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ABSTRACT Dynamic texture description has been studied extensively due to its wide applications in the
field of computer vision. Local binary pattern (LBP) and its various variants account for a large part of
dynamic texture description methods because of its advantages, such as good discriminability and low
computational complexity. However, many LBP-basedmethods directly extract feature from pixel intensities
and only use a proportion of pixels in a local neighborhood. And their good classification performance is
usually achieved at the cost of high feature dimensionality, which would limit their application scenarios.
We argue that extracting features from the gradient domain will capture more discriminative features due
to the additional directional information, and that making use of all the pixels in a local neighborhood
would improve performance. In this paper, we propose a simply but effective dynamic texture descriptor
that inherits the advantages of LBP while excluding its disadvantages. The proposed method consists of four
stages of data processing: 1) gradients extraction; 2) random feature extraction from gradients; 3) binary
hashing of directional random features; and 4) histogramming. Gaussian first-order derivatives are used as
gradient filters such that stable gradients could be generated. Then random projection is applied to extract
random features from each gradients. Both the above two stages are conducted via 3D filtering, and thus
they are efficient. Thirdly, the random features from each gradient are binarized and encoded into integer
codes, from which a histogram is built. Finally, the histograms from each gradient are concatenated into a
feature vector. Because we use 8-bit codes, The feature dimensionality is very low.We evaluate the proposed
method on three benchmark dynamic texture datasets with various test protocols. The results demonstrate
its effectiveness and efficiency when comparing to many state-of-the-art methods.

INDEX TERMS Dynamic texture, feature extraction, gradient, Gaussian derivative, local binary pattern,
random feature.

I. INTRODUCTION
Dynamic textures (DTs) are the extension of static textures
in the temporal domain [1]. DTs are videos consisting of
moving scenes that exhibit some stability in both spatial and
temporal domains. DT examples include sea waves, swaying
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trees, flames, smoke, and fountains. DT description has been
extensively studied by many researchers in the last 20 years
due to its applications in many computer vision tasks, such
as human interaction [2], visual tracking [3], facial analy-
sis [4], [5], [6], lip reading [7], fire detection [8], crowd
management [9], and traffic monitoring [10]. Research works
related to DT could be roughly grouped into three classes
of segmentation, synthesis, and classification. In this paper,
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we focus on the task of DT classification and study how to
construct a compact and effective DT descriptor.

To conduct effective DT classification, DTs must be pro-
cessed and encoded into feature vectors which can be used
for classification. However, DT description is not an easy
task [11]. Spatial appearance in a DT would be affected
by changes of illumination, viewpoint, scale, and rotation.
Moreover, turbulent and non-directional motions, and sim-
ilar motions would make it hard to extract stable and dis-
criminative temporal features. Therefore, DT classification
is more challenging than the static case. Considering that
DTs are static textures with motion, many researchers tried
to extend existing texture descriptors to the spatio-temporal
domain such that both spatial and temporal features can
be captured. Such an influential work was conducted by
Zhao and Pietikainen [12], who extended the famous static
descriptor, LBP [13], for DT description and proposed vol-
ume LBP (VLBP) to capture spatial and temporal features
simultaneously. They later proposed to view a DT along three
axes (i.e., the horizontal, vertical, and temporal axes) and
treated it as three image sequences, from which LBP features
were extracted and concatenated as the final feature vector
(denoted as LBP-TOP) [4]. VLBP and LBP-TOP turned out
to be a great success for DT classification and started a
thread of research that applies binary encoding in a local
neighborhood for DT description [5], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24].

VLBP first calculates the differences between a central
pixel and P sampled pixels in its spatio-temporal neighbor-
hood, the signs of which are further encoded into a binary
string (i.e., a VLBP code). Then a histogram is built from all
the codes generated from a given DT. Obviously, the feature
dimensionality of VLBP is 2P. According to experimental
results in [4], a relatively larger P would bring good per-
formance while the cost is high dimensionality. To mitigate
this problem, LBP-TOP extracts LBP features from three
orthogonal planes (TOP) respectively and its feature dimen-
sionality is 3 × 2P. Other LBP variants basically follow the
sampling schemes of VLBP and LBP-TOP while the binary
code generation process are generally improved. Rahtu et al.
generated feature codes via phase quantization [14]. Tiwari
and Tyagi improved the performance of VLBP and LBP-
TOP by introduce additional information such as the central
pixel, absolute values of pixel differences, and local contrast
[18], [19]. Zhao et al. proposed to count the number of ones in
the binary string instead of directly using the binary code, and
they also included additional information about the central
pixel and absolute values of pixel differences (denoted as
CVLBC) [5]. Hong et al. [17] and Ren et al. [15] analyzed the
salience and reliability of LBP features respectively, and only
the most contributive features are adopted for DT classifica-
tion. Some other works [16], [20], [21], [22] improved VLBP
or LBP-TOP by incorporating a learning process. Arashloo
and Kittler proposed to filter images from three orthogonal
planes with learned filters at multiple scales, and the filter

responses were binarized and encoded into LBP codes (called
MBSIF-TOP) [16]. Later, they learned a set of multi-scale
filters from each of the three image sequences via principal
component analysis (PCA), and all the filters were organized
into a network structure, of which the outputs were encoded
into binary codes (called PCANet-TOP) [21]. Zhao et al. [20]
introduced a PCA version of the work in [16], in which
the filters are learned through PCA (called MPCAF-TOP).
Zhao et al. [22] argued that those TOP-based approaches only
use a proportion of pixels in a local neighborhood, where
some discriminative informationmay be lost. As a result, they
decided to directly process DTs with 3D filters rather than
using the TOP scheme (denoted as B3DF). In [22], they first
learned 3Dfilters from randomly sampled 3D blocks and then
filtered DT with these filters, from which the filter responses
are binarized. Additionally, they also binarized central pixels
and absolute values of pixel differences, which were finally
used for joint histogramming.

In summary, VLBP, LBP-TOP, and their variants
(i.e., LBP-based DT descriptors) do have several advantages,
such as good representation capability, robustness to illu-
mination change, and computational simplicity. However,
their disadvantages also exist. The first disadvantage is the
high dimensionality problem. To achieve good classification
performance, the number of sample pixels or the length of
the binary string should be relatively large. This problem also
stems from multi-scale processing and joint histogramming,
e.g., the works in [5], [16], [20], and [22]. The dimensions
of feature vectors produced by VLBP [4], MBSIF-TOP [16],
CVLBC [5], MPCAF-TOP [20], and B3DF [22] are 16384,
6144, 11250, 3840, 65536, respectively. High dimensionality
would largely restrict their application in scenarios with lim-
ited computational resource, such as mobile devices. As for
the second disadvantage, we argue that all the above LBP-
based DT descriptors directly process pixel values without
utilizing the directional information in the gradient domain,
which could contribute to performance improvement. This
argument is supported by [25], in which incorporating Gaus-
sian gradients and CLBP brings significant performance
improvement. The third problem is raised by Zhao et al. [22],
i.e., those methods that need to sample pixels in a neigh-
borhood, such as VLBP [4], LBP-TOP [4], novel LBP [18],
and CVLBC [5], only make use of a proportion of the pixels
in the neighborhood around a central pixel, ignoring some
pixels that may also contain discriminative information. This
point is proved to be reasonable because those methods [16],
[20], [22] using filtering technique rather than sampling
pixels make use of all the pixels in a neighborhood and
generally provide better performance.

Additionally, it should also be discussed whether incorpo-
rating a learning process is necessary. Generally speaking,
learning will bring some superiority. However, this does not
always stand, e.g., the novel LBP method [18] outperforms
a dictionary-learning method [26] by 2.88% on the chal-
lenging DynTex++ [27] dataset. Specifically, the former uses
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the simple nearest neighbor classifier while the latter adopts
the support vector machine classifier. One may argue that
applying deep learning could provide extremely good per-
formance. However, such good performance usually depends
on a prerequisite that sufficient training data are available.
Unfortunately, Zhao et al. [22] tried to train three networks
from scratch on the DynTex++ dataset (containing 3600 DTs)
and the results were poor. The reason behind the poor results
may be lack of training data. Another point worth mentioning
is that learning based method may not generalize well to new
data due to its dependence on the original training data. When
it comes to new data, learning based methods usually need
re-training while learning-free methods only need to change
some parameters. Therefore, we argue that a well-designed
DT descriptor could also provide good performance without
using any learning process.

According the above analysis about VLBP, LBP-TOP,
and their variants, we question their predominance with
regard to DT representation. In this paper, we aim to
build a DT descriptor (directional binarized random features,
DBRF) that have the following characteristics: (1) compu-
tational simplicity like LBP-based DT descriptors, (2) low
dimensionality (less than 1000), (3) processing conducted
on DT gradients, (4) using 3D filter responses instead of
pixel differences, and (5) learning-free. Specifically, the pro-
posed method consists of the following stages of processing:
(1) a given DT is first filtered with 3D Gaussian first-order
derivatives to obtain stable DT gradients along X, Y, and Z
axes, respectively; (2) random projection is applied to each
of the three DT gradients, generating a feature vector at each
valid position in space; (3) for each DT gradient, all the
feature vectors are binarized according to their signs (1 for
positive and 0 for negative) and a histogram is built from these
binary codes; (4) three histograms are concatenated into a
final feature vector, which will be used for DT classification.
And the proposed method uses three parameters, i.e., the
size of 3D Gaussian kernel (standard deviation is accordingly
determined), size and number of 3D random filters. They
could be conveniently set up according to the characteris-
tics of data used in some computer vision application. It is
obvious that the proposedmethod is simple and learning-free.
A small number of 3D random filters is adopted to ensure its
feature dimensionality is less than 1000. Its effectiveness and
the improvement brought by extracting feature in the gradient
domain are justified by extensive experiments.

The remainder of this paper is as follows. Related work
is briefly summarized in Section II. The proposed DBRF
descriptor is explained in Section III. Experimental results
are provided in Section IV. Finally, Section V concludes this
paper.

II. RELATED WORK
DT description has been studied for over two decades
and plenty of DT description methods have been reported.
According to the recently published survey on DT repre-
sentation [11], DT description approaches can be roughly

arranged into six categories: optical-flow-based, model-
based, geometry-based, filter-based, local-feature-based, and
learning-based. The proposed method belongs to the last
category. In this section, we mainly introduce those recently
published methods in each category.

A. OPTICAL-FLOW-BASED METHODS
The methods in this category aim to capture the motion
features of pixels in the spatio-temporal domain. Early meth-
ods [28], [29], [30] estimates the normal flow from DTs,
from which feature vector are constructed. However, those
methods are not evaluated on standard DT datasets. And the
normal flow estimation process depends on the assumption of
brightness constancy and local smoothness, which are hard
to justify. Therefore, we skip their details. Different from
the above methods that only use motion features, Nguyen
et al. made use of both motion and appearance, and pro-
posed two methods: (1) features of directional trajectories
in accordance with motion angle patterns (FD-MAP) [31]
and (2) directional dense trajectory patterns (DDTP) [32].
Both the two methods achieve good performance. Couto and
Barcelosuto [33] extracted singular patterns [34], which were
further pooled to form a DT descriptor called DT-SP.

B. MODEL-BASED METHODS
Model-based methods attempt to construct an underlying
model that generates DTs and to use the model parame-
ters for DT description. The pioneering work was done by
Doretto et al. [1], [35], who proposed the linear dynami-
cal system (LDS) as a DT generative model. Other model-
based methods are generally variants of the LDS method.
Chan et al. proposed a series of LDS-based methods for
DT analysis. They incorporated a probabilistic kernel with
LDS [36]. They also proposed to estimate LDS parame-
ters via kernel-PCA instead of PCA because a non-linear
function would describe complex motions better [37]. Later,
they presented a generative model called DT mixtures, which
were further clustered for DT description (denoted as HEM-
DTM) [38]. Instead of measuring the distance between two
sets of model parameters, Ravichandran et al. [39], [40]
estimated LDS parameters from sampled sub-DTs and a low-
dimensional Euclidean embedding of these models was con-
ducted such that clustering on these models could be applied
to generate a codebook, which is used for DT representation.
Specifically, two clustering algorithms (hierarchical K-means
and K-Medoid) are adopted and thus two methods (denoted
as BoS-HK [39] and BoS-KM [40]) are reported. To improve
the BoS methods, Mumtaz et al. [41] proposed BoS tree
(BoST) based on their early work [38]. Some other works
also applied various techniques to construct codebooks from
LDS models [42], [43], [44], [45].

Besides the above LDS-based models, some other mod-
eling techniques have also been explored. Ribas et al. [46]
adopted the diffusion network and model DT features as
a directed network. Gonçalves et al. [47] built a complex
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network using the Euclidean distance between related pix-
els [47]. Ribas and Bruno [46] adopted the deterministic
partially self-avoiding walk for DT feature extraction. The
hidden Markov model [48], [49] and the finite mixture of
von Mises distributions [50] have also been utilized for DT
description.

C. GEOMETRY-BASED METHODS
Methods in this class mainly focus on the structure informa-
tion in DTs. Mandelbrot [51] proposed the notion of fractal
structure that means an object displays self-similarity across
multiple scales. By viewing a DT as a 3D volume, Xu et
al. [52], [53] proposed the dynamic fractal spectrum (DFS),
which captured the self-similarity information in both the 3D
volume and 2D slices of the 3D volume. The DFS method
was further extended into two new methods, i.e., 3D ori-
ented transform feature (3D-OTF) [54] and wavelet domain
multiple fractal spectrum (WMFS) [55]. As a specialized
concept in fractal geometry, lacunarity [51] is used tomeasure
how patterns fill space. Quan et al. [56] made use of this
measure and proposed a DT descriptor called spatio-temporal
lacunarity spectrum (STLS). 2D discrete wavelet transform
uses separable filters and can decompose an image into a
low-frequency sub-band and three high-frequency sub-bands,
which convey different structure information. Dubois et al.
used three filters to decompose DTs in multiple scales and the
absolute values of wavelet coefficients in each scale and sub-
band are averaged to form a DT descriptor [57]. Later, they
did a similar work using curvelet transform [58]. Addition-
ally, Baktashmotlagh et al. [59] applied non-linear stationary
subspace analysis to separate the stationary parts of DTs from
the non-stationary parts and then only the stationary parts
were utilized for DT representation.

D. FILTER-BASED METHODS
Methods in this class usually first filter DTs with some filters
and then construct DT feature vectors from filter responses.
The filters can be learned or non-learned. Methods using
learned filters include MBSIF-TOP [16], MPCAF-TOP [20],
and B3DF [22]. Details could be found in Section I. There
are also several methods using non-learned filters. Derpanis
and Wildes [60] used Gaussian-gradient filters to extract
spatio-temporal oriented energy for DT description. Rivera
and Chae [61] proposed to filter DTs with 2D/3D Kirsch
masks, of which the filter responses were adapted to a direc-
tional transitional number graph (DNG) for DT classification.
Jansson and Lindeberg [62] used space-time separable
kernels to extract spatio-temporal receptive field (STRF)
responses, and then PCA is applied for dimension reduction.
Nguyen et al. [25], [63], [64], [65] incorporated completed
LBP with Gaussian gradients, and reported a series of meth-
ods for DT representation.

E. LOCAL-FEATURE-BASED METHODS
Almost all the methods in this class are variants of LBP.
Several works [4], [5], [18], [19] have been introduced in
Section I. Hereafter, we briefly introduce other LBP-based

methods. Ren et al. [66] proposed the data-driven LBP
(DDLBP), in which LBP structures are optimized glob-
ally. Sun et al. [67] combined lacunarity analysis [51] with
local ternary pattern (LTP) [68] and proposed the LTP-
Lacunarity (LTP-Lac) features. On the basis of LBP fea-
tures, Xie and Fang [69] applied collaborative representation
to build the video set based collaborative representation.
Nguyen et al. [70] extended completed local structure pattern
(CLSP) [71] with the TOP scheme (CLSP-TOP). Later, they
further extended CLSP and proposed the complete statisti-
cal adaptive pattern (CSAP-TOP) [72]. In 2020, they pro-
posed three other methods: (1) hierarchical local pattern [73],
(2) local Rubik pattern (LRP) [74], and (3) applying the
completed version of local derivative pattern [75] to extract
momental directional patterns [76]. Tiwari and Tyagi [77]
combined Weber’s law with LBP features (WLBPC). Mean-
time, they determined the local threshold according to local
neighborhood differences and proposed the edge-weighted
local structure pattern (EWLSP) descriptor [78].

F. LEARNING-BASED METHODS
Methods in this class mainly uses the popular and effective
deep learning techniques and dictionary learning tech-
niques. Trand et al. [79] proposed to train a 3D convolu-
tional neural network (C3D) on a large set of videos and
applied it for DT classification. Note that C3D does not
use DT datasets for training because the benchmark DT
datasets are not large enough to train a deep network. As a
result, Several works [80], [81], [82] proposed to trans-
fer the representation power from existing deep networks
(e.g., AlexNet [83], GoogleNet [84], and VGGNet [85]) that
are trained on other large datasets. Qi et al. [80] fedDT frames
and frame differences at an interval into VGGNet, respec-
tively. Statistical features were respectively extracted from
two kinds of outputs and concatenated as the spatio-temporal
transferred ConvNet features (st-TCoF). Hong et al. [81] used
the outputs of the fully connected layer and the convolutional
layer of VGGNet as intermediate features, which were further
encoded by Fisher vector [86] encoding. Andrearczyk and
Whelan [82] chose the TOP scheme and fed each of the
three image sequences into AlexNet/GoogleNet, of which the
outputs were first aggregated and then concatenated into a
feature vector (denoted as DT-CNN). There also exists some
network-based methods that does not actually use typical
deep learning techniques.Wang andHu [87] adopted the deep
belief network to extract high-level features from chaotic and
low-level features, while Zrira et al. [88] fed LBP features into
such a network. Koleini et al. [89] used Bayesian network to
combine multiple features. Hadji and Wildes [90] organized
a set of pre-defined 3D Gaussian third-order derivative filters
into a convolutional network with pooling layers (SOE-Net)
and achieved good DT classification performance. Note that
SOE-Net is actually learning-free. Junior et al. [91] adopted
the randomized neural network that has only two layers.
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FIGURE 1. Overview of the proposed method.

As for dictionary learning, Harandi et al. [92] applied
sparse coding on Grassmann manifolds to learn a dictionary
from LBP-TOP features. Quan et al. also utilized sparse
coding technique and proposed orthogonal tensor dictio-
nary learning (OTDL) [93] and equiangular kernel dictio-
nary learning (EKDL) [26] for DT representation. However,
it remains unclear how they choose a portion of atoms from
the learned dictionaries. Fisher vector [86] encoding has also
been used to build dictionaries fromDTs. Zhao et al. [23] first
extracted 3D random features from sampled 3D blocks and
then trained a Gaussian mixture model (GMM), after which
Fisher vector encoding was applied to generate DT feature
vectors (denoted as 3DRF). Later, Xiong et al. [24] extended
3DRF by replacing the random filters with those learned via
independent component analysis. However, the performance
improvement is marginal.

III. THE PROPOSED METHOD
In this section, we provide the details about the derivation
of the proposed DT representation method. The processing
framework is first introduced and then each of its components
is explained in details.

A. OVERVIEW OF THE PROPOSED METHOD
We follow the notion of local processing and aim to propose
a simple but effective DT representation. Our main idea is to
extract binarized random features from Gaussian gradients of
a given DT (denoted as DBRF). The proposed framework is
illustrated in Fig. 1.

First, we generate 3D Gaussian first-order derivatives
along X, Y, and Z directions in the spatio-temporal domain.
By viewing a DT video as a 3D volume, three directional
gradients are extracted. Due to the smoothing property of
Gaussian kernel, the gradients are stable and robust against
noise to some extent. Extracting gradients introduces extra
directional information, which has been proved to be bene-
ficial for DT presentation [65]. Second, random projection
is conducted at every valid position in the three gradients,
respectively. Specifically, the local neighborhood of a certain
size at each valid position is convolved respectively with L 3D
random filters, generating a vector consisting of L features.
As a dimensionality reduction method, a small number of
random projections could capture enough salient informa-
tion in the signal [94]. Moreover, its learning-free property
makes it very convenient for feature extraction, especially
for resource-restricted scenarios. Third, the signs of the L

random features are encoded into a L-bit binary code. And
a histogram is constructed from the binary codes with respect
to each of the three gradients. After concatenating the three
histograms, a global feature vector of 3 × 2L dimensions is
obtained to represent the given DT. Details about the above
three components are described in the following sections.

B. 3D GAUSSIAN GRADIENTS EXTRACTION
As we challenge many existing LBP-based methods that do
not make use of directional information and directly extract
features from raw pixels, we decided to extract features
from gradients such that the useful directional information
is utilized. As for gradient computation, there exists at least
five operators, i.e., Sobel operator, Prewitt operator, cen-
tral difference operator, intermediate difference operator, and
Gaussian first-order derivative. According to our previous
experience on face recognition task [95] and the success of
Nguyen et al. [65], we adopt the Gaussian first-order deriva-
tives for gradient extraction.

Here we briefly introduce how 3D Gaussian first-order
derivatives are computed. A Gaussian kernel in 3D domain
is defined as follows.

G(x, y, z, σ ) =
1

(σ
√
2π )3

exp(−
x2 + y2 + z2

2σ 2 ), (1)

where x, y, z ∈ [−3σ, 3σ ] indicate the coordinate in the local
neighborhood and σ is the standard deviation. According to
(1), three 3D Gaussian first-order derivatives along x, y, and
z directions can be computed by

Gx(x, y, z, σ ) =
−x
σ 2

1

(σ
√
2π )3

exp(−
x2 + y2 + z2

2σ 2 ), (2)

Gy(x, y, z, σ ) =
−y
σ 2

1

(σ
√
2π )3

exp(−
x2 + y2 + z2

2σ 2 ), (3)

Gz(x, y, z, σ ) =
−z
σ 2

1

(σ
√
2π )3

exp(−
x2 + y2 + z2

2σ 2 ). (4)

Given a DT D of size X × Y × Z (X × Y is the spatial
size and T is the temporal size), three directional gradients
are obtained by convolving it respectively with Gx , Gy, and
Gz as

gx = Gx ∗ D, (5)

gy = Gy ∗ D, (6)

gz = Gz ∗ D, (7)

where ∗ is the convolution operator. Note that no padding is
applied for border pixels. Assume that the 3DGaussian kernel
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FIGURE 2. Example of a DT frame and its corresponding gradient frames
from gx , gy , and gz with σ = 0.7.

size is k × k × k , where k is an odd number. Then, the size
of the three Gaussian gradient volumes is (X − ⌊

k
2⌋) × (Y −

⌊
k
2⌋) × (T − ⌊

k
2⌋). As an illustration, it can be observed in

Fig. 2 that three types of directional features are captured by
3D Gaussian first-order derivatives.

C. RANDOM FEATURE EXTRACTION
Given a 3D gradient volume g ∈ {gx , gy, gz}, local 3D
cubes of size d × d × d are densely sampled at every
valid position. As we do not apply border padding, there
are in total N = (X − ⌊

k
2⌋ − ⌊

d
2 ⌋) × (Y − ⌊

k
2⌋ − ⌊

d
2 ⌋) ×

(T − ⌊
k
2⌋ − ⌊

d
2 ⌋) cubes, denoted as {xi}Ni=1. To prevent

the potential problem that the extracted random features are
all positive or all negative, each cube xi is normalized to
have zero mean by subtracting the local mean gradient value
xmi =

1
d3

∑d
x=1

∑d
y=1

∑d
t=1 xi(x, y, t) from each gradient

value in it.
To conduct random projection, we randomly generate a set

of L 3D filters of size d × d × d , denoted as {wl}
L
l=1. For

each normalized 3D cube, a set of L random features {f il }
L
l=1

are obtained by convolving it with each of the L random
filters as

f il = wl ∗ (xi − xmi ), (8)

(xi − xmi ) means subtracting xmi from each gradient value
in xi.

It is obvious that we extract features directly from the
local 3D cube rather than three orthogonal planes. The main
difference is that we make use of all the values in a local
neighborhood while many TOP-based methods uses only a
proportion of them. This point is clearly illustrated in Fig. 3.
We argue that those ignored components also contain infor-
mation that is beneficial for DT representation.

Additionally, the sampling process and zero-mean normal-
ization explained above would be quite time-consuming if the
two processes are conducted in a straight forward manner.
But, there exists an efficient way to do the same thing. Specif-
ically, convolving a zero-mean-normalized cube with a given
3D filter is equivalent to convolving the original cube with
a zero-mean-normalized 3D filter. Please refer to our early
work [22] for the detailed derivation. As a result, we directly
convolve the gradient g with zero-mean-normalized 3D
random filters in implementation, which would make the
feature extraction process fast to compute (because the time-
consuming sampling step is skipped).

FIGURE 3. Comparison of how random features are extracted from a 3D
cube of size 3 × 3 × 3 (top) and how LBP-TOP processes the same 3D cube
(bottom).

D. BINARY ENCODING AND HISTOGRAMMING
After obtaining a bunch of vectors of L random features
from a DT, the task is to aggregate those local features into
a global feature vector that could be used for DT classi-
fication. Several commonly used techniques are dictionary
learning [26], [92], [93], k-means clustering [96], Fisher vec-
tor encoding [23], and histogramming on local binary codes
[22], [25]. The former three techniques require a training
process to generate a dictionary or a set of cluster centers
(used as a dictionary), which is not in line with our goal.
Therefore, we decide to encode a random feature vector into
a binary string as

DBRFg,σ,d,L =

L∑
l=1

2l−1s(fl), (9)

where g ∈ {gx , gy, gz} the function s(x) returns 1 if x > 0,
otherwise 0.

Then, for each gradient, a histogram of 2L bins are con-
structed from the corresponding binary codes by

Ho
g,σ,d,L(j) =

∑
x,y,t

I (DBRFg,σ,d,L = j), (10)

where j ∈ [0, 2L−1] is an integer (i.e., a binary code) and the
function I (t) return 1 if t is true, otherwise 0. It is obvious
that the above histogramming process actually counts the
probability distributions of all binary codes.

In some real application scenarios, two DTs of different
sizes belonging to the same class would be mis-classified if
the original histogram Ho

g,σ,d,L is directly used. To avoid this
problem caused by the DT size, the histogram needs to be
normalized as

Hg,σ,d,L(j) =
Ho
g,σ,d,L(j)∑

j′ H
o
g,σ,d,L(j

′)
, (11)
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FIGURE 4. DT examples from the two datasets of UCLA (top) and
DynTex (bottom).

such that the histogram is no longer relevant to the DT
size and a coherent DT representation is generated. Finally,
a global feature vector is obtained by concatenating the three
histograms as

Hσ,d,L = [Hgx ,σ,d,L ,Hgy,σ,d,L ,Hgz,σ,d,L], (12)

which contains 3 × 2L dimensions and will be used for DT
classification.

IV. EXPERIMENTS
In this section, we evaluate the proposed DBRF descriptor on
three benchmark DT datasets, which are UCLA [35], Dyn-
Tex [97], and DynTex++ [27]. To assess the representation
power of our DBRF descriptor, we deliberately adopt the
simple nearest neighbor (NN) classifier for DT classifica-
tion, such that the emphasis is on the contribution of the
DBRF descriptor. Moreover, the Chi-square statistic is used
as the dissimilarity measure. Comparison with state-of-the-
art results are provided.

A. DATASETS AND EVALUATION PROTOCOLS
Here we detailedly introduce how the three benchmark
datasets are formed, as well as the corresponding evaluation
protocols, according to which experiments are conducted.
A few examples from the UCLA and DynTex datasets are
shown in Fig. 4. Note that those color videos are converted
into gray-scale ones before conducting experiments. As for
classification, the NN classifier is applied unless otherwise
specified.

1) UCLA DATASET
This dataset is consisting of 200 DT videos of size
160× 110× 75, which are originally grouped into 50 classes
with four videos belonging to each class.We choose a prepro-
cessed version1, in which all the videos are cropped to be of
size 48×48×75 such that only the key dynamical properties
are captured. As for experimental evaluation, there are four
protocols as follows.

• 50-class leave-one-out (LOO) classification: Each
time one DT is used as the test sample and the other
199 DTs are for training. The final classification accu-
racy is obtained via dividing the number of correct clas-
sifications by 200.

1http://www.bernardghanem.com/datasets

• 50-class 4-fold cross validation (4CFV): 200 DTs are
split into four groups, each of which contains one DT
from each class. The split scheme is attached with the
data. Every time one group is used as test data while
the other groups are the training data. Four classification
rates are averaged as the final rate.

• 9-class half-to-half validation: Due to the observation
that some DTs in different classes could be seman-
tically categorized into the same class, 200 DTs are
re-organized into nine classes, which are smoke (4), fire
(8), boiling (8), water (12), flower (12), sea (12), water-
fall (16), fountain (20), and plant (108) (the number in
parentheses means the group size). Then half of the DTs
in each class are randomly selected from training and the
other half for test. This evaluation is repeated 20 times
and the classification rates are averaged.

• 8-class half-to-half validation: In 9-class breakdown,
the number of DTs in plant class is 108, whichmay cause
biased results. Therefore, the plant class is discarded and
the half-to-half validation is repeated on the remaining
data for 20 times.

2) DynTex DATASET
This dataset is a large and challenging dataset consisting of
679 videos of size 352 × 288 × 250. Part of this data are
selected and arranged into four subsets for evaluation with the
LOO classification scheme. The four subsets are organized as
follows.

• DynTex35: This subset is the early version of the
DynTex dataset, and includes 35 videos of size
400×300×250. Each video belongs to an unique class.
Following the setting in [12], each video is viewed in
3D space and cropped at the point (x = 170, y = 130,
and t = 100), bringing forth eight non-overlapping
sub-videos. Together with two other sub-videos by only
cropping the original video at t = 100, there are 10 sub-
videos of different sizes in each class. And sub-videos
of the same size are put into one group (ten groups
in total). Each time one group is used for test and the
other nine ones are for training. The NN classifier is
applied for classification with our DBRF. Some existing
methods adopt the nearest class center (NCC) classifier.
When using the NCC classifier, training feature vectors
belonging to the same class are averaged as the cor-
responding class center. A test feature vector is only
compared to the class center and classified into the class,
to whose class center the distance is minimal. Using
NCC may make the classification process a little bit
more challenging. Finally, ten classification rates are
averaged.

• Alpha: This subset contains 60 videos belonging to three
classes of grass, sea and trees. Each class has 20 videos.

• Beta: This subset is consisting of 162 videos, which
belong to ten classes of sea (20), vegetation (20),

VOLUME 11, 2023 55901



X. Zhao et al.: Dynamic Texture Classification Using Directional Binarized Random Features

TABLE 1. Analysis of data used in each evaluation protocol with respect
to DT size and intra-class variation.

trees (20), flags (20), calm water (20), fountains (20),
traffic (9), smoke (16), escalator (7), and rotation (10).

• Gamma: This subset contains 275 videos, which also
belong to ten classes of flowers (29), sea (38), naked
trees (25), foliage (35), escalator (7), calm water (30),
flags (31), grass (23), traffic (9), and fountains (37).

3) DynTex++ DATASET
This dataset is composed from 345 videos of DynTex by
clipping them into 3600 sub-videos of size 50 × 50 × 50.
These sub-videos are preprocessed and then organized into
36 classes, each with 100 sub-videos. The evaluation on
this dataset follows the half-to-half validation scheme, i.e.,
randomly selected half of the data in each class for training
and the other half for test. This evaluation is repeated 10 times
and the classification rates are averaged as the final result.

B. PARAMETER SETTING
As shown in (12), the proposed DBRF descriptor depends
on three parameters, i.e., the standard deviation of Gaussian
kernel (σ ), the size of random filters (d), and the number of
random filters (L). Among the three parameters, only L is
relevant to the length of DBRF feature vectors. Because one
of our goals is low dimensionality, the value of L is fixed
at 8, such that the DBRF feature vector only has 3 × 28 =

768 dimensions. For the other two parameters, we empirically
investigate σ ∈ {0.5, 0.7, 1, 1.5, 2, 2.2, 2.5} (accordingly k ∈

{3, 5, 7, 9, 11, 13, 15}) and d ∈ {3, 5, 7, 9, 11, 13, 15}.
As a learning-free DT descriptor similar to VLBP, the

representation power of DBRFmainly depends on the param-
eters and the characteristics of DT data. Some researchers
may conduct grid search on various parameter settings for
each dataset. In our case, there are 36 combinations. We think
conducting grid search is time-consuming and has little guid-
ing significance for related real-word applications. Instead,
we decide to first analyze the characteristics of data used in
each evaluation protocol.We focus on two properties, DT size
and intra-class variation. According to DT size, the 50-class,
9-class, and 8-class breakdowns of UCLA dataset, and Dyn-
Tex++ dataset contain small DTs while the four protocols
on the DynTex dataset use large DTs. On the other hand,
intra-class variation in UCLA 50-class breakdown is small
while UCLA9-class and 8-class breakdowns containsmedian
intra-class variation due to the re-organization of data. The

FIGURE 5. Performance comparison of various parameter combinations
on UCLA 50-class 4CFV.

four subsets from the DynTex dataset have large intra-class
variation due to various motions and complex backgrounds.
As a recompilation of the DynTex dataset, the DynTex++
dataset contains a large number of DTs from various videos
and has very large intra-class variation. This discussion is
summarized in Table 1.

According to the above discussion, we decide to con-
duct grid search with UCLA 50-class 4CFV classification,
UCLA 9-class half-to-half validation, Beta, and Dyntex++.
To verify whether the knowledge obtained by grid search
can be instructive for other similar tasks, we directly apply
these found parameters in experiments conducted on UCLA
50-class LOO, UCLA 8-class half-to-half validation, and
other three subsets from theDynTex dataset, respectively. The
results of grid search on UCLA 50-class 4CFV and 9-class
half-to-half validation are presented in Fig. 5 and Fig. 6,
respectively.

In Fig. 5, it can be observed that increasing the value of
σ would cause decrease of performance when d ∈ {3, 5}.
For other choices of d , the classification rates generally first
increase to peaks and then decrease when the value of σ

increases. The best performance is obtained with d = 15 and
σ = 2. Similar observations can be found in Fig. 6. When
increasing the value of σ , d ∈ {3, 5, 13} degrades perfor-
mance while d ∈ {7, 9, 11, 15} first increases classification
rate to the highest point, after which performance decreases.
And d = 9 and σ = 2.2 provide the highest classification
rate (99%).

As for the grid search on Beta subset (shown in Fig. 7),
the classification rates generally fluctuate as the value of σ

increases, in spite of the choice of d . Additionally, two peaks
could be observed. The lower one is around σ = 0.7 and
the higher one is near σ = 2. If we focus on the value of d ,
d = 13 gives the best performance. When it comes to the
grid search on DynTex++ (shown in Fig. 8), things are very
straightforward, i.e., increasing either the value σ or the value
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TABLE 2. Comparison of processing time (in seconds) among DBRF, VLBP and LBP-TOP.

FIGURE 6. Performance comparison of various parameter combinations
on UCLA 9-class.

FIGURE 7. Performance comparison of various parameter combinations
on Beta dataset.

of d would gradually decrease classification rates. Therefore,
d = 3 and σ = 0.5 should be adopted.

According to the above experimental test and analysis,
several suggestions could be made for the application of the
proposed DBRF descriptor. If the data size is small, a rela-
tively small d if its intra-class variation is large. Unless the
intra-class variation is very large, a σ close to 2 is a good
choice, otherwise a very small σ should be adopted. If the
data size is large, both d and σ should be relatively large.
As for the following experiments and comparison with

existing methods, we use σ = 2 and d = 15 for experiments
on UCLA 50-class breakdown, σ = 2.2 and d = 9 for UCLA

FIGURE 8. Performance comparison of various parameter combinations
on DynTex++ dataset.

9-class and 8-class breakdowns, σ = 2 and d = 13 for the
four DynTex subsets, σ = 0.5 and d = 3 for DynTex++
dataset, respectively.

C. COMPUTATIONAL COMPLEXITY
It is commonly agreed that computational complexity and
classification accuracy are of equal importance [17]. There-
fore, we need to report how efficient the proposed DBRF is.
Here we decide to record the elapsed time between feeding a
DT to the feature extraction program and obtaining the corre-
sponding feature vector. Considering that many researchers
did not release their code and that the hardware setting can
hardly be the same, we follow two works [5], [25] to evaluate
the efficiency of our DBRF. Specifically, we compare DBRF
with VLBP and LBP-TOP2(P = 8, R = 1). We randomly
choose a DT from the DynTex++ dataset and extract the cor-
responding LBP, LBP-TOP and DBRF features for ten times.
Note that all the methods for comparison are implemented in
native Matlab codes, which are executed in single-threading
on a 64-bit Windows desktop with a Core i7-7700 3.6GHz
CPU and 16G RAM.

The averaged processing times are summarized in Table 2.
The computational efficiency of the proposed DBRF is
related to four operations, which are Gaussian filtering
(3 times), random projection (8 times), binary encoding and
histogramming. Given a DT of a certain size, the processing
time would be mainly affected by the sizes of Gaussian kernel
and random filters because the time cost of binary encoding

2The Matlab implementations of VLBP and LBP-TOP is available at:
https://github.com/I2Cvb/retinopathy/tree/master/src/matlab/STLBP_Matlab
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TABLE 3. Performance comparison of the proposed DBRF with other methods on the three datasets under different evaluation protocols.

and histogramming is almost fixed. This analysis is in line
with the results in Table 2. Because we conduct random
projection for eight times, its time cost dominates the whole
processing time. When d < 13, the DBRF is fast to compute.
When d >= 13, it is still more efficient than VLBP.

D. COMPARATIVE EVALUATION
In this section, we evaluate the DBRF descriptor on the three
benchmark datasets with various protocols (using the param-
eters determined in Section IV-B). Comparison with existing

methods, especially local-feature-based ones, is also con-
ducted. Note that the classification rates and feature lengths
(if available) of existing descriptors are quoted directly
from the literature. Performance comparison of the proposed
DBRF with other methods on the three datasets with differ-
ent evaluation protocols is summarized in Table 3. All the
methods (including the proposed one) are grouped according
to the typology used in Section II, with one exception: those
deep-learning-based ones are separately put into a group due
to their excellent performance.
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FIGURE 9. The first five frames of the mis-classified candle DT (top) and
those of its nearest neighbor belonging to the fire class (bottom).

1) RESULTS ON THE UCLA DATASET
As shown in Table 3, most of the existing approaches are
evaluated on the UCLA dataset (some ones may only use
part of the four protocols). The proposed DBRF method is
almost the best compared to other methods that are evaluated
with the four standard protocols.

The proposed method achieves a rate of 99.50% on
UCLA 50-class breakdown with LOO scheme. It is on par
with MBSIF-TOP [16], MPCAF-TOP [20], FoSIG [63],
V-BIG [64], CSAP-TOP [72], HILOP [73], B3DF_SMC [22],
and ICFV [24]. Among these methods, MPCAF-TOP is
a filter-learning-based multi-scale descriptor and ICFV
involves two learning processes of filter learning and code-
book construction, while our method is learning-free and thus
has no dependence on data. FoSIG, V-BIG and HILOP are
evaluated only with SVM classifier, which makes it difficult
to distinguish the contribution of the descriptors themselves
from that of the classifier. Both CSAP-TOP and B3dF_SMC
are learning-free. However, their dimensionalities are very
high. The former has 13200 features while the latter has
65536 ones. The feature lengths of MBSIF-TOP, MPCAF-
TOP, FoSIG, V-BIG, ICFV and HILOP are 6144, 3840, 1200,
2400, 1600, and 5664, respectively. The proposed DBRF has
only 768 dimensions, which is substantially less than other
methods. On the other hand, HoGF2D [25], HoGF3D [25],
DoDGF2D [65], DoDGF3D [65], MEMDP [76], and RUBIG
[74] slightly outperform DBRF by 0.5% and all of them
adopt SVM for DT classification. Due to the fact that all of
them use features from multiple scales, they generate high-
dimensional feature vectors (7200, 9600, 4800, 7200 3888,
21600, respectively), which are at least 4 times longer than
ours. Additionally, we also investigate which DT is mis-
classified by our DBRF. We find out a candle DT is classified
into the fire class. The first five frames of the candle DT and
its nearest neighbor in training DTs are illustrated in Fig. 9.
It is obvious that both DTs contain a flickered flame and are
semantically belonging to the same class.

When using the 4CFV scheme, our DBRF correctly classi-
fies all test samples, i.e., the rate is 100%. The rates provided
by DFS [53], STRF N-jet [62], FoSIG [63], HoGF2D [25],
HoGF3D [25], DoDGF2D [65], MEMDP [76], RUBIG [74],
and PI-LBP [15] are also 100%. Except for STRF N-jet and
PI-LBP, all the other methods use SVM classifier. PI-LBP
applied PCA twice, which was followed by a discriminant

FIGURE 10. Confusion matrix for DBRF on the UCLA 9-class breakdown
(the numbers are in percentage).

analysis. We think it is more complex than our DBRF though
its feature dimensionality is unreported. STRF N-jet has two
stages of multi-scale filtering which is followed by PCA for
dimensionality reduction. However, it still has 16348 dimen-
sions (computed according to its parameter setting). There-
fore, the proposed DBRF still has some superiority over the
compared ones due to its low dimensionality and simplicity.

When evaluated on the 9-class breakdown, the proposed
DBRF achieves a rate of 99%, which is on par with STRF
N-jet [62]. MPCAF-TOP [20], HoGF2D [25], HoGF3D [25],
DoDGF2D [65], MEMDP [76], CVLBC [5], RUBIG [74],
3DRF [23], and ICFV [24] marginally outperform our DBRF
by 0.15%, 0.2%, 0.25%, 0.25%, 0.55%, 0.2%, 0.2%, 0.24%,
and 0.25%, respectively. All of them have much higher
dimensionalities and most of the classification rates are
obtained with SVM classifier. Fig. 10 is the confusion matrix
for DBRF under this protocol. The ‘‘fire-fountain’’ and
‘‘flower-plant’’ mis-classifications should be addressed care-
fully in future because some DTs of the two classes are very
similar to each other.

On the 8-class breakdown, 99.67% by DBRF is higher
than the rates by all the other methods. The advantages
of our DBRF are fully revealed when the dominant plant
class is discarded. As a learning-free method that has only
768 dimensions, the proposed DBRF outperforms those high-
dimensional descriptors that use SVM classifier, and even
two deep learning methods. The confusion matrix is shown
in Fig. 11. The main confusion is that some DTs of the fire
class are classified into the fountain and waterfall classes.
We assume the reason could be that the motion of a flickered
flame is a little similar to that of moving waters.
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FIGURE 11. Confusion matrix for DBRF on the UCLA 8-class breakdown
(the numbers are in percentage).

FIGURE 12. First frames of the three mis-classified DTs (top) and those of
their corresponding nearest neighbors in training data (bottom).

2) RESULTS ON THE DynTex DATASET
The proposed DBRF achieves a rate of 100% on the
DynTex35 subset and outperforms all the other methods,
especially those recently published ones that use SVM
classifier and high-dimensional feature vectors, such as
HoGF2D [25], HoGF3D [25], DoDGF2D [65], MEMDP [76],
and RUBIG [74].

On the other three subset, the performance of our DBRF is
not as good as that on the DynTex35 subset. We can only say
acceptable results are obtained, considering the complexity
of data in Alpha, Beta, and Gamma subsets.

On the Alpha subset, the proposed DBRF provides a rate
of 95%. It outperforms FD-MAP [31], DDTP [32], ASF-
TOP [17], CSAP-TOP [72],MBSIF-TOP [16], LBP-TOP [4],
and LTP-lac [67] by at least 3.33%. Some of them are recently
published and use SVM classifier. Two methods of CLSP-
TOP [70] and B3DF_SMC [22] are on par with our DBRF
while they use longer feature vectors. STRF N-jet [62],

FIGURE 13. Confusion matrix for DBRF on the Beta subset (the numbers
are in percentage).

HoGF2D [25], HoGF3D [25], DoDGF2D [65], DoDGF3D [65],
RUBIG [74], SOE-Net [90], 3DRF [23], and ICFV [24]
significantly outperform the proposed DBRF by a rate of
3.3% to 5%. As shown Fig. 12, three DTs from the grass class
are mis-classified into the trees class. The waving grasses
seem to have similar motion patterns as the swaying tree
branches with no leaf, which may be the reason for the mis-
classifications.

The Beta subset is built by adding extra DTs to the Alpha
subset and hence it is more challenging than the Alpha subset.
The situation is similar to that on the Alpha subset. Our
DBRF achieves a rate of 90.12%,which is slightly higher than
those of FD-MAP [31], DDTP [32], ASF-TOP [17], CSAP-
TOP [72], MBSIF-TOP [16], LBP-TOP [4], LTP-lac [67],
CLSP-TOP [70], and 3DRF [23]. And it is outperformed
by FoSIG [63], V-BIG [64], HoGF2D [25], HoGF3D [25],
DoDGF2D [65], DoDGF3D [65], MEMDP [76], RUBIG [74]
SOE-Net [90], and ICFV [24] by at least 2%. Both the motion
and appearance patterns in this subset are very complex,
causing that at least 10% of the DTs from the six classes of
vegetation, calm water, smoke, escalator, traffic and rotation
are mis-classified. Fig. 13 illustrates the confusion matrix.

The Gamma subset is built by adding extra DTs to the Beta
set and hence it is more challenging than the Beta subset. The
rate by DBRF decreases to 87.5% on the Gamma subset and
only outperforms FD-MAP [31], DDTP [32], LBP-TOP [4],
and LTP-lac [67], which indicates that the advantages of our
DBRF are only low dimensionality and simplicity. According
to the confusion matrix shown in Fig. 14, nearly half of the
escalator DTs are mis-classified.

According the results on the Alpha, Beta, and Gamma sub-
sets, an interesting point can be observed: among those meth-
ods that significantly outperform the proposed DBRF, most
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FIGURE 14. Confusion matrix for DBRF on the Gamma subset (the
numbers are in percentage).

learning-free methods (e.g., HoGF2D [25], HoGF3D [25],
DoDGF2D [65], DoDGF3D [65], RUBIG [74]) use a lot many
features (7200, 9600, 4800, 7200, and 21600, respectively)
for DT classification while the learning-based ICFV only
use 1600 features. It seems that involving a learning process
is very beneficial when processing large DTs with com-
plex variations, where relatively good performance and low
dimensionality can be obtained simultaneously. One excep-
tion is the learning-free SOE-Net [90]. However, good per-
formance is obtained due to the utilization of a deep learning
technique, i.e., cascaded convolution and pooling.

3) RESULTS ON THE DynTex++ DATASET
A relatively good result of 95.18% is provided by our
DBRF on this dataset. It is slightly outperformed by
ASF-TOP [17], MBSIF-TOP [16], MPCAF-TOP [20],
FoSIG [63], V-BIG [64], HoGF2D [25], HoGF3D [25],
DoDGF2D [65], DoDGF3D [65], DDLBP [66], novel
LBP [18], MEWLSP [78], HILOP [73], MEMDP [76],
RUBIG [74], B3DF_SMC [22], ICFV [24], and DT-
RNNs [91] by 0.22%, 1.99%, 1.34%, 0.81%, 1.47%, 2.01%,
2.45%, 1.96%, 2.34%, 0.62%, 1.1%, 3.3%, 1.03%, 0.85%,
1.9%, 0.4%, and 1.33%, respectively. Despite the fact that
many of these methods use SVM classifier, we think it
is unworthy to significantly increase complexity and fea-
ture dimensionality for marginal performance improvement.
Fig. 15 depicts the class-specific classification rates. The
rates (labeled in red) on four classes are below 90%, showing
the challenge for classification on this dataset.

4) COMPARISON WITH DEEP-LEARNING METHODS
Deep learning technique has been applied for various com-
puter vision tasks and its essence is to learn features

FIGURE 15. Class-specific classification rates obtained by the proposed
DBRF (very challenging classes are labeled in red).

from data. One prerequisite is that sufficient data is needed
to trained a real deep model. AlexNet [83], GoogleNet [84],
VGGNet [85], and C3D [79] are trained on datasets of mil-
lions of images or videos and provide excellent classifica-
tion performance, to which the contribution belongs to both
their well-designed structures and large training datasets.
Hence, the pre-trained C3D [79] is directly used as DT
feature extractor. D3 [81] and st-TCoF [80] use the pre-
trained VGGNet [85] as first-stage feature extractor to extract
features from image slices in a DT, which is followed by
the second-stage feature aggregation. Very excellent results
(around 99%) by deep-learning methods are reported on the
challenging Alpha, Beta, and Gamma subsets, substantially
outperforming all shallow methods. On the other hand, DT-
CNN-AlexNet [82] and DT-CNN-GoogleNet [82] only use
the structures of AlexNet and GoogleNet, and are trained
from scratch with DT data. As there are tens of thousands
of images in each of the Alpha, Beta, and Gamma subsets,
DT-CNN-AlexNet and DT-CNN-GoogleNet could be well
trained and near-perfect results are obtained. However, they
are outperformed by many shallow methods such as the
propoased DBRF and DoDGF, when evaluated on the UCLA
dataset. We think the reason behind this observation is that
UCLA dataset contains limited number of small-scale data.

Although the deep-learning methods are indeed vary pow-
erful (especially those trained on large datasets), their appli-
cation in real-world scenarios are limited in three aspects:
(1) sufficient data are needed, (2) either training or running
requires large amount of computing resources, (3) they can
hardly process data of various sizes. Therefore, those shallow
methods, including the proposed one, do have the meaning of
existence as well as application scenarios.

V. CONCLUSION
In this paper, we have proposed a simple but effective method
for DT description. Its effectiveness and efficiency have been
verified by experimental evaluations with various protocols.
In the processing framework, we first extract 3D Gaus-
sian gradients from DTs. Then eight random projections are
applied to the gradients such that a set of low-dimensional
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random feature vectors are obtained. Each feature vector is
encoded into a binary code. Finally, the binary codes are
counted to form three histograms, which are concatenated
into one histogram for DT description. All of our design
goals are achieved. The proposed method is a learning-free
and 3D-filtering-based DT description method. It is very fast
to compute when the filter size is smaller than 13 and the
feature length is 768, which is smaller than that of most
existing methods. The contribution of using DT gradients is
also verified by comparison with non-gradient-based meth-
ods such as 3DRF and CSAP-TOP. Due to the above valuable
properties of the proposed method, our DBRF can be directly
applied and is very suitable for resource-restricted scenarios.
Future efforts should seek performance enhancement on vary
challenging DT datasets.
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