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ABSTRACT Camera, inertial measurement unit (IMU), and ultra-wideband (UWB) sensors are common-
place solutions to unmanned aerial vehicle (UAV) localization problems. The performance of a localization
system can be improved by integrating observations from different sensors. In this paper, we propose
a learning-based UAV localization method using the fusion of vision, IMU, and UWB sensors. Our
model consists of visual–inertial (VI) and UWB branches. We combine the estimation results of both
branches to predict global poses. To evaluate our method, we augment a public VI dataset with UWB
simulations and conduct a real-world experiment. The experimental results show that our method provides
more robust and accurate results than VI/UWB-only localization. Our codes and data are available at
https://imlabntu.github.io/VIUNet/.

INDEX TERMS Visual-inertial odometry, ultra-wideband, sensor fusion, deep learning.

I. INTRODUCTION
With the increasing development of techniques such as smart
cities and the Internet of Things (IoT), precise localization
results have become more important. Although GPS appli-
cations are well-developed and widely available in global
localization techniques, GPS signals are unreliable in indoor
scenes. Moreover, the system provides only meter-level accu-
racy, which is insufficient for unmanned aerial vehicle (UAV)
flight. Therefore, many localization techniques have been
designed to provide accurate positioning.

A localization system uses sensors to capture environ-
mental information and estimate agent positions. However,
indoor scenes contain states and environments that a single
sensor modality cannot always observe. For instance, visual
sensors provide color and texture information but are defeated
by changes in illumination, by motion blur, by dynamic
objects, or by textureless scenes [1], [2]. Inertial sensors
provide acceleration and angular rate, which environmental
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FIGURE 1. Schematic diagram of UWB localization system. A0, A1, A2,
and A3 are UWB anchors with known locations. Target coordinates are
calculated after estimating the distance between the target and each
anchor.

changes generally do not affect. However, inertial sensors
used in localization still suffer from noisy measurements and
accumulated error [3], [4]. Ultra-wideband (UWB) sensors
are also often used for localization. In a UWB localization
system, UWB sensors estimate distances between targets and
anchors with known locations to calculate the coordinates
of the targets. A schematic diagram of a UWB localization
system is shown in Figure 1.
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Multimodal sensor fusion combines different sensors to
increase the robustness of the system. In visual–inertial
odometry (VIO) systems [5], [6], visual and inertial mea-
surements are combined to provide 6DoF camera poses in
real-time. In VIO systems, vision provides rich information
that is not available in an inertial measurement unit (IMU),
whereas IMU makes vision more robust to environmental
changes. However, the odometry results of VIO systems
lack global information, and the initialization process largely
determines their performance. Therefore, we propose a VIO
with UWB-aided relocalization, a learning-based method
combining visual, inertial, and UWB sensors to estimate the
global 6DoF poses of the target, including translation and
rotation. UWB sensors provide a good initialization for the
VIO system and offer global information that the VIO system
can reference.

We propose a real-time1 learning-based Visual-Inertial-
UWB fusion (VIU-Net) that contains a visual–inertial (VI)
branch and a UWB branch. The VI branch takes image
sequences and IMU measurements as input and computes
relative poses between consecutive images, and the UWB
branch utilizes UWB measurements to regress the global
position. We integrate the outputs of the two branches to
predict accurate global poses. By using deep learning, our
method are robust to data corruption and noisy sensor mea-
surements. Since the model tends to learn those biases in
the training process, the proposed method does not depend
on accurate calibration of UWB beacon location. However,
with conventional methods, those biases will easily drift
the result of estimated position. To evaluate the proposed
method, we add UWB simulations on EuRoC [7], a pub-
lic VI dataset, and conduct a real-world experiment. The
experimental results reveal that compared to VI/UWB-only
positioning, the fusion of VI and UWB improves global
localization accuracy.

To summarize, this work has three contributions:
1) Our method is the first deep learning method combin-

ing Vision, IMU, UWBmeasurements for localization.
2) We collected the first dataset for Vision, IMU, and

UWB localization.
3) We improved the localization accuracy of VI branch

and VIU-Net with loss function.

II. RELATED WORK
The proposed system is a learning-based framework that
contains visual, inertial, and UWB sensors. This section
introduces deep learning methods for localization and dis-
cusses sensor fusion, including traditional and learning-based
approaches.

A. DEEP LEARNING FOR LOCALIZATION
1) VISUAL SENSORS
Deep learning has achieved great success in visual odometry
(VO) [8], [9], [10], [11], [12], [13]. Learning-based methods

1The inference speed reaches 30+ fps on a RTX3090 GPU.

have shown results comparable to those of traditional meth-
ods, but do not always require modules in the classic VO
pipeline, such as camera calibration and outlier rejection.

2) INERTIAL SENSORS
Yan et al. [3] were the first research to integrate sophisti-
cated machine learning techniques with inertial navigation.
Chen et al. [4] propose a neural network framework to learn
inertial odometry directly from IMU raw data. Both studies
show that it is possible to use deep learning to estimate inertial
odometry.

3) ULTRA-WIDEBAND SENSORS
Deep learning methods have been developed for UWB
localization, including long short-term memory (LSTM)
networks [14], CNNs [15], and deep neural networks
(DNNs) [16]. Deep learning can also be used to correct UWB
sensor measurement errors [17]. In this work, we use DNN
to predict positions, and further integrate this with our VI
branch.

B. SENSOR FUSION
1) TRADITIONAL METHODS
Sensor measurements can be combined in either a
loosely-coupled or a tightly-coupled manner. Loosely-
coupled sensor fusion treats the estimation of different sen-
sor units as independent [18], whereas the tightly-coupled
approach integrates raw sensor data at a lower processing
level [19]. Traditional methods, in turn, can be divided into
filtering-based and optimization-based approaches, mainly
according to the backend optimization type [20]. Filtering-
based methods such as the Kalman filter and the particle
filter use a linear or nonlinear model to estimate the state
of a dynamic system and predict results by finding the
most similar target to the model. When the measurement
is received, the filtering-based method executes propaga-
tion and update steps to update the state. Optimization-
based algorithms typically combine the error terms into
a cost function and optimize the system to minimize the
cost function. Yang et al. [21] propose R-UVIS, a tightly-
coupled UWB–visual–inertial indoor localization system,
along with an optimation-based algorithm. Xu et al. [22] use
tightly-coupled VIO results and the UWB-based distance
measurements of a pair of drones to accomplish optimization-
based decentralized visual–inertial–UWB fusion for relative
state estimation. However, with conventional methods, biases
of UWB and IMU will easily drift the result of estimated
position if the accurate calibration is not applied. On the
contrary, we use the deep learning method to fuse VIO results
and UWB results. By using deep learning methods, our
method benefits from some traits of deep learning, such as
toleration of bias in input datas. Since themodel tends to learn
those biases in the training process, the proposed method
does not depend on accurate calibration of UWB beacon
location.
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FIGURE 2. Network architecture of proposed method. The VI branch (with the orange background) takes images and IMU measurements as input and
predicts the relative pose between each image frame. The UWB branch (blue background) regresses the absolute position according to the UWB
measurements.

2) LEARNING-BASED METHODS
The goal of multimodal machine learning [23] is to build
models that can process heterogeneous sources from mul-
tiple modalities. Multimodal machine learning has recently
been used in language and vision applications to pro-
vide more robust predictions, since multimodal systems
can still operate when one of the modalities is unavail-
able. For localization, applications fuse visual–LiDAR [24],
[25], and visual–inertial [25], [26], [27], [28], [29] data.
Among these, SelectFusion [25] proposes fusion modules
based on attention strategies. Such ideas have shown success
in vision–depth, vision–LiDAR, and visual–inertial fusion.
SelectFusion includes two selective fusion modules—one
using deterministic soft fusion and the other using Gumbel-
softmax-based hard fusion—to integrate different modality
features. However, none of the abovementioned methods uti-
lize the deep fusion of visual, inertial, and UWB informa-
tion. Our approach adds the UWB sensors and enhances the
model’s performance.

III. PROPOSED METHOD
In this section, we describe our method in detail. The system
comprises the VI branch, the UWB branch, and the VI-UWB
fusion mechanism. The VI branch extracts visual and inertial
features to estimate the relative pose between each frame, and
the UWB branch regresses the absolute position by consider-
ing the anchor positions and the distances between the tag and
each anchor. The poses estimated by these two branches are
then fused in an adaptive manner to estimate the global pose
of the agent. In addition, a multi-task loss function is used to

handle translation and rotation loss. The network architecture
of the proposed method is shown in Figure 2.

A. VISUAL–INERTIAL (VI) BRANCH
The VI branch is constructed following [25] in the VIO task.
In the visual encoder, we calculate the optical flow of two
consecutive image frames by FlowNetSimple [30], a popu-
lar convolutional neural network (CNN), to estimate optical
flow. We convert the optical flow to a 256-dimensional visual
feature by a fully connected layer. The inertial encoder is
a two-layer bi-directional long short-term memory (LSTM)
network with 128 hidden states that takes as input the triaxial
acceleration and triaxial angular velocity between two con-
secutive image frames, and outputs inertial features.

After the visual and inertial features are computed, they are
concatenated and the soft fusion method [25] is used to gen-
erate a weighted feature, which is passed through a two-layer
unidirectional LSTM to model temporal dependencies. The
output of the unidirectional LSTM is then used to estimate
the relative translation and rotation between two frames at
time steps t − 1 and t . We denote the output as 1TVI

t−1,t and
1RVIt−1,t , where 1TVI

t−1,t ∈ R3 is a translation vector, and
1RVIt−1,t ∈ R4 is a quaternion rotation vector.

B. ULTRA-WIDEBAND (UWB) BRANCH
We propose a learning-based model to estimate global poses
based on UWB measurements. The proposed model can be
roughly viewed as a traditional trilateration method to cal-
culate positions, the difference being that our model can be
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FIGURE 3. Deep neural network model for UWB branch.

fine-tuned for better performance, since the model can learn
the UWB measurement bias in a specific environment.

The model consists of three fully connected layers. The
first and the second hidden states contain 256 neurons,
whereas the input contains 16 neurons and the output contains
three neurons. Each fully connected layer, except for the
last one, is followed by a ReLU activation function. The
model architecture is shown in Figure 3. Given N UWB
anchors, the input should contain the distances from the target
to the anchors, di, i = 1, . . . ,N , and the anchor positions
pAi = (pAix , p

A
iy, p

A
iz), i = 1, . . . ,N . In our experiments, we set

N to 4, and the output is the estimated global translation
T̂UWB

= (̂px , p̂y, p̂z).

C. VI-UWB FUSION
After computing the VI and UWB branches, we integrate
their outputs. As mentioned above, the VI branch provides
the relative pose estimations1TVI

t−1,t and1RVIt−1,t . This facil-
itates the calculations of the VI predictions of the global pose,
T̂VI
t and R̂VIt , which is based on the global pose estimation of

time step t − 1, T̂t−1 and R̂t−1, by

T̂VI
t = T̂t−1 + R̂t−11TVI

t−1,t (1)

R̂VIt = R̂t−11RVIt−1,t , (2)

where T̂VI
t , T̂t−1 are 3-dimensional translation vectors;

R̂VIt , R̂t−1 are 3 × 3 rotation matrices.
The output of the UWB branch at time step t is denoted

by T̂UWB
t , as it contains translation but no rotation. Then, the

final estimation of our model is calculated as

T̂t =

{
T̂UWB
t , t = 0

αT̂VI
t + (1 − α)T̂UWB

t , t ≥ 1
, (3)

R̂t =

{
I3, t = 0
R̂VIt , t ≥ 1

, (4)

where α is a learnable parameter to decide the weight of VI
and UWB estimation. Note that when t = 0, there are no
consecutive image frames for the VI branch. In this case,
we use T̂UWB

t to initialize the global translation. Although
UWB can produce inaccurate measurements, our method

corrects the position error after several frames. We initialize
the global rotation using the identity matrix.

D. LOSS FUNCTIONS
For the loss function, we first define the loss for relative
translation, relative rotation, global translation, and global
rotation.

Lφ
relativeT =

∥∥∥1T φ
t−1,t − 1Tt−1,t

∥∥∥
2

(5)

Lφ
relativeR = min(∥1Rφ

t−1,t − 1Rt−1,t∥1,

∥1Rφ
t−1,t + 1Rt−1,t∥1) (6)

Lφ
globalT =

∥∥∥T̂ φ
t − Tt

∥∥∥
2

(7)

Lφ
globalR = min(∥R̂φ

t − Rt∥1, ∥R̂
φ
t + Rt∥1) (8)

Here, φ ∈ {all,VI,UWB}, where all indicates the total result
loss, VI the VI branch loss, and UWB the UWB branch loss.
Note that since UWB provides only global translation results,
LUWB
relativeT , L

UWB
relativeR, and L

UWB
globalR are not defined. We empir-

ically chose norm-2 and norm-1 in the loss functions for
translation and rotation, respectively that achieved the best
localization accuracy by the experimental results of several
trials.

In equations (5)–(8),1Tt−1,t , 1Rt−1,t are the ground-truth
relative translation and rotation, and Tt and Rt are the ground-
truth global translation and rotation. Since we use quater-
nions, and since quaternions q and −q represent the same
rotation, we resolve the antipodal problem in the loss function
as equations (6) and (8). We also use the mean absolute
error between the true and predicted quaternions, whereas the
translation error is defined as the mean square error.

E. TRAINING PROCESS AND IMPLEMENTATION
We propose two-stage training for both the VI and UWB
branches. In the first stage, we train the VI branch and UWB
branch separately. However, position initialization is not pos-
sible with just the VI branch. To train the VI branch, we mod-
ify equation (3) to not use the UWB branch information:

T̂t =

{
Tt , t = 0
T̂VI
t , t ≥ 1.

(9)

In addition, we use multi-task loss functions [31], [32] to
combine the translation and rotation loss:

Lcomb =
1

2σ 2
1

(LVI
relativeT + LVI

globalT ) + ln(1 + σ 2
1 )

+
1

2σ 2
2

(LVI
relativeR + LVI

globalR) + ln(1 + σ 2
2 ), (10)

where σ1 and σ2 are learnable parameters for the weight of
translation and rotation. Using multi-task loss functions is
more robust when training the model, since manually defin-
ing loss weights is time-consuming and easily lead to models
not converging. After completing the VI and UWB branch
training, we choose the best epoch according to the validation

61528 VOLUME 11, 2023



P.-Y. Kao et al.: VIUNet: Deep Visual–Inertial–UWB Fusion for Indoor UAV Localization

TABLE 1. Loss in each stage.

results. Then, in the second stage, we fix the UWBbranch and
train the whole network by

L =
1

2σ 2
3

(Lall
globalT ) + ln(1 + σ 2

3 )

+
1

2σ 2
4

(Lall
relativeR + Lall

globalR) + ln(1 + σ 2
4 ), (11)

where σ3 and σ4 are learnable parameters for the transla-
tion and rotation weights. Note that we do not use relative
translation loss since the VI branch is trained with fixing
the parameters of the UWB branch instead of predicting
the great relative pose by itself. The loss used to train each
branch is shown in Table 1. Moreover, the VI and UWB
estimation weight α in equation (3) is also trained in the
second stage. Learnable parameters: α, σ1, σ2, σ3, and σ4,
which controls the importance of different UWB/VI ratio
and the balance between relative and absolute poses. These
parameters are fully differentiable. We jointly optimize these
parameters along with deep neural networks’ parameters by
simply adding these parameters into the optimizers.

The proposed networks were implemented with PyTorch
and trained on an NVIDIA GeForce RTX 3090 GPU. For the
VI branch, we set learning rate lr = 1× 10−4 and trained for
80 epochs with a batch size of 4 using the Adam optimizer.
We also set the training sequence length to 3. For the UWB
branch, we set lr = 1× 10−4, the dropout rate to 0.2, and
trained for 100 epochs with a batch size of 10 using the Adam
optimizer. In the second stage of the training process, the
settings were similar to the VI branch, but with 16 epochs
and a training sequence length of 5.

IV. EXPERIMENTS
We conducted experiments to evaluate the proposedVI-UWB
fusion method.

A. EVALUATION METRICS
To evaluate the resulting output trajectories, we calculated
the root-mean-square error (RMSE) of the relative translation
and rotation as

RMSErelativeT =

√√√√1
n

n∑
t=1

∥∥1T̂t−1,t − 1Tt−1,t
∥∥2 (12)

RMSErelativeR =

√√√√1
n

n∑
t=1

∥∥∥Euler(1R̂−1
t−1,t1Rt−1,t )

∥∥∥2, (13)

where 1T̂t−1,t ∈ R3 is the predicted relative translation
vector, 1Tt−1,t ∈ R3 is the ground-truth relative translation

TABLE 2. Characteristics of each sequence in EuRoC dataset [7].

vector, 1R̂t−1,t is the predicted 3×3 relative rotation matrix,
and1Rt−1,t is the ground-truth 3×3 relative rotation matrix.

Similarly, the RMSE of the global translation and rotation
is calculated as

RMSEglobalT =

√√√√ 1
n+ 1

n∑
t=0

∥∥T̂t − Tt
∥∥2 (14)

RMSEglobalR =

√√√√ 1
n+ 1

n∑
t=0

∥∥∥Euler(̂R−1
t Rt )

∥∥∥2, (15)

where T̂t ∈ R3 is the predicted global translation vector,
Tt ∈ R3 is the ground-truth global translation vector, R̂t is the
predicted 3 × 3 global rotation matrix, and Rt is the ground-
truth 3 × 3 global rotation matrix.

B. EuRoC DATASET
The EuRoC dataset [7] is a public benchmark containing
11 sequences with synchronized stereo images, IMU mea-
surements, and ground-truth poses. The EuRoC dataset was
recorded by a micro aerial vehicle in two indoor scenes:
Machine Hall (MH) and Vicon Room (V). The characteristics
of each sequence are shown in Table 2. We used sequence
V1_01_easy for model validation, sequenceMH_04_difficult
for testing, and the other sequences for training.

Since the EuRoC dataset contains no UWB data, we sim-
ulated UWB measurements by calculating the ground-truth
distances from target to anchors and adding Gaussian noise
with standard deviation σ to each distance. In our exper-
iments, we set σ = 0.03 m and 0.1 m in both scenes.
To choose the proper anchor coordinates, we plotted all the
trajectories and determined the bounding box that contained
all the sequences. The positions of the anchors were the
vertices on top of the bounding box.
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FIGURE 4. Trajectories of different localization methods on MH_04_difficult. Ground-truth and estimated trajectories are marked in red and blue,
respectively.

TABLE 3. Global translation 3D RMSE (unit: m) on each sequence in EuRoC dataset using V1_01_easy as the validation sequence. Bold numbers indicate
the lowest error value. VIUWB*: Same structure, but with higher error (σ = 0.10) on UWB simulation.

TABLE 4. Results of different localization methods on EuRoC dataset
sequence MH_04_difficult. Bold numbers indicate the lowest error value.

The quantitative results on the MH_04_difficult sequence
are shown in Table 4. In terms of global RMSE, the pro-
posed VI-UWB methods exhibit superior performance on
translation, with rotation close to the results of the VI branch.
In terms of relative RMSE, SelectFusion achieves the best
results because it focuses solely on relative performance.
However, in real applications such as flight control and nav-
igation systems, global pose is more important than relative
pose. Since we have added global loss, Lφ

globalT and Lφ
globalR,

in our loss function, our VI branch and VI-UWB outperform
in global pose estimation.

The output trajectories of different localization methods
are shown in Figure 4. Ground-truth and estimated trajecto-
ries are marked in red and blue, respectively. In Figures 4a
and 4b, the trajectories show that compared to SelectFusion,
the VI branch prevents the predicted positions from drift-
ing too far from the ground truth. Although the VI branch
sometimes compromises the relative transformation perfor-
mance, it contributes to a better global pose after integration
with the UWB branch. Figure 4c shows the output trajec-
tories of the UWB branch. Compared to VI methods, the
UWB branch performs much better on global translation,

but does not provide a rotation estimation. Moreover, with
the time-dependent localization method of VI, the trajec-
tory of UWB can be relatively smooth. In addition, the
UWB branch has the most significant relative translation
error, since UWBmeasurements are time-independent (time-
independent means the measurements of the specific sam-
pling is not related to the previousmeasurements of sampling.
). In Figure 4c, the trajectory is clearly close to the ground
truth, but a closer look reveals that it fluctuates. Our fusion
method (Figure 4d) reduces UWB’s global translation error
and produces smoother trajectories, making our model more
practical in real-world applications.

The global translation error is the most important metric
in UAV localization. Therefore, we recorded and integrated
the global translation RMSE of each sequence in Table 3.
To evaluate each sequence, we used V1_01_easy as the vali-
dation sequence and the other sequences for training to ensure
the training data did not contain the testing data. This table
illustrates that our method is stable and robust in different
environments.

C. REAL-WORLD DATASET
Since few datasets contain vision, IMU, and UWB,
we recorded a dataset in our environment. We used a
RealSense D435i camera to capture RGB images and IMU
data, the Nooploop LinkTrack S system to record UWBmea-
surements, and the Vicon motion capture system to record the
6DoF pose ground truth. As the Vicon motion capture system
supports millimeter-level measurement precision, it is often
used in localization tasks as a ground-truth system.
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FIGURE 5. Positioning target in a real-world dataset. The yellow and blue
circles mark the camera and UWB tag, respectively, and the five red
circles indicate the Vicon ball for ground-truth estimation.

FIGURE 6. Environment for real-world dataset. The red and blue circles
indicate the position of the Vicon cameras and UWB anchors, respectively.

In Figure 5, we illustrate the target used for localization.
The yellow and blue circles mark the camera and UWB tag,
respectively, and the five red circles indicate the Vicon ball
used for ground-truth estimation. The experimental setup of
the room is shown in Figure 6. The red and blue circles
indicate the position of the Vicon cameras and UWB anchors,
respectively. We held the object in Figure 5 and moved arbi-
trarily around the room to simulate a UAVflight.We recorded
eleven sequences in total, including eight training sequences,
one validation sequence, and two testing sequences. The
characteristics of each sequence are shown in Table 5. Note
that Sequence_11 is a special case in which the trajectory is
a rectangle at the same height instead of arbitrary movement;
we used this sequence as a testing sequence.

Tables 6 and 7 show the quantitative results on real-world
testing sequences; the output trajectories of different localiza-
tion methods are shown in Figures 7 and 8. We also recorded
the results of the Nooploop LinkTrack S, a positioning system
based on IMU and UWB.

Comparing SelectFusion and the VI branch in Table 6, the
VI branch reduce the global translation RMSE as expected.
In addition, VI-UWB performs the best on global translation.
However, our global rotation is worse than that of SelectFu-
sion because our data contains more rotation. As shown in
Table 5, in the real-world dataset, the numerical value of the
angular velocity is greater than the numerical value of the
average velocity, whereas in the EuRoC dataset, the opposite
is true. For this reason, none of the methods predict rotation

TABLE 5. Characteristics of each sequence in real-world dataset.

well on the real-world dataset. In this case, the model with
a lower relative rotation error yields a lower global rotation
error.

In Sequence_11, we find that the VI branch outperforms
SelectFusion in terms of global RMSE due to the smaller
drift in the Z-axis. However, SelectFusion and the VI branch
both fail to match the ground-truth trajectory, as shown in
Figures 8a and 8b. Utilizing UWB measurements solves
this problem because UWB provides global information that
can be referenced by the VI branch. Figures 8c, 8d, and 8e
show the trajectories of the UWB branch, Nooploop Link-
Track S, and VI-UWB, respectively, all of which outper-
form the VI methods. To compare the trajectories of the
methods more clearly, we also provide a three-view drawing
of UWB branch, Nooploop LinkTrack S, and VI-UWB on
Sequence_11 in Figures 9, 10, and 11, respectively. From
the figures and the values in Table 7, we find that adding
UWB improves the performance of global pose estimation
significantly. Although orientation is not observable in the
UWB system, it helps theVI branch to learn and better predict
global rotation.

Taking into account Tables 6 and 7, the results show that
the proposed UWB branch yields accuracy similar to that
of the Nooploop LinkTrack S method. At the same time,
our VI-UWB method fuses the results of the UWB and
VI branches to obtain the best global translation accuracy.
However, in Figure 7, we find that the shape of Nooploop
LinkTrack S’s trajectory better matches the shape of the
ground-truth trajectory. This is because Nooploop LinkTrack
S’s algorithm contains a filter to smooth the trajectories and
UWB measurements, which results in an offset to match
two trajectories. The offset in each trajectory is different,
and may be related to the starting point of the trajectory or
to environmental factors. This explains the poor RMSE of
Nooploop LinkTrack S’s global translation.
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FIGURE 7. Trajectories of different methods on real-world dataset Sequence_10. Ground-truth and estimated trajectories are marked in red and blue,
respectively.

FIGURE 8. Trajectories of different methods on real-world dataset Sequence_11. Ground-truth and estimated trajectories are marked in red and blue,
respectively.

FIGURE 9. Top, front, and side views of UWB branch on real-world dataset Sequence_11.

FIGURE 10. Top, front, and side views of Nooploop LinkTrack S on real-world dataset Sequence_11.

FIGURE 11. Top, front, and side views of VI-UWB on real-world dataset Sequence_11.
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TABLE 6. Results on real-world dataset Sequence_10. Bold numbers
indicate the lowest error value.

TABLE 7. Results on real-world dataset Sequence_11. Bold numbers
indicate the lowest error value.

In sum, VI-UWB, the proposed method, effectively lever-
ages both the VI and UWB branches. The VI branch pro-
vides relative results, and the UWB branch has good global
localization results and can perform relocalization for the VI
branch. The results on the EuRoC and real-world datasets
show that VI-UWB is the best method for global pose esti-
mation, and exhibits the most consistent performance.

V. CONCLUSION
In this paper, we propose a learning-based method for vision,
inertial, and UWB sensor fusion to improve global local-
ization results. In the VI task, the proposed loss function
restricts predicted positions from drifting too far from the
ground truth. Also, the UWB model provides good global
information for the proposed VI–UWB network. To train
our models, we present a two-stage training process and
multi-task loss function that combines translation and rota-
tion loss. Experimental results on the EuRoC dataset and real-
world experiments illustrate that our method achieves high
global pose accuracy and outperforms other methods that use
only UWB or VI with initialization.
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