific jump address to overwrite the return address/SEHOP
address after overflowing. The shellcode contains opcodes
for command execution. The opcodes were included in the
Python file as hex digits. Junk bytes are used to help fill up
the buffer and cause buffer overflow, and they are usually
composed of random string values. The NOPS (represented
by the opcode of hex byte 90) bytes provide the CPU with
a sledge. The sledge’s job is to act as a landing zone for the

VOLUME 11, 2023 52017



A. Youssef et al.: Use of Ensemble Learning to Detect Buffer Overflow Exploitation

last component of the exploit: the jump instruction. Sledges
are needed because the programmemory might differ slightly
from one computer machine to another, and a single byte
might perturb the exploitation. NOPS are used as sledges
because they do not impact the state of the CPU nor the
control flow. NOPS are placed in abundance to ensure that
the target address of the jump instruction is somewhere in the
middle of a sequence of NOPS. The shellcode immediately
follows the NOPS sledge.

Therefore, to identify the first instruction executed within
the payload (i.e., the first malicious instruction), a string
search was conducted on the EIP field of each instruction
in the raw trace files. The string search keyword was the
jump address value in the Python file. Hence, the instruction
that has an EIP address equivalent to the jump address is
identified as the first instruction in payload execution. The
unique ID of the instruction was recorded. The exploitation
targets control flow hijacking and were executed linearly, that
is, normal operation did not resume until the exploitation
was fully executed. Hence, all the instructions executed after
the first instruction are malicious until the last instruction
in the exploit payload. To validate that we identified the
start of the malicious payload, we compared the opcodes
of a group of instructions that directly followed the first
instruction with the hex codes that were at the start of the
payload in the Python file. If they match, the first payload
instruction is successfully identified.

To identify the last instruction in the stream, a search was
conducted for the last opcode values in the payload (based on
hex digits in the Python file). Once found in the raw trace
file, the instruction ID was recorded. To validate that the
instruction was the last instruction, we compared a group of
opcodes before the last instruction with the hex values in the
Python file. If matched, we record the instruction’s unique
ID in the trace. The results were further validated by convert-
ing the opcodes found in the Python file into an assembly
language. The instructions were then compared with those
found in the traces. Starting with a search from the first
malicious instruction, each instruction is recorded until the
search reaches the last malicious instruction. All instructions
between the first and last were marked as malicious. The
size of this task can be determined by reviewing Table 1. In
Table 1, the column titled ‘‘No. Trace Inst.’’ represents the
number of instructions to be searched for the jump address.
Each instruction is composed of a JSON object, and hence,
the search was only limited to the ‘EIP’ field. Then after
the instruction was found, the field of ‘opcode’ is inspected
versus the values found in the python file. The final series
of instructions that were found between the first and the last
instruction is documented in the column ‘‘No. Payload Inst.’’
The string search operations and comparisons of opcodes and
instructions were done manually. Text editors were used to
perform the searches on the trace files. Once the first and last
instructions were identified, the process of marking was done
programmatically in a Jupyter notebook.

We noted that there are optimizations that are performed
by the CPU on the assembly instructions as they are being
pre-fetched and executed. These optimizations modified the
assembly instructions at certain segments of the payload exe-
cution. However, these optimizations did not impact the first
nor the last group of instructions in the payload execution
nor did they result in changes of the raw payload structure
found in memory. These optimizations did not also perturb
the execution of the exploit.

B. BUILD AND OPTIMIZE MODEL
1) INFERRING AGGREGATION PARAMETERS
When preparing the dataset, several factors affect the final
dataset. These factors are as follows:

• Window size: refers to the number of instructions aggre-
gated at any given time.

• Step size (or overlapping): refers to the percentage of
overlapping instructions between consecutive windows.
Step size refers to the number of instructions on which
the window slides. The overlapping percentage refers to
how many instructions are common between different
windows. We used both terms interchangeably, noting
that they have an inverse relationship with the same
meaning.

• Threshold: The minimum number of payload-related
instructions that classify a data row as malicious.

The experiment for inferring the best aggregation param-
eters begins by creating parameterized aggregation datasets.
These datasets had different window sizes, thresholds, and
step sizes (aggregation parameters). Each combination of the
window size, threshold, and step size represents a unique
and distinct dataset. Two classifiers (RF and XGBoost) were
trained on each dataset. Scorings were collected for each
set of aggregation parameters and analyzed. Guidelines for
selecting aggregation parameters were then inferred and used
to build the model.

2) BUILDING MODEL AND HYPER-PARAMETER TUNING
The first step was to identify a testing strategy. For each appli-
cation category stated in Table 1 in the dataset (excluding
‘Communication’ category), an application will be selected
for testing. This application was not part of the training and
validation of the model. The objective was to identify the
effectiveness of the model when trained on specific appli-
cation categories to detect exploits in different categories.
This also ensures that there is no leakage of the test data into
training. This strategy also demonstrates the effectiveness of
detecting techniques that might not be present in the training
dataset, for example, return-oriented programming (ROP).

Four raw datasets were created by removing one appli-
cation from the identified categories (please refer to
sub-section VI-B and Table 2 for complete details of the
datasets used in testing). Datasets were created based on the
inferences made regarding the aggregation parameters. Then,

52018 VOLUME 11, 2023



A. Youssef et al.: Use of Ensemble Learning to Detect Buffer Overflow Exploitation

TABLE 2. Models test results.

a grid search and cross-fold validation were performed to
identify the best hyper-parameters. After tuning the model,
testing was performed, and the scoring performance was
recorded.

VI. EXPERIMENTS
This section elaborates how the methodology for ‘‘Build &
Optimize Model’’ in section V is executed. The experiments
were conducted on data prepared as elaborated in Section V
(please refer to Fig. 1 and Fig. 2 for elaboration on the dataset
structure). The objective of the experiments was twofold.
First, we tested different window sizes, step sizes, and thresh-
olds to infer the range of best values (Phase A as per the
experimentation steps shown in Fig. 4). Second, different
models are built based on the inferred recommendations for
aggregation parameters. These models are evaluated primar-
ily based on recall and FPR. Furthermore, we used the ML
algorithm’s ability to report on feature importance to compare
feature usage among the two chosen models (Phase B as per
Fig. 4).

A. INFERRING AGGREGATION PARAMTERS
1) EXPERIMENTAL DESIGN
Several datasets were created using different values for each
aggregation parameter. The selected window sizes are 50,
150, and 250. Thresholds from the list of 40, 126, and 213
(each approximately 80-85% of the size of the correspond-
ing window size) were applied. Each threshold was iterated
across all window sizes, excluding thresholds that were larger
than the window size. The reason for this exclusion is that it
results in biased datasets that do not contain malicious sam-
ples. Window sizes were selected so that they did not exceed
50% of the largest application dataset. For each window size
and threshold pair, an iteration over a list of step size per-
centages was performed, starting from 1%, 2%, 25%, 45%,
and 65% (percentages of the window size). After creating a

dataset for every set of aggregation parameters, themodel was
trained on each.

Each dataset was divided into 70% for model training and
30% for validation. The resulting total sample size, mali-
cious sample size, accuracy, recall, precision, and FPR are
recorded. Based on the recall and FPR results, the relationship
between the different aggregation parameters and the scor-
ing metrics can be mapped, and guidelines for selecting the
aggregation parameters can be inferred.

2) EXPERIMENTAL RESULTS
As shown in Fig. 6 for the RF and Fig. 5 for the XGBoost
graphs, there are two curves for each combination of the
threshold and window size. The solid curve represents the
recall, whereas the dotted curve represents the FPR. For each
graph, there are two axes, one for the FPR and the other for
recall. The graphs show how the recall/FPR changes as the
step size increases for a specific window size and threshold
pair.

It is important to note that FPR and recall graphs should
be interpreted differently. Recall values were preferred to be
high, whereas FPR values were preferred to be low. Hence,
the ideal step size candidate for each graphwould be at a point
that represents the maximum recall curve and, at the same
time, a minimum point in the FPR curve.

To better explain the different graphs presented in Fig. 6
and 5, two additional graphs (Fig. 7) were created to cap-
ture the overall pattern characteristics of the FPR and recall.
Patterns were defined based on four characteristics. The first
is the maximum value, which is the point that contains the
largest value in the FPR/recall. Second, the minimum value
is the lowest FPR/recall. The third is the local maximum,
which is a point that has a visible curvature where the curve
changes direction from increasing the value of FPR/recall
to decreasing the value. Finally, is the local minimum, and
these are the inflection points where the curve moves from

VOLUME 11, 2023 52019



A. Youssef et al.: Use of Ensemble Learning to Detect Buffer Overflow Exploitation

FIGURE 7. Overview of Recal/FPR Patterns.

decreasing values for the recall/FPR to increasing values.
Our key points were measured at each step size percentage
marker. Graphs that are part of a specific pattern are labelled
using window size threshold pairs (i.e., window size = 50
and threshold = 40 are represented as 50-40). The reader
can check the actual performance graphs in Fig. 5 and 6
by looking for the specific window size threshold numbers,
noting that the pattern graphs are approximations and are not
intended to provide highly accurate mapping.

Patterns within the recall graphs across RF and XGBoost
were categorized into five generic patterns. As shown in
Fig. 7, recall pattern ‘‘A’’ contains the largest number of
datasets (3 in the RF and 2 in the XGB), followed by pattern
‘‘E’’ with 3 datasets in XGB and then pattern ‘‘B’’ with one
dataset from each ensemble. The remaining patterns contain
a single dataset. As the figure demonstrates, the highest recall
value is obtained with a step size of 1-2% of the window size.
As the step size increased, the recall decreased until a step size
of 25% or 45%, after which it increased again. For Patterns
D and E represent an exception. The exception is that they
decrease again after the 45% mark.

Fig. 7 also contains eight FPR patterns. The largest pattern
is pattern ‘‘A’’ which contains 5 datasets (3 from RF and
2 fromXGB). As shown in the FPR patterns, most graphs start
at step size of 1-2%with a very low FPR and increase at either
25% or 45% before decreasing again at 65% (but not as low
as the values at–1-2%). Two patterns represent the exception.
Pattern B and Pattern C. Pattern B the FPR at 1-2% is low
but not the lowest. The FPR decreases until the 45% mark

then it starts increasing. Pattern C the 1-2% has the highest
FPR which decreases until the 65% mark. Given that the
best results are those with the highest recall and lowest FPR,
we conclude that most datasets with small/medium window
sizes (i.e., < 250) would produce the best results with high
overlapping of the windows (i.e., step size 1-2%). Datasets
with a high window size (>= 250) will most likely produce
good results with high overlapping (i.e., step size of 1-2%)
and 50% overlapping percentage (i.e., 50% step size).

B. BUILDING AND TUNING MODEL
1) EXPERIMENT DESIGN
Based on the guidelines discussed in the previous section,
we trained our model using two window sizes: 100 and 250.
We applied thresholds of 20 and 80 for a window size of 100.
For a window size of 250, thresholds of 50 and 200 were
applied. The step size percentage was fixed at 1% for both
aspects of the experiment, as it has consistently proven to be
the best overlap percentage.

2) EXPERIMENTAL RESULTS
A complete list of the results is presented in Table 2.
We started with the ‘Citation Management’ category and set
aside ‘Publish-It 3.6d’. The best RF and XGBoost results
were achieved with a window size of 250 and threshold of
40. These parameters resulted in 100% recall and 0% FPR in
RF, and 96% recall and 0% FPR in XGBoost. We note that
the accuracy in the RF test was 100%, whereas that in the

52020 VOLUME 11, 2023



A. Youssef et al.: Use of Ensemble Learning to Detect Buffer Overflow Exploitation

TABLE 3. Top 5 features by random forest.

XGBoost was 96%. However, the dataset that produced these
results was composed of only malicious samples. Moreover,
the accuracy and precision were 100% for RF and 96%
and 100% for XGBoost, respectively. The second category
is ‘Disk Management’, from which ‘Disk Pulse Enterprise
9.9.16’ was selected as the testing app. For a window size
of 100, and for both thresholds of 15 and 80, the recall and
FPRwere 0.0%. For threshold 15, the accuracy was 18%, and
for threshold 80, the accuracy was 81%. For a window size
of 250 the samples were too small to be tested. Therefore,
it is not possible to aggregate these applications for these
parameters.

For the ‘Media Player’ category, ‘VUPlayer 2.49’ was used
as the testing app. In RF, this testing app had 0% FPR for
all aggregation parameters except for window size 250 and
threshold 200, which resulted in a 30% FPR. Furthermore,
for the window sizes of 100 and 80, the recall was 98%.
Although the testing results of window size 250 and threshold
200 produced 100% recall, we elected to use the test results
of window size 100 and threshold 80 as the best results in
this category. This is because, for window sizes of 100 and
80, the accuracy is 98.76%, which is 7% higher than that
of window size 250 and threshold 200. Furthermore, the FPR
for window sizes of 100 and 80 was 0%, compared to 30.43%
for window sizes of 250 and 200.

Finally, for the ‘Media Converter’ category, ‘Easy AVI
DivX Converter 1.2.24’ was selected as the testing applica-
tion. The recorded FPR was 0% for all traces, except for
window size 100 and threshold 80, which were produced in
RF 7.9%. Moreover, the highest recall across all datasets was
60% for RF with a window size of 250 and threshold of 200.
The highest recall for XGBoost was 44.58% for a window
size of 250 and threshold of 40.

3) FEATURE IMPORTANCE
It is worth noting that the performance of the training set
when it does not contain any exploit technique other than

SEHOP overwrite and stack smashing is still capable of
accurately detecting ROP-based attacks, as demonstrated in
the testing of app ‘VUPlayer 2.49’. Another point to note is
that testing on ‘Disk Pulse Enterprise 9.9.16’ produced the
worst results across all testing datasets followed by testing on
‘‘Easy AVI DivX Converter 1.2.24’’. Finally, it can be seen
from the overall results that the window size and threshold
combinations that perform the best in RF also perform the
best in XGBoost with one exception. This exception is in
the testing of ‘‘Easy AVI DivX Converter 1.2.24’, where the
best results were indeed in the same window size of 250, but
different thresholds. This further highlights the importance of
tuning the selection of the window size and threshold.

The models described above are based on datasets that
contain 21 features, 15 relating to instruction and module
categorization, while memory metadata are presented by six
features (please refer to Fig. 1 and 2). The RF and XGBoost
algorithms provide an option for reporting feature impor-
tance. The importance rating for each feature was reported as
a fraction smaller than or equal to one. The combined value of
all feature importance measurements reported by each model
was up to 1.

The top five features for each of the testing datasets are
reported in Table 3 (for RF) and Table 4 (for XGBoost).
In addition, Fig. 8 depicts the average importance rating
for each feature as reported by each algorithm. As shown
in Fig. 8, each algorithm selects a different set of features
to be the most important. In XGBoost, the highest aver-
age of important features is instructions that related to cat-
egories ‘‘shift_rotate’’ and ‘‘bit_byte.’’ The ‘‘shift_rotate’’
and ‘‘bit_byte’’ refers to ‘‘Shift and Rotate,’’ and to ‘‘Bit
and Byte’’ instructions categories respectively as identified
in Intel Developer’s guide [69]. In RF, the highest average
importance is ‘‘eip_distance’’ and ‘‘esp_distance’’ and thirdly
‘‘bit_byte’’ instruction categories.

As shown in Table 4, the ‘esp_distance’ feature is the most
important feature in RF, occurring in the top five across all

VOLUME 11, 2023 52021



A. Youssef et al.: Use of Ensemble Learning to Detect Buffer Overflow Exploitation

TABLE 4. Top 5 features by XGBoost.

FIGURE 8. Comparison of Feature Importance across all tests (by average value).

the datasets. Followed by ‘bit_byte’ appearing in 15 out of
the 16 datasets within the top five. The third most common
is the ‘string’ (stands for ‘‘String Instructions’’ category),
which appeared 14 out of 16 times. Following is ‘shift_rotate’
(stands for ‘‘Shift and Rotate Instructions’’ category) and
‘eip_distance’ each appearing 11 and 5 times respectively.

While for the XGBoost, the most common feature among
the top 5 is ‘kernel32.dll’ which appeared 12 times out of
14. Second most common feature is ‘system_modules’ which
appeared 10 times out of 14. Finally, ‘compiler_modules’
and ‘eip_distance’ are both the third most common feature
where each appeared 7 times out of 14. Interestingly, the top
three within the RF test results appeared within the top five
of all datasets, but with a low frequency. The top feature
in RF, ‘esp_distance,’ appeared only twice among the top
five in XGBoost. While ‘bit_byte’ and ‘string’ each appeared
2 and 3 times respectively. Furthermore, by reviewing the
data in Table 3 and Table 4, we note that there are 12 unique
features among the top five features of XGBoost, whereas in
RF, there are 11 unique features. As shown in Fig. 9, from

the 12 unique features in XGBoost, three did not appear in
the list of the top five in any of the datasets in RF. Of the
11 unique features of RF, two do not appear in any of the
top five of XGBoost. Most notable in both RF and XGBoost
is the complete disregard of memory-related features (except
for ‘eip_distance’ and ‘esp_distance’). The reported feature
importance for the memory features depicted in Fig. 2 is
zero across all the datasets. This is in complete contrast to
other signature-based techniques that utilize the contents of
memory heavily, and it further shows that memory metadata
do not contain enough entropy to be used for detection.

VII. KEY TAKEAWAYS
Below is a summary of the key takeways from the above
results:

• Takeaway (1): Data aggregation parameters affects
models’ performance more than hyper-parameter tun-
ing.
As shown in Fig. 6 and 5, good aggregation parameters
can provide performance results across recall and FPR

52022 VOLUME 11, 2023



A. Youssef et al.: Use of Ensemble Learning to Detect Buffer Overflow Exploitation

FIGURE 9. Venn Diagram of Unique Top 5 Features in RF and XGBoost.

that are of acceptable quality (i.e., recall >= 90% and
FPR <= 10%).

• Takeaway (2): Good data aggregation parameters per-
form equally well across different classifiers (and vice
versa).
As shown in the testing results table (Table 2), good
performing aggregation parameters performed well for
both XGBoost and RF (except for the ‘Easy AVI DivX
Converter 1.2.24,’ where the threshold differed). Simi-
larly, the aggregation parameters produced poor results.

• Takeaway (3): Training on specific vulnerabilities
enables detection of never-before-seen techniques.
As shown in Table 1, the application ‘‘VUPlayer 2.49’’
is the only application in the dataset exploited using an
ROP chain. However, training a model on the dataset
excluding this application still enabled the model to
detect exploitation traces with high recall (98.36% in RF
and 100% in XGB) along with low FPR (0% in RF and
2.02% in XGB).

• Takeaway (4): Feature engineering is model specific.
As shown in Table 3 and Table 4, the top 5 important fea-
tures differed significantly between RF and XGBoost.
Furthermore, the importance of the common features
shown in Fig. 9 varies significantly, as demonstrated by
the bar charts in Fig. 8.

• Takeaway (5): Memory metadata does not provide
enough information for exploitation detection.
As elaborated in the feature importance discussion, the
memory features shown in Fig. 2 had zero importance
assigned to them by both models.

VIII. RESEARCH LIMITATIONS AND FUTURE WORK
There are several limitations in this research that could be
addressed in future research.

• Robustness to adversarial attacks: How can these mod-
els be evaluated against adversarial attacks and miti-
gated against adversarial attacks? Further evaluation of

adversarial attacks is required to validate the effective-
ness of each model or ensemble of models.

• The dataset is based on single threaded applications or
applications that contain all vulnerable codes within a
single thread. Would the models produce similar results
if the dataset containes vulnerable code (or exploit exe-
cution) across two threads?

• The dataset is based only on buffer overflow vulnerabil-
ities. How do we create datasets with greater variance in
the targeted vulnerabilities? Capturing runtime traces of
software under exploitation is a fragile process because
exploits are easily perturbed by code instrumentation at
any stage; hence, it is a trial and error process.

• Evaluation of important features with exploits targeting
other vulnerability types. Would the same sets of fea-
tures be used for the same models or would they differ?
How large is the difference?

• ML learning is based on the execution of buffer-overflow
exploits that employ shellcode for command execution.
What will be the model’s behavior if the payloads are
changed to other techniques such as reverse shell, TCP
binding or other techniques? Given that maliciousness is
based on the start of the actual exploit payload, a change
in payload would result in circumventing the model.
Hence, there is a need to expand the dataset further to
include other payloads.

• Identifying a program tracing framework that would be
sufficiently light, and at the same time, can capture the
most important features for multiple ML models. This
enables prototyping of this solution using an ensemble
that focuses on different mixture of features important
in defense against adversarial attacks.

• Current labelling process is manual. In order to
expand the number of exploitation techniques and
targetting vulnerabilities it will be difficult to use
manual labelling techniques. Therefore, unsupervised
and semi-supervised algorithms should be explored to
address this issue. In addition, increasing number of
exploitations and vulnerabilities will also increase the
feature dimensions. Therefore, feature selection and
dimensionality reduction techniques should be explored
in future work.

IX. CONCLUSION
We demonstrated that runtime traces based on assembly
instructions present sufficient entropy for RF and XGBoost
classifiers to detect the exploitation activity. We provide
guidelines for the data preparation of runtime traces along
with the recommended aggregation parameters based on the
available dataset. We noted differences in feature importance
across a range of 21 features. Furthermore, we provide a com-
parative analysis of the differences in the feature importance
between the models. We demonstrated that meta-information
about memory changes does not contain enough entropy to
enable an ML model to detect exploitative activities. We also
demonstrate that it is possible to detect ROP-based attacks

VOLUME 11, 2023 52023



A. Youssef et al.: Use of Ensemble Learning to Detect Buffer Overflow Exploitation

that target buffer overflow vulnerabilities without using ROP
gadgets in the training dataset.

REFERENCES
[1] Digital Security Unit, ‘‘Special report: Ukraine,’’ One Microsoft Way,

Redmond, WA, USA, Tech. Rep., 2022.
[2] P. Kumar, N. Chowdary, and A. Mathuria, ‘‘Alphanumeric shellcode gen-

erator for ARM architecture,’’ in Proc. Int. Conf. Secur., Privacy, Appl.
Cryptogr. Eng., in Lecture Notes in Computer Science: Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics, vol. 8204, 2013, pp. 38–39.

[3] A. Bacci, A. Bartoli, F. Martinelli, E. Medvet, F. Mercaldo, and
C. A. Visaggio, ‘‘Impact of code obfuscation on Android malware detec-
tion based on static and dynamic analysis,’’ in Proc. 4th Int. Conf. Inf. Syst.
Secur. Privacy (ICISSP), Jan. 2018, pp. 379–385.

[4] S. Bhatkar, R. Sekar, and C. D. DuVarney, ‘‘Efficient techniques for com-
prehensive protection frommemory error exploits,’’ in Proc. 14th USENIX
Secur. Symp., 2005, pp. 255–270.

[5] Data Execution Prevention—Win32 Apps | Microsoft Docs, Microsoft.
Accessed: May 27, 2023. [Online]. Available: https://learn.microsoft.
com/en-us/windows/win32/memory/data-execution-prevention

[6] Bypassing DEP With VirtualProtect (x86). Vulndev, Vulendev. Accessed:
May 27, 2023. [Online]. Available: https://vulndev.io/2022/06/14/
bypassing-dep-with-virtualalloc-x86/

[7] L. Davi, A.-R. Sadeghi, and M. Winandy, ‘‘ROPdefender: A detection tool
to defend against return-oriented programming attacks,’’ in Proc. 6th ACM
Symp. Inf., Comput. Commun. Secur. (ASIACCS), Mar. 2011, pp. 40–51.

[8] A. Sadeghi, S. Niksefat, and M. Rostamipour, ‘‘Pure-call oriented pro-
gramming (PCOP): Chaining the gadgets using call instructions,’’ J. Com-
put. Virol. Hacking Techn., vol. 14, no. 2, pp. 139–156, May 2018.

[9] What is the Cyber Kill Chain? Introduction Guide | CrowdStrike, Crowd-
Strike, Sunnyvale, CA, USA. Accessed: Mar. 6, 2023. [Online]. Available:
https://www.crowdstrike.com/cybersecurity-101/cyber-kill-chain/

[10] L. Martin, Cyber Kill Chain®, Lockheed Martin, Rockledge, MD,
USA. Accessed: Jun. 27, 2022. [Online]. Available: https://www.
lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

[11] Gaining the Advantage—Applying Cyber Kill Chain Methodology to Net-
work Defense, Lockheed Martin Corporation, Bethesda, MD, USA, 2015,
pp. 1–13.

[12] What is an Exploit?—Cisco, San Jose, CA, USA. Accessed: Feb. 28, 2023.
[Online]. Available: https://www.cisco.com/c/en/us/products/security/
advanced-malware-protection/what-is-exploit.html

[13] G. Suárez-Tangil, S. K. Dash, P. García-Teodoro, J. Camacho, and
L. Cavallaro, ‘‘Anomaly-based exploratory analysis and detection of
exploits in Android mediaserver,’’ IET Inf. Secur., vol. 12, no. 5, pp. 1–10,
2018.

[14] C. Liu, Z. Yang, Z. Blasingame, G. Torres, and J. Bruska, ‘‘Detecting
data exploits using low-level hardware information: A short time series
approach,’’ in Proc. 1st Workshop Radical Experiential Secur. (ASIA CCS),
May 2018, pp. 41–47.

[15] A. Omotosho, G. B. Welearegai, and C. Hammer, ‘‘Detecting return-
oriented programming on firmware-only embedded devices using hard-
ware performance counters,’’ in Proc. 37th ACM/SIGAPP Symp. Appl.
Comput., Apr. 2022, pp. 510–519.

[16] M. Elsabagh, D. Barbara, D. Fleck, and A. Stavrou, ‘‘Detecting ROP with
statistical learning of program characteristics,’’ in Proc. 7th ACM Conf.
Data Appl. Secur. Privacy, New York, NY, USA, Mar. 2017, pp. 219–226.

[17] L. Chen, S. Sultana, and R. Sahita, ‘‘HeNet: A deep learning approach on
Intel processor trace for effective exploit detection,’’ in Proc. IEEE Secur.
Privacy Workshops (SPW), May 2018, pp. 109–115.

[18] M. Masud, L. Khan, B. Thuraisingham, X. Wang, P. Liu, and S. Zhu,
‘‘Detecting remote exploits using data mining,’’ in Proc. IFIP Int. Conf.
Digit. Forensics, in IFIP—The International Federation for Information
Processing, vol. 285, 2008, pp. 177–189.

[19] G. Yang, X. Liu, and C. Tang, ‘‘Horus: An effective and reliable framework
for code-reuse exploits detection in data stream,’’ Electronics, vol. 11,
no. 20, p. 3363, Oct. 2022.

[20] X. Li, Z. Hu, Y. Fu, P. Chen, M. Zhu, and P. Liu, ‘‘ROPNN: Detection of
ROP payloads using deep neural networks,’’ 2018, arXiv:1807.11110.

[21] X. Zhou and J. Pang, ‘‘Expdf: Exploits detection system based onmachine-
learning,’’ Int. J. Comput. Intell. Syst., vol. 12, no. 2, pp. 1019–1028, 2019.

[22] H. Wang and P. Liu, ‘‘Tackling imbalanced data in cybersecurity with
transfer learning: A case with ROP payload detection,’’ May 2021,
arXiv:2105.02996.

[23] S. Yoo, S. Kim, and B. B. Kang, ‘‘The image game: Exploit kit detection
based on recursive convolutional neural networks,’’ IEEE Access, vol. 8,
pp. 18808–18821, 2020.

[24] L. Cheng, D. Yao, and G.Wang, ‘‘Program anomaly detection against data-
oriented attacks,’’ Ph.D. dissertation, Faculty Viriginia Polytech. Inst. State
Univ., Blacksburg, VA, USA, Jul. 26, 2018.

[25] G. Torres and C. Liu, ‘‘Can data-only exploits be detected at runtime
using hardware events? A case study of the Heartbleed vulnerability,’’ in
Proc. Hardw. Architectural Support Secur. Privacy, 2016, pp. 1–7, doi:
10.1145/2948618.2948620.

[26] S. Harnmetta and S. Ngamsuriyaroj, ‘‘Classification of exploit-kit behav-
iors via machine learning approach,’’ in Proc. 20th Int. Conf. Adv. Com-
mun. Technol. (ICACT), Feb. 2018, pp. 468–473.

[27] Desktop Operating System Market Share Worldwide | Statcounter
Global Stats, Statcounter GlobalStats, Dec. 2022. [Online]. Available:
https://gs.statcounter.com/os-market-share/desktop/worldwide

[28] CWE—2022 CWE Top 25 Most Dangerous Software Weaknesses, MITRE,
McLean, VA, USA, 2022.

[29] NVD—Search and Statistics. Accessed: Dec. 22, 2022. [Online]. Avail-
able: https://nvd.nist.gov/vuln/search

[30] I. D. Mienye and Y. Sun, ‘‘A survey of ensemble learning: Con-
cepts, algorithms, applications, and prospects,’’ IEEE Access, vol. 10,
pp. 99129–99149, 2022, doi: 10.1109/ACCESS.2022.3207287.

[31] L. Breiman, ‘‘Random forests,’’ J. Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[32] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting sys-
tem,’’ in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
vols. 13–17, Aug. 2016, pp. 785–794.

[33] H. Cui, D. Huang, Y. Fang, L. Liu, and C. Huang, ‘‘Webshell detec-
tion based on random forest–gradient boosting decision tree algorithm,’’
in Proc. IEEE 3rd Int. Conf. Data Sci. Cyberspace (DSC), Jun. 2018,
pp. 153–160.

[34] I. Ahmad, M. Basheri, M. J. Iqbal, and A. Rahim, ‘‘Performance com-
parison of support vector machine, random forest, and extreme learning
machine for intrusion detection,’’ IEEE Access, vol. 6, pp. 33789–33795,
2018.

[35] P. A. A. Resende and A. C. Drummond, ‘‘A survey of random forest based
methods for intrusion detection systems,’’ ACM Comput. Surv., vol. 51,
no. 3, pp. 1–36, 2019.

[36] S. Dhaliwal, A.-A. Nahid, and R. Abbas, ‘‘Effective intrusion detection
system using XGBoost,’’ Information, vol. 9, no. 7, p. 149, Jun. 2018.

[37] W. Haider, G. Creech, Y. Xie, and J. Hu, ‘‘Windows based data sets for
evaluation of robustness of host based intrusion detection systems (IDS) to
zero-day and stealth attacks,’’Future Internet, vol. 8, no. 4, p. 29, Jul. 2016.

[38] G. Creech, ‘‘Developing a high-accuracy cross platform host-based intru-
sion detection system capable of reliably detecting zero-day attacks,’’
Ph.D. thesis, Univ. New South Wales, Sydney, NSW, Australia, 2014.

[39] N. Moustafa and J. Slay, ‘‘UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),’’ in
Proc. Mil. Commun. Inf. Syst. Conf. (MilCIS), Nov. 2015, pp. 1–6.

[40] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, ‘‘Toward generating a
new intrusion detection dataset and intrusion traffic characterization,’’ in
Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy (ICISSP), 2018, pp. 108–116.

[41] W. Haider, J. Hu, J. Slay, B. P. Turnbull, and Y. Xie, ‘‘Generating realistic
intrusion detection system dataset based on fuzzy qualitative modeling,’’
J. Netw. Comput. Appl., vol. 87, pp. 185–192, Jun. 2017.

[42] Malware—Wikipedia. Accessed: Mar. 1, 2023. [Online]. Available:
https://en.wikipedia.org/wiki/Malware

[43] L. Wu, R. Ping, L. Ke, L. Xing, W. Jian-Ping, and L. Ke, ‘‘Analysis and
forensics for behavior characteristics of malware in Internet,’’ in Proc.
IEEE Int. Conf. Digit. Signal Process. (DSP), Oct. 2016, pp. 545–549.

[44] Generating Payloads—Metasploit Unleashed, Offensive Secur. Accessed:
Jun. 24, 2022. [Online]. Available: https://www.offsec.com/metasploit-
unleashed/generating-payloads/

[45] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, ‘‘Survey of
intrusion detection systems: Techniques, datasets and challenges,’’ Cyber-
security, vol. 2, no. 1, pp. 1–22, Dec. 2019.

[46] R. A. Bridges, T. R. Glass-Vanderlan, M. D. Iannacone, M. S. Vincent, and
Q. Chen, ‘‘A survey of intrusion detection systems leveraging host data,’’
ACM Comput. Surv., vol. 52, no. 6, pp. 1–35, Nov. 2020.

52024 VOLUME 11, 2023

http://dx.doi.org/10.1145/2948618.2948620
http://dx.doi.org/10.1109/ACCESS.2022.3207287


A. Youssef et al.: Use of Ensemble Learning to Detect Buffer Overflow Exploitation

[47] M. Liu, Z. Xue, X. Xu, C. Zhong, and J. Chen, ‘‘Host-based intrusion
detection system with system calls: Review and future trends,’’ ACM
Comput. Surv., vol. 51, no. 5, pp. 1–36, Sep. 2019.

[48] A. Youssef, M. Abdelrazek, C. Karmakar, and Z. Baig, Tracing Software
Exploitation (Lecture Notes in Computer Science), vol. 13041. Springer,
2021.

[49] H. Tang, S. Huang, Y. Li, and L. Bao, ‘‘Dynamic taint analysis for vulner-
ability exploits detection,’’ in Proc. 2nd Int. Conf. Comput. Eng. Technol.
(ICCET), vol. 2, 2010, pp. 215–218.

[50] P. Zeng, G. Lin, L. Pan, Y. Tai, and J. Zhang, ‘‘Software vulnerability
analysis and discovery using deep learning techniques: A survey,’’ IEEE
Access, vol. 8, pp. 197158–197172, 2020.

[51] IEEE Standard Glossary of Software Engineering Terminology, Stan-
dard 610.12-1990, Institute of Electrical and Electronics Engineers (IEEE),
1990.

[52] H. Hanif, M. H. N. M. Nasir, M. F. A. Razak, A. Firdaus, and N. B. Anuar,
‘‘The rise of software vulnerability: Taxonomy of software vulnerabilities
detection and machine learning approaches,’’ J. Netw. Comput. Appl.,
vol. 179, Apr. 2021, Art. no. 103009.

[53] H. Li, T. Kim, M. Bat-Erdene, and H. Lee, ‘‘Software vulnerability detec-
tion using backward trace analysis and symbolic execution,’’ in Proc. Int.
Conf. Availability, Rel. Secur. (ARES), Sep. 2013, pp. 446–454.

[54] A. Ibrahim, M. El-Ramly, and A. Badr, ‘‘Beware of the vulnerability! How
vulnerable are GitHub’s most popular PHP applications? in Proc. 16th
ACS/IEEE Int. Conf. Comput. Syst. Appl. (AICCSA), Nov. 2019, pp. 1–7.

[55] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler, ‘‘A few billion lines
of code later: Using static analysis to find bugs in the real world,’’Commun.
ACM, vol. 53, no. 2, pp. 66–75, Feb. 2010.

[56] A. J. Harer, Y. L. Kim, L. R. Russell, O. Ozdemir, R. L. Kosta,
A. Rangamani, H. Lei Hamilton, I. G. Centeno, R. J. Key,
M. P. Ellingwood, E. Antelman, A. Mackay, W. M. McConley,
M. J. Opper, P. Chin, and T. Lazovich, ‘‘Automated software vulnerability
detection with machine learning,’’ Feb. 2018, arXiv:1803.04497.

[57] B. S. Pak, ‘‘Hybrid fuzz testing: Discovering software bugs via fuzzing and
symbolic execution,’’ Ph.D. thesis, Carnegie Mellon Univ., Pittsburgh, PA,
USA, May 2012.

[58] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, ‘‘Fuzzing: State of the art,’’
IEEE Trans. Rel., vol. 67, no. 3, pp. 1199–1218, Sep. 2018.

[59] P. Godefroid, ‘‘Fuzzing: Hack, art, and science,’’ Commun. ACM, vol. 63,
no. 2, pp. 70–76, Jan. 2020.

[60] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, ‘‘Directed
greybox fuzzing,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2017, pp. 2329–2344.

[61] V. Ganesh, T. Leek, and M. Rinard, ‘‘Taint-based directed white-
box fuzzing,’’ in Proc. IEEE 31st Int. Conf. Softw. Eng., May 2009,
pp. 474–484.

[62] S. K. Cha, M. Woo, and D. Brumley, ‘‘Program-adaptive mutational
fuzzing,’’ in Proc. IEEE Symp. Secur. Privacy, May 2015, pp. 725–741.

[63] J. Newsome and D. Song, ‘‘Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software,’’ in
Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS), 2005, pp. 1–14.

[64] N. Carlini and D. Wagner, ‘‘ROP is still dangerous: Breaking modern
defenses,’’ in Proc. 23rd USENIX Conf. Secur. Symp., 2014, p. 256.

[65] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy, ‘‘Return-oriented programming without returns,’’ in Proc.
17th ACM Conf. Comput. Commun. Secur. (CCS), New York, NY, USA,
Oct. 2010, p. 559.

[66] C. Liu, Z. Yang, Z. Blasingame, G. Torres, and J. Bruska, ‘‘Detecting
data exploits using low-level hardware information: A short time series
approach,’’ in Proc. 1st Workshop Radical Experiential Secur. (ASIA CCS),
May 2018, pp. 41–47.

[67] Summary Report 2022—AV-Comparatives, AVComparatives, Grabenweg,
Austria, Jan. 2023.

[68] AV-TEST Seal of Approval | AV-TEST Institute. Accessed:
Mar. 12, 2023. [Online]. Available: https://www.av-test.org/en/about-the-
institute/certification/

[69] Intel® 64 and IA-32 Architectures Software Developer Manuals, Intel
Corp., Santa Clara, CA, USA, Mar. 2023.

AYMAN YOUSSEF received the Master of Sci-
ence degree in information security from Nile
University, in 2018. He is currently pursuing the
Ph.D. degree with Deakin University, Australia.
He has more than ten years of practical experience
working as a security consultant in several regions
around the globe. His research interests include
software and computer security.

MOHAMED ABDELRAZEK is currently anAsso-
ciate Professor in software engineering and the
IoT with Deakin University, Australia. Before
joining Deakin University, Australia, in 2015,
he was a Senior Research Fellow with the
Swinburne University of Technology, Australia,
and the Swinburne-NICTA Software Innovation
Laboratory (SSIL). Before 2010, he was the
Head of the Software Development Department,
Microtech. For more information visit the link

(https://sites.google.com/site/mohamedalmorsy/).

CHANDAN KARMAKAR (Member, IEEE)
received the B.Sc.Eng. degree in computer science
and engineering from the Shahjalal University
of Science and Technology, Sylhet, Bangladesh,
in 1999, and the Ph.D. degree from The Univer-
sity of Melbourne, Melbourne, VIC, Australia,
in 2016. He joined the School of Information
Technology, Deakin University, Geelong, VIC,
Australia, in 2018, as a Lecturer. He has published
one book and more than 170 research articles,

including 82 journal articles. His research interests include biomedical
devices and signal processing, cardiovascular and neural systems related
to sleep-disordered breathing, human gait dysfunctions, cardiovascular dis-
eases, and diabetic autonomic neuropathy.

VOLUME 11, 2023 52025


