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ABSTRACT Based on the paradigm shift in modern warfare, ground forces conduct pilot operations of
wireless unmanned maneuvering systems, such as tactical drones, in the form of manned and unmanned
cooperative tactics after deploying the relevant systems in the battlefield. However, security considerations
for relevant systems are limited to the scope of using only the existing end-to-end encryption and public
key authentication modules, and no defense strategy to actively respond to specialized cyber-electronic
warfare threats has been officially established. To drastically reduce both the potential attack surface and
security vulnerabilities of drones employed in network-centric-warfare, a proactive defense technology that
expires the effectiveness of attacks by avoiding invasive action at the target is expected to be essential.
Accordingly, this paper proposes the concept of active moving-target-defense (MTD), an element of cyber
deception that minimizes the rate of success of cyber-attacks while conversely maximizing both defense
predominance and attack complexity asymmetrically, exclusive according to partially observable Markov
decision process (POMDP)-based threat modeling that considers both the internal and external operation
sequences of target drones. To optimally design the proposed drone-type MTD based on the Pareto frontier,
we additionally advanced and simulated a drone-based defensive deception game framework (D3GF), which
represents a general-sum combat framework reflecting decision logics such as the perfect Bayesian Nash
equilibrium, stochastic Stackelberg, and partial signal game. This study was conducted to compare and
calculate the efficiencies of the drone-typeMTD’s deceptive defense, which had not been considered in prior
studies, by unique environmental features inside and outside the drone. Furthermore, we conducted a detailed
performance evaluation considering game metrics based on sensitivity analysis. Hereafter, the drone-type
MTD will be extended into an actual active drone protection technology combining cyber flare-type
avoidance strategies and cyber camouflage-type disarrangement strategies by expanding its optimization
domain as a hypergame, while integrating it with drone decoy elements.

INDEX TERMS Cyber deception, moving-target-defense, drone, cyber-electronic-warfare, game theory.

I. INTRODUCTION
To adaptively respond to transitions in the battlefield in the
form of modern multi-domain operation (MDO) [1], ground
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task forces are currently introducing advanced unmanned
maneuvering systems such as tactical drones [2], [3]. Fur-
thermore, to simultaneously ensure the multi-purpose mis-
sion continuity and multi-layer engagement efficiency of
the ground combat platform, as well as quickly secure the
continuation ofs individual battles in the form of command
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decisions, the application of protection technologies to detect,
prevent, and respond to potential limiting factors according to
offensive soft-kill [4] threats is desirable.

At present, however, only the classical end-to-end encryp-
tion and concept of public key authentication [5] are limitedly
adopted within small- and medium-sized communication
systems, thereby focusing only on securing the availabil-
ity and integrity of the target force. The establishment of
self-defense strategies to fully respond to and neutralize spe-
cialized cyber-electronic-warfare [6] attacks aiming at tar-
get drone platforms remains at an extremely early stage.
In addition, wireless remote tactical drones exhibit properties
that are extremely unfavorable to continuous security in the
presence of Command and Control Center (CCC), such as
passivity, heterogeneity, dependency of decision-making, and
environmental hostility. The vulnerability of attack surfaces
and threat sequences that can potentially increase sharply as
tactical drones become common throughout operating sys-
tems has not been analyzed.

If sufficient countermeasures to ensure high levels of
cyber agility [8] and resilience [9] in tactical drones are
not established, mission continuation efficiency is expected
to sharply decrease. To alleviate these limitations, moving-
target-defense [12], which represents a defensive deception
approach [10], [11], must be appropriately configured for
all internal and external drone structured, detailed processes,
attack surfaces [13], and vulnerabilities. In addition, the anal-
ysis of quantitative protection performance in contrast to
conventional security must be considered via combat damage
evaluation according to the real-time engagement of target
rugged drones.

In the present study, a drone-type MTD was designed
to minimize the success utility of attackers that utilize the
defender’s intelligence by periodically mutating the unique
fingerprints possessed by the wireless tactical drones, simul-
taneously inducing high levels of cognitive disturbance on the
attackers via deceptive perturbation. In parallel, a general-
sum game framework was structured to evaluate and verify
the normalized drone-type MTD defense based on mixed
integer quadratic programming (MIQP) [16] with perfect
Bayesian Nash equilibrium [14], considering constraint con-
ditions, stochastic Stackelberg [15], uniform distribution,
and exponential distribution random sampling. The par-
tially observable Markov decision process (POMDP) [17]
and partial signaling game [18] components were addition-
ally also configured to simulate competitive engagement
and state-transition relations according to the cyber kill
chain (CKC) sequence [19] based on the internal and external
threat modeling of drones. Finally, the deception defense
performance of the drone-type MTDwere analyzed via game
metric.

The following primary contributions were achieved within
this study. First, by ensuring the deceptive MTD concept’s
exclusivity based on the drone’s threat modeling, enabling
it to be operated independently of other security standards,

a novel tactical drone security strategy can be established and
standardized. Second, as an element of defensive deception,
the MTD resolves the issue of spatiotemporal asymmetry
advantageous to the attacker, which could not be solved with
conventional security elements. Attack surfaces potentially
possessed by tactical drones can also be forcibly config-
ured to be disadvantageous to attackers. Third, by simulating
engagements through an optimization framework composed
of general-sum game-based components, the defense perfor-
mance of the drone-typeMTDwas analyzed by game metrics
considering both the Pareto frontiers and trade-off. Finally,
based on results of the preemptive analysis, an active response
strategy also can be referred to considering the resilience
and agility of tactical drone prototypes under the command
decision system.

The rest of this paper was structured as follows. Chap-
ter 2 investigates and compares previous study cases related
to defensive cyber deception and MTD. To derive an
optimal MTD deception strategy for the drone operation
environment, Chapter 3 presents D3GF, an optimization
framework that combines the perfect Bayesian Nash equi-
librium, stochastic Stackelberg, partial signal game-based
general-sum game foreground module, and POMDP-based
state-transition matrix background module. This framework
is presented along with game metrics and formulas, as well
as a parallel analysis threat modeling for the inside and out-
side of drones based on the STRIDE standard [20]. Chapter
4 describes the attack and defense scenarios that will be
available in D3GF. Subsequently, the drone’s topology is
specified in the form of a POMDP-based CKC considering
common vulnerabilities, exposures (CVE) [21], and the com-
mon vulnerability scoring system (CVSS) [22]. In addition.
major game parameters are configured to generally analyze
the sensitivity of the drone-typeMTD. Finally, Chapter 5 con-
cludes this paper by discussing the obtained results, expected
effects, and future directions of research.

II. RELATED WORK
The following section presents conceptual descriptions of
defensive cyber deception andMTD to amplify the concept of
deceptive protection in tactical drones. Several relevant stud-
ies based on game theory that provided the main inspiration
for this study are investigated, analyzed, and compared with
the proposed D3GF.

A. DEFENSIVE CYBER DECEPTION AND MTD
Defensive cyber deception has emerged as a major
game-changing concept that could potently replace con-
ventional technologies in domestic and foreign cyber secu-
rity subdivisions starting from the 2011 US White House’s
‘‘Trustworthy Cyberspace: Strategic Plan for The Fed-
eral Cybersecurity Research and Development Program’’
[23]. It is an uncooperative decision-making-contamination
technology designed to confound the attacker’s cogni-
tion based on static information asymmetry and dynamic
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FIGURE 1. Primary mechanism of MTD.

disinformation, causing attackers to sustain erroneous post-
action strategies. According to these social engineering [24]
characteristics, defensive cyber deception involves unique
features such as guidance, isolation, backtracking, and muta-
tion, making kill chains by mission critical environment such
as the national defense and public domains. Thus, defensive
cyber deception is clearly distinct from conventional secu-
rity. In addition, while actively reducing the temporospatial
inferiority of defenders within conventional perimeter-based
security, defensive cyber deception can inherently secure the
standardization of cyber threat intelligence [25], as required
by attack analysis, using a small quantity of resources.

The defensive cyber deceptions could be classified among
MTD, Honey-X [26], and decoys [27] according to oper-
ational goals, defense purposes, implementation directions,
remaining resources, and roles. MTD – which is constructed
based on attributes of cyber mobility with shuffling, shifting,
diversity, and redundancy – does not expose defender’s sensi-
tive information, instead operating in a form that significantly
limits the validity of surface information. Consequently, the
observable attack/exploration surfaces are actively increased
by the defender in the temporal and spatial dimensions,
thereby avoiding the advanced attack independently. Because
MTD addresses the information asymmetry issue disadvan-
tageous to the defender while processing the formation of
the attack chain to induce uncertainty and complexity for
the attacker, it uniquely realizes proactive defense based on
preemptive cyber immunity. In addition, depending on the
mutation cycle and shuffling set selection, MTD can prevent
post-fact damage by diverting the attack directly outside the
victim, or advance to tolerate penetration by intentionally
lowering the mutation intensity for cyber traceback analysis
and information collection.

The design principles of MTD [29] correspond to three
conceptual elements: ‘When-to-Move,’ which pertains to the
mutation cycle; ‘What-to-Move,’ which refers to the defender

fingerprint set groups to be mutated; and ‘How-to-Move,’
which encompasses the mobility functions and sampling
mutation methods to prioritize the shuffling selection of can-
didate groups for mutation sets. The MTD mechanism is
designed as illustrated in Figure 1.

When an attacker A identifies through reconnaissance that
the IP address possessed by legitimate network server D
at time T1 is dIP1, and the corresponding port is dPRT 1,
A initiates weaponization mode. However, because D has
already applied the MTD of the network layer target – which
operates independently regardless of compromise or invasion
detection, and involves the MT (MT < Tn+1 − Tn) param-
eter, which is a mutation cycle optimized so that seamless
connection [30] to the communication channel of Tn, the
cycle of previous time point n, is maintained at least –
⟨dIP1, dPRT1⟩ shifts to ⟨dIP2, dPRT2⟩ at times T2. Accord-
ingly, A’s attempt to invade intends to exploit through the
intelligence of ⟨dIP1, dPRT1⟩, resulting in a failure from the
stage of initial attempt for socket communication, as D has
already alternated to ⟨dIP2, dPRT2⟩.

Thus, the MTD can be ultimately defined as a representa-
tive active-defense paradigm [31] that efficiently diversifies
the configurations of internal networks and heterogeneous
system hosts by digital domain to be protected based on
cyber mobility. This maintains the availability of major ser-
vices (when multiplexed MTD channels to support seamless
connection) provided to legitimate users while increasing
confusion and uncertainty in attackers, thereby preventing the
formation of attack chains.

However, most reported studies pertaining to MTD are
limited to theoretical evaluations of defense performance in
wired legacy network environments, or restrictive designs
within constructed virtualized SDN communication topol-
ogy environments [32]. In addition, the few existing MTD
study cases on wireless communication environments or
drone-based unmanned vehicles are limited to the use of
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radio frequency (RF)-based received signal strength indica-
tors (RSSI), and detailed performance evaluations accord-
ing to engagement between competitive actors have been
reported to be slightly inadequate [33]. Therefore, the intro-
duction of a defense strategy for tactical drones based on
the domain limitations of existing studies and new research
goals, a unique threat modeling configuration is necessary
to identify potential vulnerabilities in the drones’ internal
and external environments. A quantitative sensitivity analysis
following MTD application is also required preemptively.

B. GENERAL GAME THEORETIC MTD
To carry out a study on drone-type MTD, game-theory-based
MTD study cases were compared and analyzed. The scope of
investigation for selected studies was determined as ‘general
game theoretic MTD,’ ‘Bayesian Stackelberg game theoretic
MTD,’ and ‘stochastic game theoretic MTD.’

The primary finding point is that previous game-theory-
based academic studies using MTDwere conducted to model
competing CKC-based intrusion and MTD-based avoidance
in order to achieve imperfect goals independently possessed
by attacking and defending actors, respectively. Another
objective of these studies is the microscopic optimization
of the main MTD parameters, including the mutation cycle,
shuffling sets, and sampling methods. In addition, when
increasing the defender’s gains by minimizing performance
degradation and maximizing security, the normalization
of the macroscopic MTD strategy also aims to minimize
the attacker’s gains, such as lateral movement or target
occupation.

Among the general game-theory-based MTD study cases,
Zhu et al. [34] first applied two-person game-based sequential
attack-defense competition formulas and metrics to the con-
cept of MTDmutation, thereby quantifying the trade-off rela-
tionship based on both the defender’s security and operation
degradation. Ge et al. [35] proposed an incentive-compatible
MTD game based on user-to-user communication mapping
during migration to characterize cyber agility elements that
can secure availability while ensuring high service visibil-
ity and throughput for legitimate users based on the MTD.
Neti et al. [36] designed an anti-coordination game as a
guided framework to observe interaction between scalabil-
ities and quantify the diversity-based deceptive measure in
MTD. Wright et al. [37] constructed a heuristic two-person
game environment to optimize all necessary preconditions,
mutation parameters, and target stability criteria, thereby con-
structing an active MTD strategy against adaptive distributed
denial-of-service (DDoS) attacks. Carter et al. [38] presented
a dedicated MTD game architecture to determine a migration
methodology that guarantees non-terminating connectivity to
legitimate users’ services while minimizing the suspicion of
attackers guided and isolated in the sandbox. As an additional
counterexample study, Colbaugh and Glass et al. [39] argued
that rather uniform randomization is the optimal strategy for
diversity tactics.

C. BAYESIAN STACKELBERG GAME THEORETIC MTD
The following section examines Bayesian Stackelberg game
theoretic MTD study cases that aimed to limit the follower’s
optimization behavior according to the leader’s behavior.

Hasan et al. [40] proposed a co-resident attack mitigation
and prevention (CAMP) architecture, representing a Nash
equilibrium game model that detects co-resident attacks in a
virtual environment where the same temporospatial resources
are shared, as well as minimizing the impact of internal
and external threats. Feng et al. [18] presented an artificial
information disclosure model that enhances the defender’s
agility by disturbing and deflecting the attackers’ initial
decision-making process with the MTD defender’s deliberate
expose of false information based on the Stackelberg game.
By considering the follower’s dependent relationship with the
leader’s signal, this approach also represents an interactive
decision strategy. In a follow-up study, Zhu et al. [41] pro-
posed an advanced MTD model to improve the efficiency of
the attacker guidance and isolation mechanism based on the
routing protocol, while generating false packets specialized
to the reconnaissance operations of attackers based on the
unique fingerprint of the target defense organization.

Sengupta et al. [42] proposed an MTD optimization strat-
egy model that maximizes active avoidance security using
the system configuration candidate set while minimizing per-
formance degradation for defenders, who could have limited
available resources within the web and cloud-based orga-
nizational topologies. A study on MTD strategies for zero-
and general game-based competition [43] was conducted
to secure defense against advanced persistent threat (APT)
attacks within the cloud network. As a separate follow-up
study, Li et al. [16] proposed a Markov Stackelberg model
using average-cost semi-Markov decision process (SMDP)
and discrete time Markov decision process (DTMDP)-based
optimization formulas to calculate the defender’s spatiotem-
poral MTD mutation decision-making process simultane-
ously with the potential attack surface.

Seo et al. [44], [45] added a dynamic cognitive disturbance
function that the existing MTD concept was not contain,
and combined it with layered social engineering decoy as
an organizational open-source intelligence (OSINT) element,
thereby strategizing a defensive deception process discretely
optimized for real operational goals. In a follow-up study
[46], IoT-based organizational deception modeling (IoDM),
which represents a partial general-sum-based lightweight
deception modeling designed to protect Internet-of-Things
(IoT)-based organizational networks built by domain, was
presented.

D. STOCHASTIC GAME THEORETIC MTD
Among cases of stochastic game-theory-based MTD stud-
ies that reflect the correlations among multi-agents through
stochastic state transitions, Manadhata et al. [47] proposed
a game model that diversifies the dynamics according to
real-time battles based on stochastic transitions in accordance
with decision-making flows, and reflects the multifaceted
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FIGURE 2. Main overview of D3GF for performance evaluation with drone-type MTD.

causality on the MTD strategies. The optimal MTD strategies
are formalized based on the vulnerable surface configurations
characterized environmentally.

Finally, Zhang et al. [48] proposed the Nash-Q learning
algorithm, based on a stochastic reward matrix constructed
by capturing the attacker’s strategy selection frequency and
value distribution, thereby resolving the issue of incomplete
information asymmetry by actor. According to this previous
study, the Nash theory was proven to accurately reflect actual
operational scenarios compared to other game theories, and
the availability-based trade-off relationship due to the calcu-
lation of MTD factors could also be quantified.

E. COMPARATIVE ANALYSIS BY PREVIOUS STUDIES FOR
PROPOSED MODEL
Previous game-theory-based MTD studies limited the
defense performance evaluation only to the MTD concept,
and thereafter also only performed sensitivity analysis limited
by some shuffling set. In addition, they did not adaptively
optimize the MTD strategies to fit the unique characteristics
of the target network or organizational environment, or con-
sider hierarchical state-transition couplings with other decep-
tion elements in detail. Seo et al. [44], [45], [46] attempted to
mitigate these limitations by additionally selecting the unique
organizational OSINT elements as the primary mutation set
groups of MTD while constructing a virtualized sandbox
container-based social engineering decoy, thereby formal-
izing the game logic framework combined with the MTD
sequence.

However, same as previous researches, because these
supplemented studies consider engagement logic architec-
ture with MTD only for wired-network-based organizational
operations, reliable evaluation results cannot be guaranteed
for all drone-related sub-entities, wireless communication
elements, detailed specification information, or indicators.
In addition, the analysis of MTD-based threat modeling
design, which must be preemptively configured to iden-
tify potential security vulnerabilities of drones and other
lightweight unmanned vehicles, is still extremely inadequate.

In contrast to the aforementioned studies, the drone-type
MTD sequences presented in the present research account for
the dedicated threat modeling concept with formal method-
based standard. We also present a performance analysis of
deceptiveMTDdefenses considering all correlations between
internal functional components of drones and communication
entities external to drones, which can be quantified utilizing
the multi-sum game engagement logic-based D3GF.

III. PROPOSED D3GF FOR PERFORMANCE EVALUATION
OF DRONE-TYPE MTD
The following section presents a novel drone-typeMTD algo-
rithm that introduces the concept of deceptive protection to
internal and external environments of tactical drones. D3GF,
a model-free type general-sum framework for competitive
engagement simulation, is formalized in detail with respect
to major modules and components. All metrics and formulas
related to decision logic, such as PBNE and BSS scheme
applied in D3GF, are likewise defined.
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FIGURE 3. Conceptual diagram of drone-type MTD.

A. DESIGN PRINCIPLE
As shown in Figure 2, the main structure of D3GF, which is a
general-sum-based game simulation framework with drone-
type MTD, is representatively composed of four modules.

The deceptive knowledge module (① ) performs overall
formal method-based threat modeling for the pre-identified
functional elements of internal components of drones, com-
munication elements of external entities, and related interop-
erable sequences. In addition, the social engineering schemes
(perturbation, disclosure) to apply drone-type MTDs by
vulnerable elements are formalized, and major factors to
determine the three principles of MTD (‘When-to-Move’,
‘What-to-Move’, ‘How- to-Move’) are configured in detail
for use in the dynamic game-based foreground module (② )
and state-transition-based background module (③).

In the foreground module, mutation sampling optimization
is carried out by establishing engagement modeling based
on perfect Bayesian Nash equilibrium (PBNE), Bayesian
stochastic Stackelberg (BSS), and partial signal game (PSG).
Subsequently, general-sum-based competition simulation is
performed based on attack/defense sequences by actor. In the
background module, to maintain the asymmetric predom-
inance of defense drones and assess combat damage, the
CVE-based vulnerabilities of targets internal and external
to drones are specified, and CVSS-based quantification is
implemented. Thereafter, the POMDP is formalized based on
established scenario templates for targets and related matri-
ces, and the decision behaviors are schematized by each actor.

And, based on a detailed consideration of the Pareto
frontier-based optimal payoff and related competition game
equilibrium entry states in accordance with MIQP-based
constraint conditions, an evaluation of deceptive defense
performance is carried out in parallel with analyses of sensi-
tivity by key metrics (discount factor, exploration rate, learn-
ing rate, macroscopic episode, microscopic step, variance

coefficient), finally deriving the results of related compar-
isons and analyses.

B. CONCEPTUALIZATION OF DRONE-TYPE MTD
The drone-type MTD, based on the perturbation and dis-
closure designed in the proposed D3GF, is determined from
the conceptual outline drawing shown in Figure 3 based on
Figure 1.
Here, the drone-type MTD – which was introduced to alle-

viate issues such as unsecured wireless operability in existing
MTD and the exclusiveness, lightness, non-independence,
and non-regularization of drones – is a concept of the MTD
selection strategy to determine an appropriate deceptive sam-
pling method to select the shuffling cycle, mutation strength,
and gene sets suitable for the drone network. Specifically, the
defender manually selects the MTDmutation sampling tactic
and adjusts the strength of active avoidance against invading
forces realizing cognitive disarrangement based on passive
perturbation [26] and active disinformation [44], [45], [46].

That is, the drone-type MTD is constructed with Bellman
value iteration-based concept of artificial disclosure (AD).
This approach combines the concept of perturbation (P),
which asymmetrically imposes noise on the attacker’s cog-
nitive directivity, and the adaptation of mutation according
to varies in offensive actions, and is configured in detail as
P-based Equation 1 and AD-based Equation 2, respectively.

P = Pr[Ft = f |Ot = µ(o)], (1)

Here, Ft is a set of fake elements that is dynamically signaled
by the defender to distort and deflect the reflection threshold
for the exploit step at the time of weaponization, using the
attack surface of the drone identified by the external attacker
at time t in favor of the drone-type MTD defender. Ot is
a set of actual drone information groups that minimize the
attacker’s suspicion of the defender’s juggle while improving
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TABLE 1. Pseudo-code-based drone-type MTD algorithm.

the efficiency of the MTD of Ft utilized at time t . µ (o)
is a function that calculates the probability that the attacker
predicts the drone’s information considering the cognitive
impact of o, which is an actual random information group
partially observable by the attacker, such as Ft .

ADte (i) = min
τi,Si,∈S

[
ci,j +

∑
d̃i,jADt−1 (j)

]
, (2)

Next, ci,j is a function to derive the expected mutation cost
when moving from index i for the attack surface of the
drone in episode e, to index j for the potential attack surface.
This function is used to optimize the selection of mutation
candidate groups at time t within the networks internal and
external to the drone involving limited security resources.
d̃i,j signifies the distinguishability of the external attacker
according to i and j, and is configured to minimize the suspi-
cion of an attacker that continuously examines the state of
the target drone hierarchically. τi is the mutation time slot
length-based total temporospatial cost consumed to main-
tain the defender’s predominance until the mutation of the
drone attack surface element F for i is complete, and si is
a drone surface element sampled and optimized based on i
within S, a set of deceptive attack surfaces formalized through
mutation.

Therefore, the algorithm formalized from Equations 1
and 2 is shown in Table 1. Among the parameters added to
construct the algorithm of Equation 1, f̂ denotes the max-
imum number of false elements capable of perturbation, f̌
is the minimum number thereof, f0 represents the group of
false elements selected to maximize the initial cognitive bias
at first time, and LC denotes the total leakage cost by the
drone-type MTD. Among the parameters added to construct

the algorithm of Equation 2, T encompasses all time point
set groups available based on the mutation time slot length
throughout the drone’s operation, â is the supremum of the
defender’s response time, ǎ is the lower limit thereof, C is
the total mutation cost for the drone-type MTD in the current
game, and V the attack surface of the drone identified by the
attacker. θ , which is commonly used by individual formulas,
denotes the time required until the drone-typeMTD responds.

To normalize the designed drone-type MTD as the main
proactive defense process in the tactical rugged drone, the
corresponding MTD scheme is specified using atomic vari-
ables that are required for all competitive behaviors in the
dynamic game foreground and POMDP state-transition back-
ground modules.

C. CONSTRUCTION OF MULTI-SUM GAME-BASED
DRONE-TYPE MTD MODELING
By modeling a dynamic game-based foreground module that
performs general-sum-based competitive attack-defense sim-
ulations within the proposed D3GF, we achieve the opti-
mization of mutation performance in the drone-type MTD.
Because this foreground module includes game-based opti-
mization components take in decision logics with PBNE,
BSS, and PSG, as well as drone attack-defense strategy com-
ponent based on the state-transition probability matrices by
actor, the corresponding dynamic game module is represen-
tatively constructed as shown in Figure 4.

First, the optimization component with general-sum game
includes the PBNE-based decision tactic that maximizes the
drone defender’s payoff for each episode by considering
the privatized asymmetric decision relationship based on
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FIGURE 4. Detailed overview of dynamic game-based foreground module in D3GF.

incomplete information constructed between the drone
defender and attacker. Utilizing the ratchet-type causality
between the active leader and passive follower, the BSS-based
decision tactic that optimizes the quantitative sequential rela-
tionship for the micro/macroscopically calculated reward is
also applied. Furthermore, the PSG-based decision tactic is
adopted to enforce the drone attacker’s priori belief and con-
fusion with the defender’s advantage, as well as maintain the
initiative.

Next, the attack-defense strategy component is configured
to refer to the internal/external configuration topology,
detailed sensors, specifications, equipment, communication
channels, detailed vulnerabilities, attack graphs, and related
scenarios pre-defined in the state-transition-based back-
ground module. From this configuration, the engagement
flow is competitively designed and simulated considering the
goals (invasion, protection), techniques (breaching, avoid-
ance), and sequences (attack, defense) calculated for each
drone actor.

In this case, the foreground module is configured a total of
15 tuples as follows.

• N = (NA,ND) is a set of drone actors, NA is a
cyber-electronic-warfare drone attacker, and ND is a
drone-type MTD-based drone defender. According to
the game scenario and present engagement situation of
the detailed episode, the payoffs calculated by the actor
in N , signaling, and causality between the leader and
follower are determined individually.

• TS =
(
TSNA ,TSND

)
,TSNA = (ρ) ,TSND =

(tsi | i = 1, 2, . . . , n) are the sets of intelligence elements
uniquely possessed by individual drone actors, TSNA is
selected as an attack-graph-based private information
element group identified by drone attackerNA, and TSND
is selected as a threat-modeling-based element group
identified by the drone defenderND to applyMTD inside
and outside the drone. TSNA and TSND are combined or
divided based on the payoff that variates according to
episodic development. Unlike the defender, the attacker

additionally considers ρ as the effective indicator of the
attack surface based on the threshold, thereby dynam-
ically contributing to the composition of the element
groups.

• GS =
(
GSNA ,G SND

)
,G SNA =

(
gSNAj [j = 1, 2, . . .) ,

GSND =
(
gsNDi | i = 1, 2, . . .

)
are the sets of deci-

sion tactics for general-sum engagement between drone
attacker NA| and defender ND, determined according to
the payoffs derived by the actor and a priori causality.
That is GSNA is a set of invasive decision tactics com-
posed by adopting elements in TSNA as main attack sur-
face information, and GSND is dynamically determined
as a set of avoidant decision tactics that regulate the
elements in TSND as major subjects of active defense by
the MTD.

• SS =
(
SSNA , S SND

)
, S SNA =

(
SSNAj | j = 1, 2, . . .

)
,

SSV =
(
SSND (i = 1, 2 S SND =

(
ssND [i = 1, 2, . . .) are

sets of PSG-based signaling possessed by drone attacker
NA and defender ND, respectively. Whether to refer to
them is selected according to the signaling initiative.
That is, SSNA is an attack signal set group that is asym-
metrically activated when NA acquires the signaling ini-
tiative, and SSND is formalized as a proactive deception
signal set maintained when ND continuously achieves
protection against the drone network.

• ω is a threshold-based signal attenuation factor that
determines the degree of activation of SSND of
drone defender ND according to the development of
general-sumbased engagement episodes.

• GB =
(
GBA, G̃BA

)
,G BA =

(
GBA

(
gsND

)
| i =

1, 2, . . .
)
, GB̃A = GBA

(
gsNDi · ω

)
denote the game

belief sets of drone attacker NA based on the PSG-based
cognitive dependence relationship, and GBA represents
the prior belief set of NA before the signaling of
defender ND · B̃A is the posterior belief set of NA
dynamically determined according to Bayes’ theorem
following cognitive intervention of ND spoofed based
on SSND
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• S = (si | i = 0, 1, . . . k) is a set of finite states deter-
mined based on GS and SS in the general-sum-based
dynamic game module, involving multilevel properties
to structure the act of drone-based engagement in the
state-transition probability matrix as POMDP with for-
mal methods.

• A =
(
ANA ,AND

)
,ANA =

(
ajNAi

[j = 1, 2, . . . y),AND =

−A =
(
ANA ,AND

)
,ANA =

(
aNA j = 1, 2, . . . y

)
,AND =(

aiNDi
i = 1, 2, . . . x

)
are sets of finite actions of drone

attacker NA and defender ND for S.AND defines ND
’s drone-type MTD avoidance-based acts of protection
for si as and ANA constructs N4 erability-based acts of
compromise of CKC (reconnaissance and exploration,
weaponization, exploit, lateral movement, privilege
escalation, final compromise, occupation, and action on
objectives) as a half-duplex transition relationship.

• θ (Sk , ax , ay, Sk∗) is a probability distribution function to
discretely calculate the probabilities for drone attacker
NA and defender ND to reach the next period goal state
Sk∗ when they perform acts axand ay.

• R(Sk , ax , ay) is a function to calculate the reward obtain-
able in the current combat episode when drone attacker
NA and defenderND perform acts ax and ay, respectively,
in an arbitrary state Sk . Here, ND, competes with NA to
maximizeR as a pre-constraint condition before entering
the general-sum game-based equilibrium.

• U = (UA,UD) is a general-sum-based discount factor
function that cuts off the solution space to limit the
ranges of cognitive decision by actor, thereby indirectly
copying competing tactics such as limiting surface by
actor, distortion of intelligence, disinformation, artificial
disclosure, and perturbation.

• CU = (CUA,CUD)is a utility function that indicates
the resources and costs by actor charged when perform-
ing a general-sum-based act of competition.

• Prx = −10 × n log10 D + Ptx ,D = |Drx − Dtx |is an
RF andWiFi-based wireless communication availability
indicator for evaluation of the MTD performance of
subjects external to drones. Using trilateration consid-
ering the locations of drone defender ND, attacker NA,
and other access point-based beacons conceptualized for
signal analysis, the strength of the follower’s received
signals based on PSG is calculated. In this case, Drx
indicates the 2D position of the signal receiver, Dtx
represents the position of the signal sender, and Ptx
denotes the signal transmission power. In addition, n is
the constant of path loss based on the Friis propagation
loss model.

• PL (D) = (10× log (Ptx
/
1mW ))− (10× log (Prx

/
1mW ))

is a power density function for the linear application of
communication signal attenuation in the wireless com-
munication space, and a variable of loss to amplify the
environmental hostility of n in Prx .

• SMF = w1 + w2 is a probability factor within the
[0,1] section to monitor the subject’s security state in the

drone, and w1 denotes the weight when the drone-type
MTD fails in the defense of profiling for its internal
components. w2 represents the weight when the actions
on objectives for internal components are allowed.

Using these tuples, the general-sum game logic in D3GF
is normalized in the form of PBNE, BSS, and PSG. In addi-
tion, decision sequences to optimize the payoff by competing
drone actors are determined from the game equilibrium state.
From an episodic defensive behavior perspective, if the drone
defender is selected as an active deceptive leader, it is possible
to force the drone attacker to identify false attack surfaces
created using drone-type MTD-based disinformation, artifi-
cial exposure, and perturbation. When a deceptive signal is
transmitted, only the attack surface information biased to the
defender’s advantage is provided to the attacker, who is a pas-
sive successor and recipient of the signal. Accordingly, a deci-
sion sequence based on the BSS-PSG is configured so that
both the total attack success probability and spatio-temporal
attack asymmetry are attenuated. The PBNE-based a priori
decision sequence is designed under consideration of the
temporal and spatial cutting of decision range with Pareto
optimality according to the predefined discount coefficient.

In the dynamic game module of D3GF, the reward opti-
mization concept related to dependent reasoning acts accord-
ing to the leading actor is organized in detail as a Q-Value
scheme expressed in Equation 3.

Q
(
Sk , ax , ay

)
= R

(
Sk , ax , ay

)
+ U

∑
Sk∗

θ (Sk , ax , ay, Sk∗) · TS

· OPT (Sk∗) + CU , (3)

Because OPT (Sk∗) is also calculated through all SSs and
GBs utilizable in Sk∗, an optimized reward value can be
obtained.

OPT (Sk∗) = max
SS

min
ax

∑
ay

Q
(
Sk , ax , ay

)
·

(
SSNDi | i = 1, 2, . . .

)
· GB, (4)

In this case, this optimization method based on (3) and (4)
is divided among Equations 5 and 6, considering the drone’s
internal operation and external communication environments,
respectively. That is, Equation 5 adjusts the optimal value by
adding SMF in (4) to consider the operational security state
inside the drone, whereas Equation 6 amplifies both Prx and
PL (D) to conceptualize the unique wireless communication
characteristics outside the drone for equilibrium.

OPT internal (Sk∗) = OPT (Sk∗) · SMF, (5)

OPT external (Sk∗) = OPT (Sk∗) · Prx · PL (D) , (6)

The decision to enter the equilibrium state based on con-
straint conditions is also determined with OD and OA in
Equations 9-10 based on Equations 3-8. Here, DPD is the
decision probability of drone defender ND based on the prior
probability for TSND related to SSNA , and DP

∗
D denotes the
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FIGURE 5. STRIDE-based conceptual data flow diagram with threat modeling on tactical drone.

posterior probability-based inference probability for SSND
reconstructed by ND according to the MTD rule after reac-
tively receiving the signal. In addition, the fine-tuning of
DPD and DP∗

D also relates to metacognition, and is therefore
controlled according to theUA andUD configurations, closely
related to signal initiative and equilibrium state entry time.

DPD =

(
pD ·

(
TSNDi

)
| i = 1, 2, . . . n

)
(7)

DP∗
D = p∗

D

((
TSNDi | i = 1, 2, . . . n

)
| SSNA

)
, (8)

OD
(
SSNAj

)
= arg max

SSNDk
∈SSND

∑
TSNDi

∈TSND

DP∗
D

· F
(
TSNDi , S SNAj , S SNDk

)
, (9)

OA
(
TSNAi

)
=arg maxSSNA∈SSNA

|F
(
TSNAi ,SSNAj ,O D

(
SSNAj

))
,

(10)

D. DEFINITION OF DRONE VULNERABILITIES AND
THREATS FOR MTD ANALYSIS
1) CONFIGURATION OF VULNERABILITIES IN TACTICAL
DRONES
Formal threat modeling with STRIDE and POMDP is per-
formed in order to identify elements internal and external to
drones that can realize the aforementioned active protection
effect at the highest level according to vulnerabilities. Prior
to construction of threat modeling considering the functional
components internal to drones and external communication
entity relationships, security vulnerabilities that could ensue

during tactical drone operations must be preemptively ana-
lyzed under theoretical conditions [49].

Because all communications and security actions of tac-
tical drones deployed in combat operate via remote con-
trol in the presence of commanders, in cases of electronic
warfare attacks, the simultaneous response and protection
against the relevant threat would be impractical. Specifically,
related drone performance issues remain because existing
channel and end-to-end encryption technologies protect only
part of the payload area and status flags where the data and
main authentication values in an arbitrary packet are located.
Furthermore, the header area where transmission/reception
routing information is placed remains unprotected. Conse-
quently, the perimeter-based defense effect cannot be derived
against the type of cyber-electronic-warfare that exploits
header field information in drone transmission and reception
packets, parts of MAVLink (Micro Air Vehicle Link) [50]
message standards, or communication functionality. In addi-
tion, most unique fingerprints, including wireless specifi-
cation characteristics, equipment information, and public
CVE-based vulnerabilities of drones, already be disclosed
by commercial vendors. Therefore, attackers could apply
the dazzling fingerprints to the weaponization chain for tar-
get drones by making them into intelligence based on dic-
tionary attacks. In particular, because most relevant data
transmission and reception protocols are based on com-
munication standards open to private domains, such as
WiFi [51] or LTE [52], additional side effects could be
caused owing to the vulnerabilities inherent to the relevant
standards.
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FIGURE 6. Detailed overview of MTD-based POMDP considering the inside of rugged drone.

TABLE 2. Table of CVE-CVSS by internal function component in rugged drone.

In addition, the combat space where tactical drones oper-
ate is considered hostile communication environment where
the available tactical bandwidth is extremely limited in real
time, as propagation losses and communication noise occur
irregularly due to rapid temporospatial fluctuations. That
is, the target force operating tactical drones in real time is
conservative in securing security by applying conventional
technologies (firewall, IDS, IPS), which has a great impact
on network performance. Because this approach depends
upon the practical operation manual, there could continue
to be conflicts of interest in improving the security of
drones.

Based on this theoretical preemptive analysis, we conclude
that cyber-electronic-warfare threats to drones can potentially
occur. Among the elements that establish the drones’ inter-
nal functions, threats could target communication, payload
components, mobility components, and control components.
Among the entities that determine external communications,
vulnerabilities could be intensified in the context of mas-
ter/slave drones, GCS, and ZSP entities.

Therefore, the data flow diagram shown in Figure 5 is for-
malized to independently derive drone elements to which the
drone-typeMTD is applicable, as well as determine the threat
propagation sequences related to competitive attack-defense.
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FIGURE 7. Detailed overview of MTD-based POMDP considering the outside of rugged drone.

TABLE 3. Table of CVE-CVSS by external communication entity in rugged drone.

In this case, STRIDE is threat modeling standard [53], [54]
primarily used when the target system’s security is evaluated
and validated based on vulnerability analysis focusing on six

properties, - authentication, integrity, non-repudiation, confi-
dentiality, availability, and authorization. Therefore, various
vulnerabilities inside and outside the drone that must be
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TABLE 4. Major simulation parameters in D3GF.

protected by the drone-type MTD can be identified, and the
preprocessing before the attacker reconnaissance stage can
also be conceptually simulated.

2) MATERIALIZATION OF POMDP-BASED DRONE THREAT
MODELING
To stratify the general-sum-based drone attack-defense com-
petition game in D3GFwith state-transition matrix, as well as
reflect the concept of formal threat modeling of targets inter-
nal and external to drones, the POMDP-based state-transition
background module specified in Figure 2 is illustrated in
Figures 6-7.
Figure 6 presents the form of the POMDP based on cor-

relations between individual functional components inter-
nal to the rugged drone, which are quantified based on
the CVE-CVSS vulnerabilities listed in Table 2 and the
state-transition matrix presented in Table 5. Figure 7 also
shows POMDP based on correlations between seperate exter-
nal communication entities that can be closely connected to a
rugged drone. The channel transition probability and reward
values are determined in accordance with Tables 3 and 6.

IV. EXPERIMENTS OF ENGAGEMENT THROUGH
DRONE-TYPE MTD
The following section presents optimal simulations of the
competitive act of encounter between cyber-electronic-
warfare drone attackers andMTD defenders within a general-
sum-based solution of equilibrium normalized in D3GF.
Sensitivity analyses by parameter were conducted in parallel
to evaluate the defensive efficiency of the drone-type MTD
according to scenarios for the inside and outside of the drone.

A. DETERMINATION OF MAJOR EXPERIMENTAL
PARAMETERS IN D3GF
Before conducting the experiment, the simulation parameters
were set according to Table 4.

In the case of drone-type MTD, three primary princi-
ples based on the mutation set and shuffling cycle were
determined at the constant factor level, whereas the gene
sampling range were detailed at the variable level of sub-
parameters. And, in relation to perturbation, disclosure, and
disinformation, the elements of total deceptive acts of the
drone-type MTD were further amplified stochastically. Next,
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FIGURE 8. Comparison of MTD-based defense success utility inside rugged drone by each discount factor. (a) discount factor=0.9, (b) discount
factor=0.8, (c) discount factor=0.7.

FIGURE 9. Comparison of MTD-based defense success utility inside rugged drone by each exploration rate (attacker). (a) exploration rate with
attacker=0.05, (b) exploration rate with attacker =0.1, (c) exploration rate with attacker =0.15.

the two-player-based general-sum game strategy was applied
to determine competitive engagement modeling by actor,
mainly using theMIQPmodel based on themodel-free typeQ
value, thereby determining that the model contributes to the
calculation of MTD optimization considering PBNE, BSS,
and PSG. In addition, game metrics such as discount fac-
tors, exploration rates, learning rates, macroscopic episodes,
microscopic steps, and variance coefficients were dynam-
ically introduced for sensitivity analysis based on random
variables.

As the PBNE-based ‘PBNE-Q’ assumes complete knowl-
edge of the drone attacker and defender rewards, it pro-
duces an arbitrary drone-type MTD that can be applied at all
times as a Q-based mixed strategy. Because BSS and PSG-
based ‘BSS+PSG-Q’ selectively assume partial knowledge
of reward and greedy scheme based on the signal relationship
between the leader and followers, the drone-type MTDs are

normalized by episode. Finally, ‘URS-Q’ and ‘EXP-Q’ deter-
mine the drone-type MTD based on uniform and exponential
distribution randomization, respectively.

B. COMPARATIVE RESULTS 1—SENSITIVITY ANALYSIS OF
MTD FOR DRONE INTERIOR
By reflecting the defined encounter simulation parameters,
the adaptive MTD mutation according to decision boundary
was experimented. After classifying the defense efficiency
of the MTD applied for independent protections of separate
elements by POMDP state, the analytical scope was limited
to comparing and analyzing only S7, the final target state
by major indicator. Accordingly, results of drone-type MTD
performance analysis was formalized in the form of average
values considering both the suprema and infima, as shown in
Figure 8-13.
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FIGURE 10. Comparison of MTD-based defense success utility inside rugged drone by each exploration rate (defender) (a) exploration rate with
defender=0.05, (b) exploration rate with defender =0.1, (c) exploration rate with defender=0.15.

FIGURE 11. Comparison of MTD-based defense success utility inside rugged drone by each learning rate. (a) learning rate=0.0001, (b) learning
rate=0.0002, (c) learning rate=0.0003.

In Figure 8, when the discount factor decreased from 0.9 to
0.8, the total defense success utility of the drone-type MTD
exhibited an average increase of 15%.When this defense suc-
cess utility was divided by game decision logic, we observed
it to increase by 15% on average in the case of PBNE, 26%
in the cases of BSS and PSG, and not more than 5% and 3%,
respectively, in the cases of URS and EXP. However, when
the discount factor decreased from 0.8 to 0.7, although the
defense success utility was still higher than when the discount
factor was 0.9, the total defense success utility exhibited a
linear decrease of 9% on average. In Figure 9, when the
exploration rate factor – which converts the arbitrary attack
surface possessed by the target drone into intelligence from
the attacker’s perspective – increased from 0.05 to 0.15, the
total defense success utility increased by 12% on average.
Simultaneously, all reward values obtainable by episode were
clustered in approximation of a normal distribution. This
could indicate that despite although the drone-type MTDs

were applied by internal functional components, the tem-
porospatial asymmetry exploited by the attacker is inevitably
formed slightly advantageously to said attacker. These com-
parative results were fundamentally reflected together with
the concept of the drone-type MTD, which exhibits adaptive
improvement.

Figure 10 shows that when the exploration rate factor used
by the drone-type MTD defender increased 0.05 to 0.15,
enabling passive perturbation and active expose to execute in
parallel by projecting deceptive signals that are advantageous
to the defender, the total defense success utility increased
by approximately 7% on average. Furthermore, the defense
success utility linearly increased by 3% on average in the case
of PBNE, by 9% in the cases of BSS and PSG, and by approx-
imately 2% in the cases of URS and EXP. This quantitatively
proves that the inferior act, which the inherent drone-type
MTD deliberately shows to the outside, can deceive attackers
according to the defender’s intention.
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FIGURE 12. Comparison of MTD-based defense success utility inside rugged drone by each microscopic episode. (a) number of microscopic steps=500,
(b) number of microscopic steps=600, (c) number of microscopic steps=700.

FIGURE 13. Comparison of MTD-based defense success utility inside rugged drone by each variance coefficient. (a) constant value of coefficient=5,
(b) constant value of coefficient=6, (c) constant value of coefficient=7.

Figure 11 shows that when the learning rate factor intro-
duced to reflect the improvement in performance increases
from 0.0001 to 0.0003, the total defense success utility
decreases by 27% on average. This indicates that the direc-
tion of this MTD supplement does not correspond to stable
convergence towards the actual optimum value. Instead, it is
based on the stochastic gradient issue wherein the range
of momentum is determined in the form of convergence
toward other Local minima with saddle point. In particular,
these comparative results show that because the general-sum
engagement simulation based on model-free Q is repeat-
edly carried out based on a Monte Carlo simulation, side
effects based on the learning rate that did not consider the
Global minima can propagate to all subsequent competition
episodes. As shown in Figure 12, when themicro-episode fac-
tor – which indicates the maximum number of attack-defense
attempts allowed by an actor in a random engagement
episode – increased from 500 to 700, the total defense success

utility of the drone-type MTD drastically decrease to 21% on
average. Furthermore, the defense success utility converges
toward 18% on average in the case of PBNE, 27% in the
cases of BSS and PSG, and approximately 4% and 3% in
the cases of URS and EXP, respectively. This result could
be explained by the fact that the occurrence of competitive
encounter between the attacker and defender is simulated
after a part of the proactive shifting concept already implied
within the MTD is assumed to have been neutralized by
a specialized attacker. Therefore, the importance of active
shuffling sequences achievable with MTD-based mutations
can also be analyze.

Finally, Figure 13 presents comparison results of the vari-
ance coefficient factor, which relates to the attack efficiency
constant when constructing the attack surface information
identified by the drone attacker. We observe that when
the variance coefficient increased from 5 to 7, the total
defense success utility of the drone linearly increased by
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FIGURE 14. Comparison of MTD-based defense success utility outside rugged drone by each discount factor. (a) discount factor=0.9, (b) discount
factor=0.8, (c) discount factor=0.7.

FIGURE 15. Comparison of MTD-based defense success utility outside rugged drone by each exploration rate (attacker). (a) exploration rate with
attacker=0.05, (b) exploration rate with attacker =0.1, (c) exploration rate with attacker =0.15.

approximately 5∼7% on average, and uniformization toward
the form of a normal distribution was also achieved gradually.

C. COMPARATIVE RESULTS 2—SENSITIVITY ANALYSIS OF
MTD FOR DRONE OUTSIDE
Figures 14-19 presents the results of performance analyses in
an environment where separate bi-directional communication
channels were constructed so that target drone was as a subor-
dinate command control entity connected to other command-
auxiliary entities. These results are also shown in the form of
mean graphs applied with suprema and infima.

Figure 14 shows that when the discount factor that adjusts
the optimization range by cutting the ranges of cognitive
judgment by actor decreased from 0.9 to 0.8, the total defense
success utility of the drone-type MTD increased by 11%
on average. Furthermore, the defense success utility linearly
increased by 9% on average in the case of PBNE, 17% on
average in the case of BSS and PSG, and 8% and 7% in

the cases of URS and EXP, respectively. Unlike the inside
of the drone as shown in Figure 8, even when the defense
success utility additionally decreased from 0.8 to 0.7, the
total defense success utility increased by approximately 6%
on average. And the uniformity of reward values calculated
by decision logic also gradually clustered in the form of a
normal distribution. This result could be explained by the
fact that the ranges of optimal judgment calculated by drone
element were largely configured outside rather than inside the
drome, and mutual dependencies between entities outside the
drone connected in the form of communication channels. Fur-
thermore, the temporospatial characteristic that the mutual
dependency between entities external to the drone is lower
than the hierarchical dependencies by component belonging
to the inside of the drone was reflected.

From Figure 15, we observe that when the exploration rate
factor based on the drone attacker increased from 0.05 to
0.1, the total defense success rate of the MTD increased
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FIGURE 16. Comparison of MTD-based defense success utility outside rugged drone by each exploration rate (defender). (a) exploration rate with
defender=0.05, (b) exploration rate with defender =0.1, (c) exploration rate with defender=0.15.

FIGURE 17. Comparison of MTD-based defense success utility outside rugged drone by each learning rate. (a) learning rate=0.0001, (b) learning
rate=0.0002, (c) learning rate=0.0003.

by an average of 16%. In cases where the exploration rate
increased from 0.1 to 0.15, the total defense success rate
linearly increased by approximately 8% on average. When
divided in higher detail than game concept, the defense suc-
cess rate was shown to converge toward 5% on average in
the case of PBNE, 15% on average in the cases of BSS
and PSG, and 4% and 6% in the cases of URS and EXP,
respectively. In Figure 16, when the drone defender-based
exploration rate factor increased from 0.05 to 0.1, the total
defense success utility of the MTD for a target outside the
drones increased slightly to within 3% on average. However,
when the exploration rate increased from 0.1 to 0.15, the total
defense success utility linearly increased sharply by not more
than 11% on average. This tendency proves that the range
of influence of the attacker’s threat is more limited in the
external wireless environment than inside the drone based on
wiredmodules, while the range of judgment of surface unique

to the defender also can expand drastically when the range
outside the drone is protected.

Unlike Figure 11, Figure 17 shows that when the learning
rate factor increases from 0.0001 to 0.0003, the total defense
success utility of the drone-type MTD is maintained in the
form of a linear increase or decrease by approximately 3%
on average. Also, based on the reduced solution space range
according to non-dependency secured by the drone’s external
elements, the total defense success utility is relatively inde-
pendent of the Local-minima-based gradient decision and
side effect spread issues.

As shown in Figure 18, even when the microscopic episode
factor sequentially increased from 500 to 700, the total
defense success utility of the target MTD outside the drone
exhibited linear increases and decreases of approximately 2%
on average. This also quantitatively proves that the issue of
asymmetry in favor of the attacker caused by competitive
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FIGURE 18. Comparison of MTD-based defense success utility outside rugged drone by each microscopic episode. (a) number of microscopic steps=500,
(b) number of microscopic steps=600, (c) number of microscopic steps=700.

FIGURE 19. Comparison of MTD-based defense success utility outside of rugged drone by each variance coefficient. (a) constant value of coefficient=5,
(b) constant value of coefficient=6, (c) constant value of coefficient=7.

engagement does not significantly occur successively in the
external wireless environment.

Figure 16 shows that when the variance coefficient factor
increased from 5 to 6, and from 6 to 7, the total defense suc-
cess utility significantly decreased by 26% and 21%, respec-
tively, on average. In addition, when results were subdivided
by decision logic, the defense success utility can be observed
to decrease by 12% and 10% on average, respectively, in the
case of PBNE, by 35% and 31%, on average, respectively,
in the cases of BSS and PSG, and by 11% and 9%, 13%
and 12%, on average, respectively, in the cases of URS and
EXP, respectively. Unlike the attack simulation scenario in
Figure 13, which assumes only a single drone as compro-
mised target from a macroscopic perspective, the foregoing
tendency appears to quantitatively reflect the difference stem-
ming from an expanded simulation range based on master
drones, slave drones, GCS, and ZSP.

V. DISCUSSION AND CONCLUSION
As an active countermeasure to solve the domain limita-
tions of previous MTD studies, this paper proposes the
novel concept of the drone-type MTD. In addition, the
D3GF framework was formalized for additional compari-
son and analysis of deceptive defense performance against
drone wireless threats based on competitive engagement
simulations. Multiple-sum engagement modeling was opti-
mized based on perfect Bayesian Nash equilibrium, stochas-
tic Stackelberg, and partial signal game. Subsequently, based
on the formal threat modeling with POMDP, the target vul-
nerabilities of the drone’s internal functional components
and communication entities external to the drones were ana-
lyzed to establish the relevant wireless encounter sequences.
In addition, after conducting a simulation experiment of
engagement based on the adapted game decision logics,
sensitivity analyses were also performed with quantitative
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TABLE 5. Probability matrix of transition and semi-constant reward value with payoff strategy for inside of drone.

metrics for the calculated drone-type MTD defense effec-
tiveness. As a result, compared to conventional security ele-
ments, the presented drone-type MTD was demonstrated to
ensure robustness of security avoidance for the inside and
outside of drones. Furthermore, the defense effects divided
according tomajor indicators such as discount factor, learning

rate, exploration rate, number of macroscopic episodes,
microscopic steps, and sampling variance coefficient, were
calculated.

However, from a threat-to-validity analysis of this study,
most results were obtained from limited simulations within
a range of internal and external invasion scenarios, which
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TABLE 6. Probability matrix of transition and semi-constant reward value with payoff strategy for outside of drone.

were not completely dynamic despite fine-tuning of game
metrics. The decision boundaries by actor were likewise
limited. Therefore, we expect the introduction of stochastic

scalability in POMDP to account for more diverse drone
battlefield ranges as required. In addition, because the con-
cept of perfect complete information used to optimize game
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decisions by drone actors was also unrealistically assumed
to differ from the actual drone’s operational security, it is
necessary to secure a game solution that does not require
such prior knowledge separately. Furthermore, because most
internal and external vulnerabilities of drones were abstracted
based on threat modeling results from CVE/CVSS-based
quantitative scores, they could differ from the unique policies
or beliefs related to the actual organizations and personnel
operating a drone network. Likewise, practical differences
from combat network radios and related datalinks could
depend on the range of expose for vulnerability information,
all of which should be mitigated. Futhermore, by quanti-
fying the attack-exploration surface of the defender, which
could fluctuate depending on whether the drone-type MTD
is applied multidimensionally, variability in performance as
a result of surface elements must also be analyzed in detail.
In addition, most actual attack and defense actors in a wire-
less communication drone operating environment subjec-
tively process asymmetric information, or perform actions
after making incomplete judgments. In this study, subjective
decisions were simulated under the premise that actors in
uncertain situations have a consistent opinion, which does not
fully represent a practical scenario.

Accordingly, all abovementioned limitations will be
mitigated by conducting a follow-up study to expand the
optimization domain of the drone-type MTD with the hyper-
game, which is a zero-sum-based unbalanced meta game
logic, while additionally integrating the MTD applied to a
prototype drone with a drone-type decoy element and AI
(artificial intelligence) [55]. Based on the follow-up study,
actual drone active protection technology will be combined
with the cyber flare type avoidance and cyber camouflage
type disarrangement strategies, yielding further advances in
actual tactical modernized cyber devices.

APPENDIX—SUPPLEMENTARY DATA
See Tables 5 and 6.
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