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ABSTRACT To overcome the slow-running drawback of the Monte Carlo simulation method for bulk
power system reliability assessment, this paper develops an end-to-end machine learning approach to directly
predict the targeted reliability index considering grid topology changes caused by emergent line maintenance.
Three machine learning models, i.e., Support Vector Machine, Boosting Trees, and Graph Neural Network,
are considered and compared. The grid topology information is embedded into the above models via
two feature engineering schemes. Dataset creation and data preprocessing are also described. Then, two
case studies with different experimental settings and prediction targets are performed on the IEEE RTS-
79 system to inspect the proposed approach’s adaptability. Results demonstrate the proposed approach’s
effectiveness and speed advantage. Finally, an analysis is presented regarding the Support Vector Machine’s
generalizability against the varying dataset size based on the empirical-risk theory from the machine learning
community.

INDEX TERMS Boosting tree, maintenance-induced line outage, Monte Carlo simulation, reliability
assessment, support vector machine, graph neural network.

I. INTRODUCTION

Reliability assessment (RA), ak.a. generation adequacy
assessment, is a common routine in power system planning
and operation to evaluate the continuous load supply-ability.
Modern reliability assessment studies can span large geogra-
phies to investigate the benefits of system interconnections.
Thus, the impact of transmission networks must be consid-
ered in bulk power systems (BPS) reliability assessment.
Analytic enumeration, Monte Carlo simulation (MCS), and
hybrid methods are the three main approaches for BPS reli-
ability assessment [1]. Analytical enumeration has merits in
rigorousness and determinacy [2] but can become impractical
due to the exponentially growing enumeration space when the
system size increases. In contrast, the MCS method is flexible
in considering dynamic system behaviors and human interac-
tions [3] and is dimension-free of the total number of system
states. However, the MCS method demands a sufficiently
large number of simulations to reach convergence. The MCS
method for reliability assessment has three major steps: a)
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sampling of the state (in non-sequential MCS) or event (in
sequential MCS); b) testing of the state (i.e., to determine
whether the sampled state is “reliable” or not; ¢) updating
the corresponding statistics of the reliability indices, e.g.,
LOLP (loss of load probability) or EDNS (expected demand
not served; also called “EPNS” in [1]). The hybrid method
combines the above two methods, e.g., first applying the ana-
Iytical state-space reduction techniques and then executing
the MCS [4], [5].

In a real power grid, the system reliability indices need to
be re-calculated when one or two lines are de-energized due
to emergent maintenance needs (called maintenance-induced
line outage in this paper). Though, for large-size systems,
using the conventional workflow of MCS to evaluate all the
line-outage cases can be time-consuming and laborious. One
idea is to speed up the MCS itself, e.g., by using variance
reduction techniques [6]. However, the MCS method still
suffers the time cost issue due to the stochastic nature of the
state-sampling step.

Meanwhile, data-driven techniques have become preva-
lent in the real-time operation and control of bulk power
systems [7], [8], and studies have been presented regarding
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machine learning (ML) applications on reliability assess-
ment. In [9], the author utilizes an improved Bayesian belief
network model in an MCS-based unit commitment frame-
work for reliability assessment. In [10], transfer learning
techniques are adopted to adapt the reliability predictor for
a varying system installed capacity. In [11], authors leverage
the Genetic Algorithm (GA) for 1) intelligent state selec-
tion in the state-sampling step (by binary encoded GA) and
2) optimal load curtailment (by real encoded GA) in the state-
testing step. In [12], a multi-label classifier is trained to output
the reliability indices of all the buses.

However, the above-mentioned ML approaches have to be
embedded in a conventional MCS framework. Thus, a large
number of MCS runs are still needed in the subsequent stage
to finally compute the reliability index. Per contra, the end-
to-end machine learning approach can directly output the
targeted reliability indices. For example, In [13], machine
learning-based regression models are employed to map the
power inverters’ reliability indices to a high-level system
reliability index. In [14], a brief study is conducted to predict
the system LOLP by two shallow learning models. In [15],
a natural language processing-based method is designed to
forecast the outage duration of the distribution system.

In light of the above challenges, this paper proposes an end-
to-end line maintenance-aware machine learning approach.
The proposed approach can directly output the targeted relia-
bility index considering maintenance-induced line outages up
to a pre-defined order (<=2). The approach can help reduce
the overall time cost compared to the conventional Monte
Carlo workflow. More specifically, the main contributions of
this paper are:

o Devise an end-to-end line maintenance-aware ML
pipeline to directly predict a targeted reliability index.
Two representative reliability indices of BPS are exam-
ined, viz. LOLP and EDNS.

« Develop systematic ways of feature engineering for both
shallow and deep learning models to incorporate the
maintenance-induced line outage information.

« Present an empirical risk analysis to help find a proper
size of the training dataset in a probabilistic sense.

Note that: the “line maintenance” considered in this paper
is due to the unpredictable (emergent) line maintenance needs
in the system operation stage rather than foreseeable mainte-
nance needs in the system planning stage.

In the following parts, Section II briefly introduces the
basics of MCS for bulk power system reliability assessment.
Section III illustrates the motivation and dataset creation of
the devised end-to-end, line maintenance-aware ML pipeline.
Section IV explains the basic principles and the proposed
feature engineering schemes for three representative machine
learning models: Support Vector Machine, Boosting Trees,
and Graph Neural Network. Sections V and VI present case
studies based on the IEEE RTS-79 system under two different
settings. The final section summarizes this paper and provides
future research directions.

49640

Il. MONTE CARLO SIMULATION FOR BPS RA

The MCS method for reliability assessment includes the non-
sequential and sequential types based on different research
needs [1], [6]. Either of them can be used in our approach.
Since the MCS method per se is not the main focus of this
paper, thus the non-sequential MCS method is adopted here,
whose implementation is more straightforward during the
dataset creation.

A. BASIC STEPS OF MONTE CARLO SIMULATION
The basic steps of non-sequential MCS for a system of p
components are:

Step-1: Draw a system state s = (s, ..., §p) based on each
component’s failure rate or probability distribution;

Step-2: Test the state by certain simple rules (e.g., com-
paring the total installed capacities with the total load) or by
certain OPF (optimal power flow) models;

Step-3: Update the expectation and variance of the reliabil-
ity index according to Eq. (1):

Ny N,
1 < 1 &

Elgl= -~ > g(s).  Varlgl = = > (s(s) — Elg])?
S j:1 N j:l

ey

where Ny is the total simulation runs. s; is the system state
sampled at the j-th run. g is a function mapping s; to the
targeted reliability index. E[-] stands for the expectation. For
instance, when g is in the form of Eq. (2), the expectation in
Eq. (1) will represent the LOLP.

0,
g(s)) = [

1, otherwise

s; is a reliable state

(@)

B. STATE TESTING VIA OPTIMAL POWER FLOW

Once a failure system state is drawn, the next step is to test
this state by a tailored OPF model when the transmission
network is considered [1], [6]. Compared to the DCOPF
(direct current optimal power flow), stricter constraints (e.g.,
the limit of the bus voltage magnitude) can be considered via
the ACOPF (alternative current optimal power flow). Hence,
the state-testing step in this paper is all based on ACOPF (with
customized objective functions or constraints). In fact, the
ACOPEF here tries to emulate the system operator’s actions
on a failure event.

C. STOPPING CRITERIA OF THE MCS PROCEDURE

As shown in Eq. (3), the “coefficient-of-variation” (denoted
by B) is used for the stopping criteria in the MCS procedure
for BPS RA [1]. When g is less than a threshold (e.g., 0.02),
the MCS terminates, and the expectation in Eq. (1) will be
taken as the final reliability index.

V. 1 ~  Var[E[g]]
ar[E[g]] = IVVar[g], B = Bl 3)

Note that a smaller threshold can result in an unnecessarily
long simulation time, hence increasing the overall time cost
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of dataset creation for machine learning. On the other hand,
a larger threshold might lead to a less accurate estimation of
the reliability index. Thus, a maximum iteration number is
usually used together with a reasonably small threshold.

Ill. END-TO-END MACHINE LEARNING FOR BPS RA

A. MOTIVATION OF END-TO-END MACHINE LEARNING
The key point of most ML research mentioned in Section I is
to learn the OPF behavior in the state-testing step: the output
of the trained ML model is either the optimal load curtailment
or a binary classifier about the sampled system state (e.g.,
indicating “‘reliable” or not). The outputs of the ML model
are then utilized inside an MCS procedure at the inference
stage. Thus, approaches in those research can be categorized
as “ML-embedded Monte Carlo simulation.” Its workflow is
depicted in Fig. 1.

System information (topology,
generator installed capacities, etc.)

Create a dataset for training a
j OPF result predictor

+ Training data (for OPF)
. X={X,%,..}
System state sampling (based on _
; Y=Ly}
generator failure rates)

v

Testing of state; update reliability
index if the state is unreliable

A trained OPF result

Tiiasd predictor

Machine Learning

onvergence criteria meet
or Max-iter reached?

X; : ML model input
i : true value of the output

Output final
reliability index

g

FIGURE 1. Reliability assessment by ML-embedded Monte Carlo
simulation.

In Fig. 1, the model input X; = Xj(s;) is the feature
vector for the state s; (e.g., generator installed capacity and
line impedance). The model output y; is the true value of a
targeted reliability index, e.g., LOLP or EDNS. Compared to
the conventional MCS method, this indirect-style workflow
may help speed up the MCS. However, its limitations are:

o The MCS is still required in the outer loop and at the
inference stage. Thus, the overall time cost is still large.

o When a classification model is adopted (e.g., for LOLP),
the internal ML model suffers the notorious ‘“class
unbalance” issue: the number of negative samples (unre-
liable states, e.g., when power flow diverges or loss of
load happens) is much rarer than that of the positive
samples (reliable states). This limitation asks for extra
handling, e.g., applying down-sampling techniques on
the original dataset.
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Reliability Index (e.g., EDNS) Y=y b

A trained reliability index
predictor (regressor)

ISy SIS e Machine Learning
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FIGURE 2. Reliability assessment by end-to-end machine learning.

-

On the contrary, an end-to-end machine learning pipeline is
adopted in this paper, which can directly predict the targeted
reliability index. Its workflow is illustrated in Fig. 2.

B. DATASET CREATION CONSIDERING
LINE-MAINTENANCE

To generate the dataset for machine learning, the conventional
MCS method is used. To consider the effect of maintenance-
induced line outages, MCS procedures (cf Section II-A) are
conducted for all the one-order cases (i.e., remove one line
before the simulation starts) and two-order cases (i.e., simul-
taneously remove two lines before the simulation starts).
In this paper, higher-order (>3) line-maintenance cases are
not directly considered during the dataset creation since they
are less common in real practice. Finally, the workflow for
the dataset creation is shown in Fig. 3. Note that during the
dataset creation:

e The above-mentioned ‘‘line-maintenance outages’ are
forced before starting the MCS procedure (rather than
inside it).

e A grid-connectedness examination program [16] will
be called for the above one- and two-order line-outage
cases before the MCS procedure starts. All discon-
nected cases will be excluded from the final dataset for
machine learning.

e Based on the forced-outage-rate of each unit, the (in-
loop) outage events of units are considered up to three-
order (i.e., the number of simultaneous unit outages in
an internal iteration of MCS is up to three) because the
higher-order unit outage events have lower chances to
happen during the stochastic simulation.

IV. MACHINE LEARNING MODELS AND FEATURE
ENGINEERING SCHEMES

Three iconic ML models are considered in this paper: Support
Vector Machine (SVM), Boosting Trees (BT), and Graph
Neural Network (GNN). SVM and BT are two well-known
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Grid data (e.g. Y-bus,
generator/line failure rate)
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(connectedness
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v
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Obtain the raw dataset for
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end-to-end machine learning

Need to update
operating condition?

FIGURE 3. Dataset creation in the end-to-end line maintenance-aware
ML pipeline for reliability assessment.

representatives of shallow (machine) learning models for
regression [17], [18]. GNN, as a deep learning model, is suit-
able for graph data with topology variations [19], [20], [21].

A. ML MODEL-1: SUPPORT VECTOR MACHINE (SVM)
SVM is an ML model with good generalizability and a
reasonable amount of hyperparameters, especially on small
datasets [17]. The primal formulation of SVM for a regression
task can be described by Eq. (4):

1 m
min J(w, b, &, §7) = w2+ € D E+ED

i=1

st.yi—h(x) <e+&, i=1...m
h(x)) —yi<e+&, i=1...m
0<¢&,0<g& i=1...m
h(x) & (w,x) +b )

where: x; and y; are the input feature vector and the true
value of the i-th data sample. w and b are the parameters to
learn. m is the total number of data for learning. &; and &*
are slack variables associated with each sample. ¢ is a small
positive value (called soft margin) determined by hyperpa-
rameter optimization or specified by users. C is a positive
constant controlling the penalty on samples outside the mar-
gin. A properly chosen C value can help avoid overfitting.
In SVM’s dual formulation, the concept of ‘’kernel function™
K (x, -) is useful, which maps the original features to higher
dimensional space for better learning performance [18].

B. ML MODEL-2: BOOSTING TREES (BT)

The Boosting Trees (BT) aggregates a series of decision trees
to reduce the risk of overfitting by a single tree. It utilizes
a technique called boosting [17], i.e., concatenating weak
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learners (e.g., decision trees with merely one split) such that
the newly obtained tree can improve the previous one’s error.
The algorithm below describes one version of the BT model,
viz. Least Square Boosting Tree.

Algorithm: Least Square Boosting Tree

1 Input: (x;, y;),i=1...m

2 Fo (x) <y // using the average value of y; to initialize
3fork=1toK:

4 Vi < yi—Fr_1(xp),i=1...m

5 (ok> Ok) < argmin,, o D" | [§; — ph (x;; )1

6 Fi (x) <= Fr—1 (x) + prh (x;0k)

7 Output Fk (x) as the final regressor

In the above pseudocode, Fj (k = 0...K) represents a
series of tree regressors, and each is trained based on the
residual of its predecessor. £ stands for a simple decision tree.
0, and p,, are the parameters to learn.

C. ML MODEL-3: GRAPH NEURAL NETWORK (GNN)
In the Graph Neural Network (GNN), the input signal can be
either at the graph level or the vertex level. In the latter case,
the representation of the graph can be obtained by certain
aggregation operators on its vertex signals.

One classic architecture of GNN, viz. GCN (Graph Con-
volutional Network) [22], [23], [24], is defined based on the
following graph convolution operation, as shown in Eq. (5):

X = o (BA+L)X) = o (ﬂix) )

where X is the original graph signal. X’ is the convolution
result. o is an activation function, e.g., tanh(-). 3 stands for
the parameters to be learned. I is the identity matrix. L is the
graph Laplacian (matrix) [22]. L is the self-looped Laplacian,
as defined by Eq. (6). deg(v;) means the degree of vertex-i.

1, ifi=j
LeryL=4_ -1 if ey e E (6)

/deg(v;) deg(v))

0, otherwise

The prediction task in this paper is at the graph level,
as illustrated by Fig. 4, where the GNN takes a graph signal
(assembled from its vertex signals) and finally generates the
prediction for a targeted reliability index.

D. FEATURE ENGINEERING FOR SVM AND BT

To incorporate the impact of maintenance-induced line out-
ages (i.e., “‘line-maintenance-aware’’), the Y-bus matrix (i.e.,
its real part G and imagery part B) can be leveraged. For
each generator unit, the installed capacity (i.e., the power
limit) Pgmax has to be used since it is directly related to the
generation adequacy. Hence, each raw input data X, ; can
be initially constructed as:

Xraw,i = [G’ Ba Pd’ Qd7 Pgmax] (7)
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FIGURE 4. Illustration of using GNN for a graph-level regression task.

where Pgmax is mentioned above and zeroed for non-
generator buses. G and B are n-by-n matrices (denote the total
number of buses as 7). Pq and Qq are vectors of the active and
reactive load (zeroed for the non-load buses). The purpose
of appending the load vectors here is to prepare for future
model-update (when the system loading condition is needed)
by incremental training techniques.

The shape of each (raw) input data is n-by-2n + 3).
However, this scheme has the following disadvantages:

« Memory space wasting due to the duplicated storage of

symmetric elements in matrices G and B.
o Slow training of the ML model due to the above redun-
dant elements.
Hence, the following re-arrangement will be applied:
o Extracting the upper triangular part of G as a 1-dim
column vector vG; similarly, extracting vB from B.

« Concatenating all those 1-dim vectors together.

In this way, about half of the space can be saved. This
feature engineering scheme is depicted in Fig. 5. The new
shape of each data sample becomes n(n + 4)-by-1, as shown
in Eq. (8) (where “;” stands for the vertical concatenation):

. . . . T
X; = [vG; vB; Pa; Qq; Pgmax] (8)
! 3 YY1 Y13
The i-th data sample: 7 @ Y= | Y2 Yoo Yoy
~ Y3 Y3 Y33

G11{G12|Gi3 B11|B12|B13
G21{G22|Go3| B2 B Bas
G31|G37|G33[ B31| B32| B3z

X;
Giy,....Go3,Gs| Bi...Bas,Byy] | |

FIGURE 5. The proposed feature engineering scheme for SYM and BT.

E. FEATURE ENGINEERING FOR GNN
Similarly, the input of each data sample for the GNN is the
same as Eq. (8). Note that the GNN also needs an edge index
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array and an edge weight array (if the graph is weighted) for
each input, as shown in Eq. (9) and (10):

edge_index; = [[f{; i1, ..., [f}: /]l e R”ZD~1 (9)
edge_weight; = [B,,...,Bi] e R/ (10)

where. f/ and ¢! are respectively the from and fo bus (vertex)
indices for the j-th line in the i-th data sample. / is the total
number of lines in the i-th data sample. B! is the susceptance
value of the j-th line in the i-th data sample. Note that the
GNN implementation in this paper is based on PyG [25],
which requires the above two arrays also to contain the
reversed edges for an undirected graph.

Finally, the true value of the targeted reliability index y;
and the obtained feature embedding vector will be sent to
the “MSE (mean squared error) Loss” layer. This feature
engineering scheme is depicted in Fig. 6.

! 2 YY1 Y13
~ Y=Y Y2 Yo3
2

Y31 Y39 Y33

The i-th data sample:

edge_weight;

G]]G|2G|3 B11|B12|B13 edge_index,- B]1B12B|3

G21[G22|G23| B21|B2g| B2s 11213 B2)| B2y B2s

G31G32|G33|| B31| B3z B33 2131 B3| B3y B33
X |

| G11,62,G33 |B11,Bzz,B33 | | | | |B12,B133B23|

“feature embedding”

-»@-»

GNN Layer(s)
Update welghts )

MMy O HwZ

FIGURE 6. The proposed feature engineering scheme for GNN.

F. FEATURE SCALING
In this paper, the [0,1] scaling is applied to the input feature

by Eq. (11):

X = (X — Xmin)/(Xmax — Xmin) (11)

where “x” is a feature vector of physical quantities of the
same type. In this way, feature variables of different physical
meanings are scaled separately to avoid numerical issues, i.e.,
vectors vg, VB, Pa, Qq, and Pgnax are scaled using their
respective maximum and minimum components.

V. CASE STUDY I
In this case study, the target to be predicted is the LOLP of
the IEEE RTS-79 system. As shown in Fig. 7. The RTS-79
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BUS 18

BUS 17 BUS 21 BUS 22
BUS 23
230kV BUS 16 BUS 19 BUS 20
BUS 14
BUS 15
BUS 13
BUS 24 BUS 11 BUS 12
BUS 3 BUS 10 BUS 6
BUS 9
BUS 4 BUS 5
138KV
BUS 8
BUS 7
BUS 1 BUS 2

FIGURE 7. The single-line diagram of the IEEE RTS-79 system.

system has 24-bus, 32 generator units, and 38 lines. Three ML
models, viz. SVM, BT, and GNN are respectively applied.
The feature engineering for each ML model is described in
the previous section. The dataset creation, model training, and
testing are conducted on a computer with a 4.0Hz CPU and
16GB memory.

A. OPF MODEL FOR CREATING THE LOLP DATASET
The OPF model used in case study-1 is shown in Eq. (12):

min 0
V,Re(S6)
s.t. LV, =0 r : ref .bus no.
Vmin < |y < VI wieN
O < L(V;V})) < O™ V(.)€ E
S = Y,{~’/‘~‘|V,‘|2 — Y,:’/‘fV,'Vj’k Y(i,j) e E
1851 < P V(. j) € E
sEmin < gG| < gEMN v ¢ N
s¢—sP= > s; VieN (12)
(i)eE
where N and E are respectively the index sets of buses and
lines. S;; is the complex power flow on the branch i — j. Sl.G
and SI.D are respectively the complex power of the generator
(if any) and load (if any) at the i-th bus. The meanings of other
symbols are similar to those in a typical OPF formulation

(cf. [6] for more details).
Note that:
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TABLE 1. Basic performance (baseline: MCS).

SVM BT GNN
MAE 0.0041 0.0045 0.0050
MAPE 4.53% 4.97% 5.35%
RMSE 0.0053 0.0053 0.0079

1) The objective function is preset to zero to obtain a
feasibility problem since only the result of feasibility is useful
in computing the LOLP. If this ACOPF model diverges, the
tested state is deemed ‘“‘unreliable,” and the counter of the
“LOLP event” will increase by one during the MCS proce-
dure. The final LOLP is nothing but the counted value divided
by the number of runs (cf. Eq. (1)).

2) In this case study, before the MCS starts, each case
will be pre-checked by an initial ACOPF run. Any cases that
fail this initial check will be excluded from the subsequent
simulation and the final dataset. The reason is that: those
cases will always fail all subsequent ACOPF runs inside
the MCS; thus, their LOLP values are always equal to 1.0,
eliminating the need for training.

Based on the steps in Section III, the total number of finally
considered one-order cases is 34 after ruling out the diver-
gent cases in the initial ACOPF check and the disconnected
cases. Similarly, the total number of eventually considered
two-order cases is 343. Thus 343 + 34 = 377 samples are
collected. For each sample, one entire run of the MCS pro-
cedure takes about 200sec (with stopping criteria: 8 < 0.02,
maximum iterations = 5000).

B. BASIC PERFORMANCE OF THE ML MODELS

To inspect the basic performance of the proposed end-to-end
predictor, a set of randomly picked 90% of the original data
is used for training, and the left 10% is kept for testing. Three
error metrics, MAE (mean-absolute-error), MAPE (mean-
absolute-percentage-error), and RMSE (root-mean-square-
error), are adopted for performance comparisons.

The linear kernel function is selected for the SVM based on
trial and error. The maximum number of bottom-level trees
for the BT is set to 100. For GNN, one GCN layer (hidden
dimension = 16), one global-mean-pool layer [25], and one
linear layer are used, with 0.002 as the learning rate and 64 as
the batch size.

The error metrics are listed in Table 1. From the results,
SVM is better than others. Plots of the predicted LOLPs
versus the true values (from MCS) on the testing samples are
shown in Fig. 8 (for better legibility, only SVM’s predictions
and the true values are depicted here).

C. IMPACT OF THE REDUCED TRAINING DATASET

If only partial data is available for training, the performance
of the ML models may decline. To inspect this impact, three
portions of the original dataset are used for training, i.e.,
90%, 70%, and 50%. The respectively remaining data are
retained for testing. The error metrics are listed in Table 2.
As expected, the ML models’ performance can deteriorate
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FIGURE 8. Comparison of SVM vs. Monte Carlo (truth) predictions on the
testing dataset (90% data for training, 10% data for testing).

TABLE 2. Impact of the reduced training dataset.

SVM BT GNN

90% 0.0041 0.0045 0.0050

MAE  70% 0.0079 0.0086 0.0095
50% 0.0084 0.0101 0.0091

90% 4.53% 4.97% 5.35%

MAPE 70% 6.35% 7.74% 6.85%
50% 6.23% 8.34% 6.45%

90% 0.0053 0.0053 0.0079

RMSE 70% 0.0221 0.0205 0.0366
50% 0.0310 0.0308 0.0347

TABLE 3. Generalizability on unseen three-order samples.

SVM BT GNN

90% 0.0066 0.0092 0.0077

MAE  70% 0.0067 0.0116 0.0077
50% 0.0061 0.0096 0.0076

90% 6.93% 9.97% 7.88%

MAPE 70% 7.03% 12.52% 7.90%
50% 6.44% 10.13% 7.80%

90% 0.0091 0.0146 0.0108

RMSE 70% 0.0096 0.0188 0.0109
50% 0.0082 0.0132 0.0108

when training data size decreases; but in this case study, SVM
still performs better than others in most metrics.

D. GENERALIZABILITY ON HETEROGENEOUS

DATA SAMPLES

Recall that the original dataset only contains samples of
one-order and two-order line outages. Thus, to inspect the
generalizability of the trained ML model on unseen, hetero-
geneous data samples, a set of 20 three-order (maintenance-
induced line outage) samples are randomly generated here for
examination.

Models trained on three different portions (90%, 70%, and
50%) of the original training dataset are utilized here. The
error metrics are shown in Table 3, where the best MAPE is
achieved by SVM when 50% of the original training data is
used. The comparison plot of SVM predictions versus the true
values (from MCS) on those 20 three-order samples is shown
in Fig. 9.

It is not astonishing that most metrics of all three methods
have become larger because the testing samples here are not
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FIGURE 9. Comparison of SVM vs. Monte Carlo (truth) predictions on
20 unseen three-order samples (50% original data for training).

only unseen during the previous training process but also
heterogeneous: no three-order line outage samples exist in
the original dataset (created under one-order and two-order
line outages). The SVM'’s error metrics are still smaller than
others in this case study.

The result here implies that the trained end-to-end ML
model still has certain forecasting power even on unseen,
heterogeneous line-outage events.

E. COMPARISON OF TIME COSTS

Fig. 10. displays the time costs of the three ML models based
on the experiments in Table 2. SVM has demonstrated an
overall speed advantage. The training time costs of SVM are
not obvious in the left subplot of Fig. 10 due to their much
smaller values.
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FIGURE 10. Time cost comparison for the three machine learning models.

In this case study, one entire run of the MCS procedure
takes about 200sec for each sample. Hence, the conventional
MCS workflow can take about 2 hours (377*0.1%200/3600
~ 2.09) on 10% of the original data, about 6 hours
(377*0.3*200/3600 ~ 6.28) on 30%, and so forth. In con-
trast, the end-to-end ML approach has more affordable time
costs.

Moreover, if the assessment of three-order samples is
desired, then the time-saving effect can be more remarkable.
Hence, compared to the conventional MCS workflow, the
end-to-end machine learning model can improve the effi-
ciency of reliability assessment for systems under emergent
line maintenance.
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VI. CASE STUDY Il

In this section, the RTS-79 system is still used, but a different
setting is adopted to inspect the adaptability of the proposed
approach on a different targeted reliability index, i.e., EDNS
(expected demand not served, unit: MW). Note that in this
case study:

o To predict the values of EDNS, a different OPF model is
adopted, considering load curtailing actions.

+ No ACOPF pre-check (cf. Section V-A) is needed since
load curtailment will now be considered.

Here, a different OPF model is leveraged to calculate the
(possible) unserved load demand during the Monte Carlo
simulation for dataset creation. By trial and error, the linear
kernel function is again used for the SVM, and the BT’s
maximum number of bottom-level trees is still set to 100.
As for the GNN, two GCN layers (hidden dimension = 64)
are used, with 0.02 as the learning rate and 64 as the batch
size. All the ML models are re-trained based on the new
settings and new dataset of this case study.

A. OPF MODEL FOR CREATING THE EDNS DATASET
The OPF model used in case study-2 is shown in Eq. (13):
min Z AP?

V,Re(S%),APP

ieNL,
s.t. LV, =0 r : ref .bus no.
ymin < |y < ymax Vie N
Of" < L,V <O Vi) eE
Sy = YiIVil* = Y;viv; Y(i,j) € E
1851 < S Vi.j) € E
§Emin <G| < gGmax Vie N
= > 5 Vi e N\N,,

(S

S —SP 4+ APP = Zsij VieN, (13)

(i.)eE

where AP? is the extra decision variable, i.e., the load cur-
tailment, and Ny, is the index sets of load buses. The meanings
of other symbols are similar to Section V. In this OPF model,
the goal is to minimize the possible load curtailment, which
is equivalent to the possible load loss in one internal iteration
of the MCS procedure, and the final averaged value (expec-
tation) will be used as the EDNS.

Based on the steps in Section III, the total number of finally
considered one-order cases is 37 after removing the divergent
cases in the initial ACOPF check and the disconnected cases.
Similarly, the total number of considered two-order cases is
659. 37 + 659 = 696 data samples are collected in total.
For each data sample, one entire run of the MCS procedure
takes about 297sec (stopping criteria: 8 < 0.02, maximum
iterations = 100000).
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TABLE 4. Basic performances (baseline: MCS).

SVM BT GNN
MAE 0.9429 09116 1.4723
MAPE 2.60% 2.65% 5.19%
RMSE 0.7400 0.7556 1.8217
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FIGURE 11. Comparison of SVM vs. Monte Carlo (truth) predictions on the
testing dataset (90% data for training, 10% data for testing).

TABLE 5. Impact of the reduced training dataset.

SVM BT GNN

90% 0.9429 09116 1.4723

MAE  70% 0.7344 0.7420 1.4299
50% 0.7438 0.8179 1.4550

90% 2.60% 2.65% 5.19%

MAPE 70% 2.58% 2.60% 5.09%
50% 2.62% 2.89% 5.15%

90% 0.7400 0.7556 1.8217

RMSE 70% 1.0162 1.0559 1.7626
50% 0.9814 1.1059 1.7864

B. BASIC PERFORMANCE OF THE ML MODELS

Similar to Section V-B, a set of randomly picked 90% of
the data is used for training, and the left 10% is retained
for testing. The error metrics are listed in Table 4. From the
results, SVM performs best. The plots of the predicted EDNS
versus the true values (from MCS) on the testing samples are
shown in Fig. 11 (for better legibility, only SVM’s predictions
and the true values are depicted here).

C. IMPACT OF THE REDUCED TRAINING DATASET

Similar to Section V-C, three portions of the training dataset
are inspected, i.e., 90%, 70%, and 50%. The respectively
remaining data are retained for testing. The error metrics are
listed in Table 5. Again, SVM still performs better than others
in most metrics in this case study.

D. GENERALIZABILITY ON HETEROGENEOUS DATA
SAMPLES

Similar to Section V-D, 20 three-order line outage samples
are randomly generated for examination. Models trained on
three different portions (90%, 70%, and 50%) of the original
training dataset are utilized here. The three error metrics
are shown in Table 6, where the best MAPE is achieved by
SVM when 70% of the original training data is used. The
comparison plot of SVM predictions versus the true values
(from MCS) on those 20 three-order samples is shown in
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TABLE 6. Generalizability on unseen three-order samples.

SVM BT GNN

90% 1.0222 1.1364 1.3578

MAE  70% 0.9072 1.0230 1.3914
50% 0.9432 1.1779 1.3518

90% 3.73% 4.16% 4.96%

MAPE 70% 3.27% 3.72% 5.11%
50% 3.42% 431% 4.93%

90% 1.3080 1.4753 1.7535

RMSE 70% 1.1011 1.3843 1.8022
50% 1.2058 1.5340 1.7437
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FIGURE 12. Comparison of SVM vs. Monte Carlo (truth) on 20 unseen
three-order samples (70% original data for training).

Fig. 12. Here, the SVM’s error metrics are still smaller than
the other two ML models.

E. COMPARISON OF TIME COSTS

In this case study, one entire run of the MCS procedure
takes about 297sec for each sample. Hence, if using the
conventional MCS workflow, it will take about 6 hours
(696*0.1*297/3600 =~ 5.74) on 10% of the original data,
about 17 hours (696*0.3*297/3600 ~ 17.22) on 30%, and so
on. Again, if using the end-to-end ML approach, both training
and testing time costs are more affordable.

VII. A THEORETICAL ANALYSIS OF THE
GENERALIZABILITY OF SVYM
Since SVM performs best in the previous case studies of
this paper, here, a brief generalizability analysis is presented
for SVM based on the concept of empirical risk from the
machine learning theory [18]. Denote the sample set as § =
{z1,22, ... Zm}> 2 = (xi, yi) € X x Y (here X and Y stand for
the domains of input and output); a “hypothesis function”
(need to learn) as h €H (H is a specified family of functions,
e.g., the linear function in Eq. (4)); the loss function as L,
= L(h(x), y); the latent probability distribution D (typically
unknown) from which the samples {z;} are drawn.
Definition 1: the generalization risk is defined by

R(h)= E [L:(W]= E [L(h(x),y)] (14)
z~D ( D

X, y)~

Definition 2: the empirical risk is defined by
- 1 < 1 <
Rs(h) = — leLz,(h) =— 2L<h(xi>, ) (19
= =
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Then, by Corollary 14.5 in [18], for any § > 0, the follow-
ing inequality holds with probability at least 1—4:

~ 2 272 log(1
Rihs) < Rs(hs) + = + O 1y, D g
mA A 2m

w

where:

- hg is the hypothesis function returned by training the
SVM model on the given dataset S;

- r is an upper bound for the kernel function K (x, x) used
in the SVM regressor (e.g., when using the linear kernel, K (x,
x) = ||x||?) and x stands for the input feature vector;

- A is the coefficient of the penalty term in the SVM, i.e.,
the parameter C in Eq. (4);

- W is called the ““incremental bound of the empirical risk.”

- M is an upper bound for the specific loss function L
in the SVM regressor, e.g., the loss function used in this
paper’s SVM is shown in Eq. (17), where y;(= hs(x;)) is the
predicted value by SVM; y; is the true value. ¢ is the soft-
margin parameter (cf. Eq. (4)).

LGy = [ > hizal=e )
|yi — vil — &, otherwise

It should be noted that the right-hand side of Eq. (16) can
be much larger than the left-hand side (generalization risk).
Nevertheless, it is still useful for theoretical analysis, e.g.,
to evaluate the algorithmic stability and ““fitting power” of
the regressor (SVM). Besides, it can be inferred from (16)
that W (the lower, the better, in terms of ““generalizability’’)
is not always linearly dependent on the data size of m: a larger
dataset may also lead to bigger M and smaller A.

Inspired by the above observation, an empirical method is
proposed in this paper to approximately find an acceptable
“minimum” size of the data set. Take the example of case
study-2. Suppose 50% of the overall sample space has been
initially generated and used in training. Then, the parameters
of Eq. (16) can be estimated as follows (based on Table 5):

1) Estimate r based on the feature engineering scheme
(note that r does not necessarily rely on the training data size
m). In case study-2, it can be estimated by Eq. (18):

I1XiIl = |I[vG; vB; Pa; Qd; Pgmax]T|| < 13.22 = r = 13.22
(18)

2) After training, record the values of the MAE, A, and ¢,
i.e.,

A = 1.8367, & =0.01093, MAE = 0.7438 (19)
3) Then, estimate the parameter M as:
M ~ MAE — ¢ = 0.7329 (20)

4) Take a desired value of § (e.g., d = 0.1, which corre-
sponds to 1 — 0.1 = 90% probability in the above Corol-
lary). Plugging the above parameter values in that W term of
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FIGURE 13. Time cost comparison for the three machine learning models.
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FIGURE 14. The incremental bound of the empirical risk (left) and its
first-order derivative (right) vs. the training data size.

Eq. (16) to obtain a single-variable function of m (the training
data size).

5) Lastly, draw the function curve of the term W and its first
derivative versus m, as shown in Fig. 14. Empirically pick a
proper size on which W starts to become small, or the first
order derivative of W starts to approach its maximum.

From the curve, it can be observed that the decreasing
speed of the incremental risk term W starts to become
small when the size m > 400. Thus, empirically, the
training process can be stopped safely at this point (in a
probabilistic sense) since continued training on extra data
may bring relatively less improvement to the ML model’s
performance.

VIIl. CONCLUSION AND FUTURE WORK

In this paper, the devised end-to-end, line maintenance-
aware machine learning pipeline shows acceptable accuracy
and generalizability on partial data and heterogenous inputs
when using the support vector machine. Its advantage in
time-saving over the conventional MCS workflow is also
demonstrated. Future work is 1) considering transfer learning
for further time-saving and 2) experimenting other machine
learning models for further improvement in accuracy.
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