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ABSTRACT Siamese networks have gained considerable attention for object tracking due to their bal-
ance of speed and accuracy. However, existing Siamese tracking algorithms have been too rigid in their
predictions of bounding box tags and lack uncertainty estimation, resulting in poor tracking performance
in marine environments, particularly those with waves. To improve the effectiveness of trackers in marine
environments, this study proposes a Siamese distillation network. First, to address the issue that the presence
of waves and other disturbances may result in target loss or inaccuracy when tracking the target, the
concept of a probability distribution of the bounding box is introduced in this study, which transforms
the standard Dirac delta distribution of the bounding box into a probability distribution of the bounding
box, effectively reducing the impact of interference on tracking performance and improving target location
accuracy. Second, we chose ResNet100 as the backbone network to obtain richer features for localization.
Finally, this work offers a knowledge distillation approach to further enhance the tracking accuracy and
model performance, while considering the impact of the model’s number of parameters and computational
amount on tracking performance. This network outperforms most trackers in terms of accuracy, according
to extensive experimental results, and performs well on the target tracking benchmark and marine dataset
annotated in this study. Specifically, this network achieved the highest accuracy value of 0.612 compared to
other Siamese networks, resulting in a 2.5% increase compared to original baseline network. This suggests
that the proposed algorithm is practical.

INDEX TERMS Bounding box probability distribution, knowledge distillation, object tracking, siamese
network.

I. INTRODUCTION

Water safety has become a more pressing issue due to
the rapid development of the maritime transport sector and
improvements in people’s quality of life. Although safety
concerns when working at sea have recently gained more
attention, rescue operations for those who have fallen over-
board remain crucial [1]. It is widely recognized that search
and rescue operations in the sea’s complex environments can
be challenging. The search for individuals who have fallen
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into the water cannot be performed exclusively with the naked
eye, especially in bottomless seas [2]. Accurate and fast
position prediction can have significant supplemental value
for rescuers and can maximize the protection of the drown-
ing person’s life. The development of rescue Unmanned
Aerial Vehicles (UAVs) has partially alleviated the difficulties
encountered during rescue operations at sea [3].

Rescuers can utilize UAVs to locate victims who have
fallen into the sea, and tracking mostly depended on the
tracking algorithms [4]. Visual object tracking has histor-
ically been one of the primary applications of computer
vision and has been extensively studied [5]. Owing to the
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increased demand for tracking algorithms across several
industries, multiple industries have higher expectations for
tracker speed, accuracy, and robustness.

With the development of deep learning, object-tracking
algorithms are constantly improving, and algorithms for
maritime-target tracking is also emerging. For the compli-
cated environments of deep learning techniques, tracking
speed and scale change. Zhang et al. [6] presented depth
fusion of multi-scale related filtering sea target tracking
algorithms, whereas existing tracking methods only employ
single-layer depth features or manual fusing of multi-layer
features. The target can be effectively moved by water using
this technique. Wu et al. [7] proposed a scale-adaptive sea
surface target tracking algorithm based on deep learning to
classify samples based on whether the sample’s center point
falls inside the actual target box and then directly returns to
the distance from the center point to the target box to predict
the position and scale of the target box. This algorithm was
designed to effectively address the issue of target-scale adap-
tation. The Siamese network-based offshore target tracking
system proposed by Shi et al. [8] satisfies the demands of
real-time performance and accuracy in offshore target track-
ing. Even though the deep-learning-based maritime target
tracking algorithms currently in use function well, a person
who falls into the water is not only small but also readily
mistaken for marine debris and other organisms owing to
the complexity of the marine environment. Waves drastically
reduce tracking precision and speed. This is because the
bounding box tag will have an uncertain area when waves or
other disturbances are present, and this ambiguity will cause
the target to be positioned incorrectly. The tracking methods
currently used do not consider this uncertainty. Furthermore,
the most sophisticated Siamese tracks employed ResNet50
as their backbone network. ResNet50 characteristics can help
us extract key details from the majority of common images;
however, they are inadequate for object tracking and recog-
nition in challenging maritime environments. To address this
problem, this paper proposes SiamKD, a new Siamese track-
ing algorithm. First, considering that the presence of waves
and other distractors may affect the positioning of drowning
people, which may lead to the loss or inaccuracy of the
target when tracking it, inspired by the idea of bounding
box probability distribution modeling [9], this study improves
the standard bounding box Dirac delta distribution [10] to
the bounding box probability distribution to improve the
accuracy of the target location, that is, the accuracy of the
predicted bounding box. Second, more sophisticated net-
works were chosen to create feature maps because they can
extract richer features with higher accuracy from deeper and
wider networks. This paper also introduces the knowledge
distillation [11] model compression method, which considers
the fact that deeper and broader networks themselves have
more extensive parameters and greater computational com-
plexity, and that the improvement of the general distribution
of bounding boxes to the probability distribution of bounding
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boxes will also significantly increase the parameters of the
network to slow down the network training speed and affect
the model performance. To verify the algorithm’s tracking
effectiveness in challenging marine situations, this study
annotated sea datasets, which consisted of 100 videos. Our
system successfully used numerous open and labeled datasets
in experiments, demonstrating its efficacy.

In this study, we propose a Siamese object tracking algo-
rithm based on knowledge distillation, which makes the fol-
lowing contributions:

We propose a Siamese tracking algorithm that replaces the
typical Dirac delta distribution of the bounding box with the
probability distribution of the bounding box. This signifi-
cantly reduces the effect of interference on tracking perfor-
mance and increases the accuracy of the target location.

To make the model lighter and more efficient when
using a more sophisticated network to extract rich features,
we introduce the model compression approach of knowledge
distillation.

We label and use a marine dataset of 100 video sequences
to test the tracker’s performance.

The algorithm achieves excellent tracking results on the
datasets marked in this study and demonstrates strong per-
formance on other datasets such as VOT2018, VOT2019,
OTB100, and NFS.

The rest of the paper is organized as follows.
In Section II, we briefly review three related works on
Siamese network-based visual tracking, bounding box prob-
ability distribution, and knowledge distillation. Section III
describes the proposed SiamKD method. Section IV
describes the experimental details and performance analysis.
The conclusions are presented in Section V.

Il. RELATED WORK
A. VISUAL TRACKING BASED ON THE SIAMESE NETWORK
Owing to their effectiveness and end-to-end learning capac-
ity, trackers based on Siamese networks have recently
attracted considerable interest in visual tracking. The Siamese
network structure is a type of neural network that consists of
two or more subnetworks. It is distinguished by the fact that
it shares the weights of two neural networks and takes two
images as inputs. Its main goal is to identify a function that
can translate an input image into a target space, where the
easy distance is close to the “semantic” distance of the input
space. Specifically, it seeks to identify a set of parameters for
which the similarity measure is small for images that belong
to the same category and large for images that do not.
SiamFC [12], the Siamese tracker’s first work, is primarily
composed of the upper and lower branches. The upper branch
is the template branch responsible for generating the initial
frame image features. The lower branch is the search branch,
which is responsible for generating the features of the subse-
quent frame images, convolving the two feature maps to gen-
erate the final feature map, and then calculating the maximum
value in the feature map to achieve the final target tracking
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and positioning, from which most subsequent Siamese track-
ing algorithms are derived. For example, CFNet [13] com-
bines the following advantages: the filtering algorithm and
SiamFC algorithm to significantly improve tracker perfor-
mance. DCFNet [14] is a lightweight Siamese symmetric
convolutional network that combines the discriminant Kernel
Correlation Filter(KCF) algorithm and convolutional features
and can be quickly tracked using only two convolutional
layers. These results are further studied. DSiam [15] proposed
anetwork model with a dynamic Siamese symmetry structure
that can learn the deformation of a target online and effec-
tively suppress noise. SiamRPN [16] adds a Region Proposal
Network(RPN) module based on SiamFC. The feature extrac-
tion part of the network was the same as that of the SiamFC.
After the feature map is created, the network is split into
classification and regression branches. The first determines
the category, while the second determines the center point
coordinates as well as the length and width of the target box.
Da-SiamRPN [17] introduces an effective sampling strat-
egy in the offline training stage to enable the network to
learn more discriminative features. It also designs a model
to identify non-targets during the prediction stage, which
avoids incorrect prediction and positioning of the model
and improves discrimination. Sa-Siam [18] improved track-
ing performance by designing a double Siamese network
to extract different features. SiamDW [19] further improved
tracking performance by introducing a residual block inter-
nal clipping unit in a deeper and wider network. Based
on SiamRPN, SiamRPN-++ [20] uses the ResNet50 net-
work to replace the original AlexNet, adds a multilayer
fusion strategy, and uses a deep cross-correlation opera-
tion to replace the simple relation operation in SiamFC,
thus increasing the tracking accuracy. SiamMask [21] uni-
fied tracking and segmentation, greatly improving tracking
accuracy. SiamBAN [22] optimized SiamRPN++, which
improved the tracker performance by removing the previous
anchor and introducing dilated convolution. SiamRN [23]
proposed a novel Relation Detector(RD) structure, which
can make the network filter out the interference factors in
the background. Simultaneously, it also proposed a Refine-
ment Module(RM) structure based on the coarse detection
structure to achieve a more accurate tracking effect. How-
ever, the majority of the backbone networks used by these
Siamese trackers are ResNet50, which can help us extract the
main features effectively in most scenes. However, this study
was originally intended to use ResNet101 as the backbone
network to extract features because target recognition and
tracking at sea are more difficult and require more charac-
teristics. However, a more sophisticated backbone network
will eventually increase the network parameters and calcu-
lation requirements, slowing the pace of the model. Finally,
we introduce a model compression method for knowledge
distillation after careful consideration. The newly proposed
SiamKD method, when compared to the existing Siamese
tracking algorithms, not only extracts rich features for
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target identification and positioning but also makes the model
lightweight and enhances model performance.

B. BOUNDING BOX PROBABILITY DISTRIBUTION

Several articles on bounding box probability distribution
modeling with a focus on target detection have recently been
published. To address the issue of increasing the position
accuracy of the target prediction box, He et al. [24] created
a new network structure to forecasts not only the position
coordinates but also the position variance for all boxes. The
experimental findings demonstrate the accuracy of the algo-
rithm. Choi et al. [25] also examined the uncertainty of the
bounding box. Without altering the number of calculations
or the network structure of YOLOV3, it is expected that the
positioning accuracy of the box would increase true positive
(TP) and decrease false positive (FP) while still operating at
breakneck speed. Meyer [26], on the other hand, focused on
the turning point in Huber loss. After theoretical derivation,
the study shows that the turning point selected in the current
Smooth L1 loss is a problem. The author of Generalized
Focal Loss [27] attempted to represent a general probability
distribution because it is more adaptable and can handle
complex data in the actual world better. However, probabil-
ity distribution modeling has rarely been applied to target
tracking. Presently, bounding box prediction using existing
trackers has only four output values, which is equivalent to
optimizing a Dirac delta distribution. It does not account for
the ambiguous area of the bounding box labels and does not
estimate uncertainty. However, the probability distribution
of the actual data should be arbitrary; therefore, this study
uses object detection probability distribution modeling to
obtain a general probability distribution, which represents the
uncertainty degree of bounding box location, which is then
used to increase the model’s accuracy.

C. KNOWLEDGE DISTILLATION

In recent years, convolutional neural networks have achieved
remarkable results in computer vision, including image clas-
sification [28], object detection [29], and semantic segmen-
tation [30], thanks to continuous improvements in datasets
and computing unit performance. However, network perfor-
mance is typically inversely correlated with network structure
complexity. Consequently, the more complex the network
structure, the deeper and wider the model, and the better the
network performance. However, as the number of param-
eters and the number of calculations increases in tandem,
the speed of the model inevitably decreases. Deep neural
networks have a large compression space, as demonstrated by
the fact that approximately half of their weights do not affect
the performance of the network [31]. The model’s capac-
ity for generalization was diminished by overfitting caused
by excessive parameters. The compression model problem
has been successfully addressed by knowledge distillation,
which accelerates network training and enhances the model
performance. The instructor model imparts knowledge to
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FIGURE 1. The flowchart of the SiamKD framework.

the student model. Since Al Godfather Hinton [32] devel-
oped an information distillation method, which has piqued
the interest of academics, who demonstrated that network
compression has significant research value [33]. Although
other fields, such as semantic segmentation, object identifica-
tion, and image classification, have widely used the method
of information distillation, the topic of tracking has largely
been left unexplored. More importantly, because this study
employs ResNet101 as the foundational network to extract
features, the number of parameters and calculations in the
model skyrockets. Additionally, the approach in this study
was simplified through knowledge distillation.

Ill. OUR PROPOSED SIAMKD ALGORITHM

Poor tracking results are caused by interference elements,
including waves and floatable objects, according to an
investigation conducted in challenging ocean environments.
To reduce the fuzziness of the bounding box and improve its
localization accuracy, this study introduces a bounding box
probability distribution. In order to match the performance
of the teacher network and extract as many features as pos-
sible, ResNet50 was utilized as the student network, while
ResNet101 was used as the teacher network for pre-training
the model.

A. OVERALL NETWORK FRAMEWORK OF SIAMKD
A flow diagram of SiamKD is shown in Fig. 1. This study
uses SiamBAN as our benchmark, and the overall flow of
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the network is similar to that of SiamBAN. To pre-train the
model, ResNet101 was used as the backbone network for
the teacher network, and ResNet50 was used for the student
network portion. The image is input into the backbone net-
work as a template image and searched, extracting features
from conv3, conv4, and conv5. Correlation convolution is
then performed on the features of the template and search
branches, resulting in three feature maps for classification
and three feature maps for regression. Furthermore, the clas-
sification and regression feature maps are fused using an
averaging-specific fusion algorithm to create the final feature
maps. Finally, the student network is employed to match the
performance of the teacher network, and the softmax function
is used to describe the output of the regression section as a
probability distribution. The student network is used in this
study to match the performance of the teacher network, as the
teacher network has already been trained.

B. SIAMBAN

The majority of current Siamese trackers rely on multi-scale
searches or preset anchor boxes to precisely determine the
scale and proportion of the target. Nevertheless, they fre-
quently require intricate heuristic arrangements. SiamBAN
suggests a straightforward but efficient tracking method to
examine the expressive potential of Fully Convolutional Net-
works(FCN). With a unified FCN that directly categorizes
foreground and background while regressing the target box,
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FIGURE 2. The representation of SiamBAN framework.

SaimBAN views visual tracking as parallel classification and
regression problems. This box-free design, which removes
the hyperparameters associated with candidate boxes, makes
the SiamBAN more adaptable and versatile. The primary
structure is illustrated in Fig. 2.

The SiamBAN consists of several adaptive box heads
and the Siamese network backbone, as shown in Fig. 2.
The Siamese network backbone calculates the convolutional
feature maps of the template and search blocks using a
pre-trained convolutional network. The adaptive box head
consists of two modules: a classification module and a regres-
sion module. The classification module classifies each point
in the relevant layer as foreground or background and predicts
the bounding boxes for the corresponding position using the
regression module.

C. BOUNDING BOX PROBABILITY DISTRIBUTION
Conventional bounding box prediction only has four outputs.
This is equivalent to maximizing the Dirac delta distribution
for each output, which is a probability distribution with an
integration of 1 over a specified interval. In other words,
a supervised signal is present at one site but not at the other
sites. The specific mathematical premise is that the relative
offsets of the coordinates to the four sides of the bounding
box are utilized as regression targets, and the bounding box
regression models the label y as a Dirac delta distribution,
8(x —y) satisfying fj;o 8(x —y)dx = 1(x is the input value),
which is typically achieved by using a fully connected layer.
Formally, label y can be expressed in the following form:

+00
y=/ 50x — y)d. )

—00
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Siamban Heads

Template Branch

It is evident from (1) that higher certainty estimation is
necessary because the standard Dirac delta distribution is
overly strict. It is challenging to precisely locate a target in
a complex ocean environment using this distribution. On the
other hand, the probability distribution of real data can be
arbitrary. Therefore, unlike the previous Dirac delta distri-
bution, this study employs the bounding box probability
distribution to detect objects and directly learns the possi-
ble general distribution P(x) without the use of additional
priors. Given that the label range of y is: yo < y < yy,
we can obtain the predicted value y; from the model, where

Yo =Y1 = Yn

+00
yl = / P(x)xdx. 2)

—00

The continuous domain integral is transformed to a discrete
representation through the discrete range [yo, y,] to generate
asetyo, Y1, ---,Yi, Vitls - - - » Yo Which is consistent with the
convolutional neural network, interval A(A = 1). As aresult,
it is possible to determine the discrete distribution property
Py = 1) (0 < i < n) and express the estimated
regression value as:

vl =" PGiy). 3)

The softmaxS(.) layers composed of n+ 1 units can be used
to obtain P(x). Fig. 3 and 4 display schematic diagrams of the
two distributions.

Projected bounding box labels are more appropriate for
complicated situations, and the general distribution is more
flexible and arbitrary than the Dirac delta distribution.
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D. KNOWLEDGE DISTILLATION

The knowledge distillation procedure consists of three stages:
first, training a large model; second, calculating a ““soft tar-
get” based on the output of the large model; and third, training
a small model using both the soft target and the original hard
target. During the large model stage, the network is trained
in the same way as an ordinary network using regular sample
labels. Once a well-performing model is obtained, the soft
target is calculated based on its output. Finally, the small
model is trained using both the hard target and the soft target,
with the parameters adjusted accordingly.

Knowledge distillation is primarily used in the location
section of this study. Probability modeling of the bounding
box was used to obtain the general distribution of the bound-
ing box. The bounding box has 4n logical values because
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one of its sides has n logical values. Each logical value
acts on a softmax function with temperature t. The student’s
positioning knowledge is softened by allowing the probability
distribution of the student’s bounding box to fit the teacher’s
probability distribution. The following are the precise steps
in knowledge distillation.

The training process for the large model is identical
to that of the SiamBAN, except that the backbone net-
work is replaced with ResNet101 and the regression part
models the sample label as a general probability dis-
tribution. The large model is trained on samples and
sample labels, which are modeled as general probability
distributions.

Calculate the “soft target” phase. We obtained the pre-
dicted value of the bounding box tag from the previous phase,
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and then use the (4) to calculate a “‘soft target”.

et/

"7 T ewin)

In (4), g; represents soft target value and t represents dis-
tillation temperature. The larger the value of t, the more
knowledge can be learned, but at the same time, the more
noise there is. Therefore, when designing the network, the
parameters must be adjusted to determine the appropriate
temperature. The effects of the visualization experiments on
different values of t, including t = 1,2,3,4,5,7, 10, 100,
are shown in Fig. 5. We discovered that suitable performance
occurred at t+ = 5 (the balance between noise and learned
knowledge); therefore, we set r = 5.

Train the small model. The backbone network remains the
same as SiamBAN, and the regression part, similar to the
large model, models the sample labels as a general probability
distribution. The small model was trained by continuously
adjusting the parameters of the ‘“‘hard targets” and ‘‘soft
targets” to fit the performance of the large model.

The knowledge distillation framework is shown in Fig. 6.

0<yi<n. “

E. LOSS FUNCTION
The total loss function in the SiamBAN network is written as
follows:

L= )\chls + )\2Lreg- (5)

In (5), Lgs is cross-entropy loss, Ly, is IoU loss,
A1 = A2 = 1. The bounding box label is modeled as a general
distribution in this study, and the bounding box probability
distribution is described. To optimize its shape, the DFL
loss is introduced to replace the IoU loss in the regression.
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This improves the shape of P(x) and forces the network to
quickly focus on values close to the label by increasing the
probabilities of y; and y; (the closest values to y, where
vi < yit1). Thus, the regression loss function becomes:

Lreg =DFL(Si, Si+1)

= — (Vir1 — ylog(S) + v — y)log(Siy1).  (6)

Yit1 =Y S Y—Yi

where S; = ] =
Si Yip1—yi» DL = Sy

Furthermore, to match the performance of the student net-
work with that of the teacher network, this study combines
the general loss function formulas of knowledge distillation:

Totalloss = Asoftloss + (1 — N)hardloss. @)

where softloss is produced by the teacher and student
networks, and hardloss is the conventional cross-entropy
loss employed in conventional models. Here, we set
hardloss = L. The total loss function of soft loss should be
equal to the sum of the loss functions of the four edges
because the bounding box has four edges. The loss functions
of the four edges are as follows:

1
liefr = Lright = liop = lpottom = _Z ZinOg(Pi)- ()

where the teacher network predicts the label for the bounding
box as y, and the student network predicts the label as p.

SOfﬂOSS = lleft + lright + ltop + Iportom- 9

To summarize, the student network’s total loss function
formula is as follows:

totalloss = A(lleft + lright + ltop + Ipottom) + (1 — A)L.
(10)
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where A = 0.5. The total loss function of the teacher network
is L.

IV. EXPERIMENT

A. EXPERIMENTAL DETAILS

The experimental setup for this study was Pytorch 1.10.0,
1 * 24G RTX3090 GPU, Python 3.8, CUDA 11.3.

In this study, we initialized the backbone network using
weights pre-trained by ImageNet and froze the parameters of
the top two layers of knowledge, similar to the SiamBAN
experiment. Our network was trained on stochastic gradi-
ent descent (SGD) with minibatch 28. This research trained
a total of 20 epochs, with a warm-up learning rate of
0.001-0.005 for the first 5 epochs and 0.005-0.00005 for the
last 15 epochs. The exponential decay was 0.00005. Only
the adaptive box head was trained in the first ten periods of
this study, and the backbone network was fine-tuned with
a current learning rate of 0.1 in the final 10 epochs. The
momentum and weight decay were set as 0.9 and 0.0001.
This study used ResNet101 as the structural backbone for the
teacher network and ResNet50 for the student network.

B. EXPERIMENTAL DATASETS

The training datasets used in this study were GOT10K and
LaSOT. GOT10k consists of 11668 videos divided into five
main categories with a total of 563 categories. LaSOT com-
prises 1400 video sequences organized into 70 categories.

50788

We used these two datasets to train the model to improve
its generalization ability. Simultaneously, the marine dataset
labeled in this research, as well as several open datasets,
including VOT2018, VOT2019, OTB100, and NFS, were
employed as the test set to verify the efficacy of the
algorithm.

The marine dataset used in this study includes 100 video
sequences that predominantly feature two types of ships and
humans. The initial data for the video sequences in this
dataset were obtained from the Singapore Maritime Dataset,
UAV, and web crawler. The dataset was annotated using the
Labellmg tool, and the annotation format was compatible
with the OTB100 datasets. Some of the data are shown in
Fig. 7.

C. EVALUATING INDICATOR

1) OTB100

a: PRECISION

Euclidean distance between the central point of the predic-
tion box and the ground truth central point. (11) shows the
mathematical representation.

p =y — D2 + (32— v ()

where (x1, y1) are the coordinates of the center point of the
prediction box, and (x>, y2) are the coordinates of the center
point of the ground truth.
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FIGURE 7. The display of Sea dataset partial images.

b: SUCCESS RATE

The Intersection over Union (IoU) of the prediction box to the
pixels in the ground truth region. (12) shows the mathematical
representation.

BB, N BBy

. (12)
BB, U BB,

=
where BB, is the predicted box region pixel and BB, is the
ground truth region pixel.

2) vOoT

a: ACCURACY

To evaluate the tracker’s accuracy, the larger the value, the
higher the accuracy. The accuracy of a sequence’s t-frame is
defined as (13), borrowing from the IoU definition.

ASNnAT

=t Tt 13
ASuAT (13)

%
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where Af; represents the t-frame bounding box corresponds
to the ground truth and AtT represents the tracker’s predicted
bounding box in a t-frame. More precisely, ¢,(i, k) is the
accuracy of the i-th tracker on the t-frame in the k-th repeat.
The number of repetitions was set to Ny, and the accuracy
of the t-frame can be defined as follows:

1
N rep

¢ (i) = Zfbr(i, k)1 < k < Niep). (14)

The i-th tracker’s average accuracy is defined as:

1
Nyalia

pa(i) = D o1 <t < Nogiia). — (15)

where N,gjiq is the number of valid frames.

b: ROBUSTNESS

To evaluate the stability of the tracker, the larger the value,
the better the stability. Similar to how accuracy is defined, let
F (i, k) be the number of failures of the i-th tracker in the k-th
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TABLE 1. Performance results of SiamKD and other advanced trackers on the sea dataset.

SiamRPN SiamRPN++ SiamMask ATOM DIMP SiamFC++ PrDiMP SiamBAN SiamKD
Success rate 0.655 0.690 0.678 0.703 0.742 0.754 0.759 0.691 0.684
Precision 0.856 0.902 0.897 0.708 0.757 0.745 0.754 0.899 0.904
TABLE 2. Performance values of SiamKD and other advanced trackers on VOT2018.
RCO UPDT SiamRPN ATOM SiamRPN++ SiamBAN SiamKD
EAO 0.376 0.379 0.384 0.401 0.417 0.452 0.451
Accuracy 0.507 0.536 0.588 0.590 0.604 0.597 0.601
Robustness 0.155 0.184 0.276 0.203 0.234 0.178 0.181
TABLE 3. Performance values of SiamKD and other advanced trackers on VOT2019.
SPM SiamRPN++ SiamMask DIMP SiamBAN SiamKD
EAO 0.275 0.285 0.287 0.321 0.327 0.329
Accuracy 0.577 0.599 0.594 0.581 0.602 0.602
Robustness 0.507 0.482 0.461 0.371 0.396 0.401

repetition. The average robustness of the i-th tracker is then
defined as:

1
N rep

pr() = —— D F(. K1 <k <Nep).  (16)
c¢: EAO
Reflects the overall tracker performance. It is defined as fol-
lows: if there is a frame video, the tracker’s coverage accuracy
on this video is the average value of each frame’s accuracy,
expressed in 1. The precise formula is as follows:
1 .

N, = MZW <i<N). (17)
An ideal EAO is to average vy, corresponding to Ny from
Niow t0 Npign, that is, the expected average coverage.

3) NFS
AUC, namely accuracy, has the same definition as in the VOT
dataset.

D. COMPARISON WITH OTHER TRACKERS

The performance of the SiamKD tracker proposed in this
study is compared with that of several existing advanced
trackers on several benchmark datasets and the dataset anno-
tated in this study. The tracker used in this study performed
excellently.

The sea dataset used in this study is composed of various
videos, and the details are shown in Section B. The evaluation
metrics used in our study are consistent with those of OTB100
since the annotation format is the same. The performance of
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SiamKD and several advanced trackers on this dataset is pre-
sented in Table 1. Our approach exceeds previous algorithms
in terms of precision.

The VOT2018 benchmark consisted of 60 progressively
more challenging sequences. The results of SiamKD and
other advanced trackers on this dataset are presented in
Table 2. Among the approaches in Table 2, SiamBAN
achieved the highest EAO (0.452), while SiamRPN++
achieved the highest accuracy (0.604). Although the EAO of
SiamKD is marginally lower (0.451) than that of SiamBAN,
and its failure rate is higher (0.181), its accuracy is higher
(0.601). Compared to SiamRPN++, SiamKD has slightly
lower accuracy but a greater EAO and a lower failure rate.

VOT2019 is another dataset that is used to assess single-
target trackers. The video sequences in VOT2019 were more
difficult than those in VOT2018. Table 3 lists the performance
of the SiamKD and other advanced trackers on this dataset.
Table 3 shows that our tracker’s accuracy is the same as that
of the SiamBANSs, which exceeds the accuracy of the other
trackers listed in Table 3. Although the failure rate(0.401) was
higher than that of SiamBAN and DiMP, the EAO(0.329) was
higher than that of the other trackers.

The OTB100 is a popular dataset for visual object track-
ing, consisting of 100 annotated video sequences. The per-
formance of SiamKD and other advanced trackers on this
dataset is shown in Fig. 8. While SiamKD’s performance
in the full video sequence of OTB100 is not the greatest,
it still outperforms the majority of the algorithms evaluated
in the comparison. Additionally, our approach surpasses other
algorithms in motion blur and fast motion video sequences,
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FIGURE 8. Performance results of SiamKD and other advanced trackers on OTB100, a) whole video sequences, b) occlusion video sequences, c) motion

blur video sequences, d) fast motion video sequences.

TABLE 4. Performance results of SiamKD and other advanced trackers on NFS.

MDNet ECO UPDT DiMP SiamBAN SiamKD
AUC 0.422 0.466 0.537 0.620 0.594 0.612
TABLE 5. Parameter of SiamKD and other several models.
SiamRPN MDNet DiMP SiamBAN SiamKD-WithoutKD SiamKD
Params(M) 68.54 423 26.1 84.6 104.7 91.4
FLOPs(G) 71.1 - - 91.8 117.7 106.3

TABLE 6. Ablation study on VOT2018. SiamBAN is baseline. BBPD: Bounding Box Probability Distribution, KD: Knowledge Distillation.

Baseline Baseline+BBPD Baseline+KD Baseline+BBPD+KD(Ours)
EAO 0.452 0.451 0.452 0.451
Accuracy 0.597 0.599 0.600 0.601
Robustness 0.178 0.178 0.180 0.181

as shown in Fig. 8. It also performs well in video sequences
with improved occlusions. The success rate was barely any
lower than that of SiamRPN+-+-.

The NFS dataset consisted of 100 videos that were cap-
tured with higher frame-rate cameras in realistic settings.
The AUC of SiamKD and other sophisticated trackers in this
dataset are listed in Table 4. Despite the poor performance
of our tracker, its AUC(0.612) is higher than that of the first
SiamBAN(0.594) and is second only to that of DiIMP(0.620).

Table 5 compares the model parameters of different track-
ing methods before and after applying knowledge distillation.
The number of parameters for several tracking algorithms
is listed. Introducing the knowledge distillation method
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significantly reduced the parameter numbers compared to
the original SiamBAN. However, the number of parameters
was still higher than that of the original SiamBAN network.
Despite this, our approach achieved better tracking accuracy.

E. TRACKING PERFORMANCE DISPLAY

To better illustrate our tracking performance,we display
the ground truth and our tracking results in some images,
as shown in Fig. 9.

F. ABLATION STUDY
We conducted an ablation study on VOT2018 to investigate
the impact of individual components in SiamKD.
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FIGURE 9. The display of tracking performance: the light green box represent ground truth; the dark green box represent our tracking
results.

Using SiamBAN as the baseline, Table 6 shows that it
achieved an EAO of 0.452. Although there was no significant
improvement in EAO after adding the BBPD and KD mod-
ules, there was no significant decrease either. On the other
hand, adding the BBPD or KD modules individually resulted
in an improvement in the accuracy score from 0.597 to
0.599 or 0.600 respectively. When both modules were added
to the baseline, the accuracy score improved significantly
from 0.597 to 0.601. This demonstrates the importance of the
proposed method in achieving higher tracking accuracy.

V. CONCLUSION

In this study, we propose a SiamKD network that models
conventional bounding box regression as a general probabil-
ity distribution, improving target localization accuracy and
reducing the impact of distractions on tracking performance.
We also introduce the knowledge distillation model com-
pression technique, which significantly enhances the model’s
ability to extract richer features using more sophisticated
networks while keeping the model lightweight. Our network
performs well on the datasets evaluated in this study as well as
on VOT2018, VOT2019, OTB100, and NFS, as demonstrated
by extensive experimental results.

Despite its excellent performance, the tracking algorithm
presented in this study has some limitations. Firstly, only
labeled datasets are used for testing in this study, and more
datasets should be labeled for model training in the future.
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Additionally, the removal of rain and fog should also be taken
into consideration in the future as this study only addresses
the presence of waves and disturbances in the ocean, not the
more complex scenario of rainy and foggy weather, which is
the primary cause of most maritime accidents.
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